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ABSTRACT
To fulfill the overall objectives of a multiagent system, the behavior

of individual agents should be controlled and coordinated. Runtime

norm enforcement is one way to do so without over-constraining

the agents’ autonomy. Due to the dynamicity and uncertainty of

the environment, however, it is hard to specify norms that, when

enforced, will fulfill the system-level objectives in every operating

context. In this paper, we propose a mechanism for the automated

revision of norms by altering their sanctions, based on the data

monitored during the system execution and on some knowledge

about the agents’ preferences. We use a Bayesian Network to learn

at runtime the relationship between the obedience/violation of a

norm and the achievement of the system objectives. We propose

two heuristic strategies that explore the updated Bayesian Network

and automatically revise the sanction of an enforced norm. An

evaluation of our heuristics using a traffic simulator shows that

our mechanisms outperform uninformed heuristics in terms of

convergence speed.
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1 INTRODUCTION
A multiagent system (MAS) comprises a set of autonomous agents

that interact in a shared environment [20]. To reach the emergent

system-level objectives of a MAS, the behavior of the autonomous

agents should be coordinated [5]. For example, a smart traffic system

is aMAS that includes autonomous agents like cars, traffic lights, etc.

The objectives of such a system include ensuring that each agent

reaches its destination timely, and that the number of accidents is

minimized.

Norm enforcement is a prominent mechanism for controlling

and coordinating the runtime behavior of the agents in a MAS with-

out over-constraining their autonomy [1, 18]. Norm enforcement

via sanctions is traditionally contrasted with norm regimentation,
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which prevents the agents from reaching certain states of affairs.

For example, in a smart traffic system, a regimentation strategy

could be to close a road to prevent cars from entering the road,

while a sanctioning strategy could be to impose sanctions on cars

that do enter the road.

Existing research has studied the revision of the enforced norms,

and proposed logics that support norm change [4, 13, 14], intro-

duced algorithms for switching among alternative norms [10], and

studied the legal effects of norm change [11]. Dell’Anna et al. [10]

have proposed a framework for engineering normative MASs that,

using runtime data from MAS execution, revises the norms in the

MAS to maximize the achievement of the system objectives. Their

work makes the simplistic assumption that norms are regimented.

In this paper, we make a step forward toward the engineering

of normative multiagent systems that can revise norms enforced

via sanctions. Moreover, and in contrast to [10], norm revision is

now informed about the preferences of the agents. We assume

preferences to be specified in terms of a desired state of affairs and

the maximum payment that the agent is willing to make to achieve

the state of affairs. We use Bayesian Networks to learn the norm

effectiveness from runtime execution data and to inform the norm

revision mechanism that revises the sanction of the enforced norm.

The contributions of this paper is as follows:

• We introduce a simple formal framework to specify a nor-

mative multiagent system in terms of norms and agent pref-

erences (agent types).

• We build on and extend the general architecture proposed

in [10], and study the relationships between preferences,

sanctions, and system objectives.

• We propose heuristics for norm revision that make use of

probabilistic information learned from system execution data

to align the enacted norms with the agent preferences.

• We report on an evaluation through a traffic simulator that

shows the effectiveness of our revision strategies in identify-

ing optimal sanctions efficiently.

Organization. Section 2 presents our framework to character-

ize norms and agent preferences. Section 3 explains the overall

approach for supervising normative MAS based on probabilistic

reasoning over norms’ effectiveness. Section 4 introduces our strate-

gies for revising norms by combining agent preferences with the

satisfaction of the overall system objectives. Section 5 evaluates our

work through simulation experiments. Section 6 discusses related

work, and Section 7 presents our conclusions and future directions.



2 NORMATIVE MULTIAGENT SYSTEMS
This section presents a simple, but generic, framework for speci-

fying normative multiagent systems in which the agents behave

according to their preferences while norms are enforced on them

via sanctions. This framework allows us to analyze the interplay

between norms and preferences in normative multiagent systems.

2.1 Illustrative example
We consider the two-lanes ring road depicted in Figure 1. In a ring

road, a population of vehicles moves continuously in circle. Every

vehicle is autonomous and acts according to its own preferences

(e.g., it respects a certain speed limit and is willing to risk certain

sanctions). If a fast vehicle is using the outer line and a slower

vehicle blocks its way, the fast vehicle moves to the inner line

to overtake the slow vehicle. Since all vehicles share the same

environment, their local decisions have an effect on the emergent

system-level behavior of the ring road [17]. For example, based on

contextual factors such as the density of vehicles in the ring road,

the vehicles behavior may provoke traffic jams and the average

speed may vary, as well as the average time to complete a round of

the ring road.

Figure 1: Two lanes ring road. Rectangles are vehicles, mov-
ing in counter clockwise direction.

The ring road is a simple example of a MAS. Although far from

realistic traffic situations, the ring road illustrates the fundamental

phenomena of emergent system-level properties, caused by the local

decisions of individual agents, and the importance of mechanisms

to control and steer such system-level behaviors.

We assume the main stakeholder of the ring road (the city coun-

cil) has two system-level objectives: to minimize the average time

to complete a round of the ring road and to minimize the number of

halted cars. We consider two contextual variables that may influ-

ence the achievement of the system-level objectives, together with

the vehicles’ behavior: the density of vehicles and the presence of an

obstacle in the ring road. To achieve the objectives, the behavior of

the agents is regulated by enforcing norms concerning the speed

limit, such as the norm every vehicle in the ring road shall not exceed

a speed of 50km/h, otherwise it will receive a sanction of 100€. In other

words, the ring road is a normative MAS.

Vehicles are autonomous agents, each belongs to a certain agent

type that is characterized by the agent’s preference. For instance a

cautious agent is a type of agent that prefers to go slow rather than

fast in the ring road. A brave agent is a type of agent that prefers to

go fast rather than slow, even if it has to pay some money to do so.

2.2 Norms and Agents Preferences
In order to focus on the revision of the sanctions of the enforced

norms, we propose a simple but extensible language for norms.

Consider a set of propositional atoms L = {p1, . . . ,pk }, each rep-

resenting a state of affairs. A norm is a pair N = (p, s), where
p ∈ L and s ∈ N, indicating that p should hold in the current

system state, otherwise sanction s will incur. For instance, given
L = {speed_50, speed_100}, a norm N = (speed_50, 100) indicates
that every vehicle in the ring road shall not exceed a speed of 50km/h,

otherwise it will receive a sanction of 100€.

In this paper we focus on rational agents, i.e., agents that always

choose to achieve their most preferred state of affairs. Let Aд =
{a1, . . . ,an } be a set of agents. The preference of an agent a is

denoted by Pref (a) = (C, ⪰), whereC = { (pi ,bi ) | 1 ≤ i ≤ k & bi ∈
N } and ⪰ is a partial order on C . A pair (p,b) ∈ Pref (a) indicates
that the agent a wants to achieve p and is willing to spend a budget

b, i.e., the agent is willing to pay b or less to achieve p. Given L as

defined above and restricting us to two possible budget values 0 and

1, the preference (speed_100, 0) ⪰ (speed_100, 1) ⪰ (speed_50, 0) ⪰
(speed_50, 1) indicates that the agent prefers to drive fast rather

than slow, and that maximizing speed has priority over minimizing

the budget. As an agent’s preference characterizes its type, this

agent can be seen as having a brave type.

An agent is said to have a basic rational preference (C, ⪰) when
for all pairs (pi ,bi ) and (pj ,bj ) in C , the partial order ⪰ satisfies

one of the following two conditions:

(1) (pi ,bi ) ⪰ (pj ,bj ) iff bi ≤ bj & ∀(p,b), (p′,b) ∈ C,
∀b,b ′ ∈ N : (p,b) ⪰ (p′,b) ⇒ (p,b ′) ⪰ (p′,b ′).

(2) (pi ,bi ) ⪰ (pj ,bj ) iff if (pi = pj ) then bi ≤ bj else ∀b,b ′ ∈ N :

(pi ,b) ⪰ (pj ,b ′)

If an agent’s preference is defined according to the first clause,

then the agent’s budget is used to order the pairs. If the preference

adheres to the second clause, then the propositional atom is used to

order the pairs. An example of non-rational preference, instead, is

(speed_50, 1) ⪰ (speed_50, 0) ⪰ . . . , since the first two pairs share

the same propositional atom but, among them, it is preferred the

pair with higher budget. Without going into the details, which are

outside the scope of this paper, note that an agent’s preference as

defined above satisfies the rationality requirements, i.e., the basic

rational preference is transitive and complete.

We also consider more complex agent preferences that combine

the two clauses of basic rational preference. An agent is said to

have a complex rational preference, or simply a rational preference

(C1 ∪ C2, ⪰) iff (C1, ⪰1) and (C2, ⪰2) are basic agent preferences,
C1 ∩ C2 = ∅, the budgets that are used in C1 are lower than any

budget used inC2, and ⪰=⪰1 ∪ ⪰2 ∪{(c1, c2) | c1 ∈ C1 & c2 ∈ C2 }.
Again, without going into the details that go beyond this paper,

note that the rational preference is transitive and complete.

Given a norm N = (p, s) and an agent preference (C, ⪰) with
(p′,b) ∈ C , we assume that (i) p,p′ ∈ L, and (ii) s,b ∈ N. In other

words, we assume that norms and agents’ preferences are defined

with respect to the same environment and that the sanction and

the agents’ budget are commensurable. This makes it possible to

analyze an agent’s preference in the context of a norm to determine



whether the preference can motivate an agent to comply with a

norm or otherwise to which extent it will violate the norm.

Intuitively, in the context of an enforced norm, we assume that

an agent follows its preference by aiming to realize either a norm

complying state or a violating state for which he is willing to pay

the sanction. Without defining the notion of violate formally, we

assume that a preferred state pi (e.g., speed_100) violates a norm
state p (e.g., speed_50) when p excludes pi , and we write viol(pi ,p)
to indicate it. In the sequel, the pair (pi ,b) is said to be a violating

pair w.r.t. a norm (p, s) when viol(pi ,p); otherwise (pi ,b) is said to

be a complying pair w.r.t. a norm (p, s).
Let (C, ⪰) be the preference of an agent and N = (p, s) be a norm.

A pair ci = (pi ,bi ) ∈ C is called the most preferred (state/budget)

pair to act upon in the context of N if and only if for all pairs c j =
(pj ,bj ) ∈ C with c j ⪰ ci it holds that viol(pj ,p) and b < s . For exam-

ple, given the agent preference (speed_100, 0) ⪰ (speed_100, 1) ⪰
(speed_50, 0) ⪰ (speed_50, 1) and the norm (speed_50, 2), the most

preferred pair to act upon is (speed_50, 0). Note that given a norm

(p, s) it is possible to have the most preferred pair (pi ,bi ) such that

viol(pi ,p), i.e., the most preferred pair motivates the agent to real-

ize a violating state. For example, for the above-mentioned agent

preference, and a norm (speed_50, 1) that states “do not exceed

50km/h to avoid sanction 1”, the most preferred pair to act upon is

(speed_100, 1). This pair indicates that the agent is willing to pay

sanction 1 for having a speed of 100km/h. We say that an agent a
has a reason to violate a norm (p, s)whenever the agent’s preference
Pref (a) is such that the most preferred pair is (pi ,b), and viol(pi ,p).

In order to determine the maximal payment that an agent is

willing to pay for violating a given norm, we introduce the notion

of maximum budget for norm violation. Let Pref (a) = (C, ⪰) be
the preference of agent a and N = (p, s) be the enforced norm.

The maximum budget that a is willing to pay for the violation of

N , denoted as maxB(a,N ), is the highest budget of the violating
pairs in C that are preferred over the most preferred complying

pair in C , i.e., the highest budget that occurs in the set: { (pi ,bi ) ∈
C | (pi ,bi ) ⪰ (p,b) ∈ C}, with (p,b) the first complying pair in

Pref (a). For example, consider (speed_100, 0) ⪰ (speed_100, 1) ⪰
(speed_50, 0) ⪰ (speed_50, 1) as the preference of agent a and N =
(speed_50, 2) as the enforced norm. The maximum budget that a is

willing to pay for violating N is 1, i.e., maxB(a,N ) = 1. Note that if

the maximum buget for violating a norm is lower than the sanction

corresponding with the norm, then the most preferred pair to act

upon is a complying pair.

3 NORM-BASED SUPERVISION
We build on the runtime norm-based supervision systems for mul-

tiagent systems as proposed in [10] and sketched in Figure 2. The

framework monitors the behavior of a multiagent system, evalu-

ates the enforcement of the norms in terms of the overall system

objectives, and, when needed, intervenes by revising the norms.

In such a framework, a Bayesian Network called Norm Bayesian

Network is used to learn and reason at runtime about the correlation

between norm obedience or violation and the satisfaction of the

system-level objectives. For example, the approach helps answering

questions like how well, and in which contexts, does the norm

(speed_100, 2) help achieve the objective of avoiding halted cars?

Monitoring
and 

Sanctioning

MAS

Norm Revision
(Bayesian Network)

Norms

Statistical data

TripDur
(true, false)

Halted
(true, false)N

(ob, viol)

Vehicle 
Density 

(low, high)

Obstacle
(true, false)

Figure 2: Illustration of the MAS supervision mechanism.

In [10] we proposed heuristic algorithms for suggesting norm re-

visions that alter the regimented norms. Here, we use the framework

to revise the way the norms are enforced by altering the sanctions.

We adopt their Norm Bayesian Network as a tool to identify correla-

tions between norms and system-level objectives.

3.1 Norm Bayesian Network
Consider some monitorable environmental properties such as the

density of vehicles or the presence of an obstacle in the ring road.

Each of these properties is called contextual variable, and is asso-

ciated to a domain of values. For example, Vehicles density can be

either low or high, while Obstacle can be true or false. Given a set

of contextual variables, a context assigns a value to each contex-

tual variable. For instance, given Vehicles density and Obstacle, four

possible contexts exist: high-true, high-false, low-true, low-false.

A Norm Bayesian Network NBN = (X,A,P) [10] is a Bayesian
Network where:

• X = N∪O∪C are nodes that represent random variables in

probability theory.N,O andC are disjoint sets.N consists of

norm nodes; each node N ∈ N corrensponds to a norm and

has a discrete domain of 3 possible values: obeyed, violated

and disabled. O consists of objective nodes; each node O ∈ O
corresponds to a boolean objective and has a discrete domain

of 2 values: true and false. Finally,C consists of context nodes;

each node C ∈ C corresponds to a contextual variable and

can have a discrete or continuous domain of values.

• A ⊆ (C×N) ∪ (C×O) ∪ (N×O) is the set of arrows that
connect pairs of nodes. If there is an arrow from node X to

node Y , X is called parent of Y .
• P is a set of conditional probability distributions. These are

encoded into conditional probability tables (CPTs), each one

associated with a node in X and quantifying the effect of

the parents on the node. The conditional probability values

in the CPT of a node are the parameters of the network.

These parameters are learned from runtime monitoring data

through classic Bayesian learning.

In the rest of the paper, we use the following notation for Bayesian

Networks. Italic uppercase (X , Y , . . .) for random variables; bold

uppercase (X, Y, . . .) for sets of random variables; italic lowercase



(v1, v2, . . .) for values in the domain of a random variable; Nv ab-

breviates (N = v), i.e., an assignment of value v to a norm variable

N ;Ov denotes an assignment of valuev to all nodes inO; P denotes

a single probability. An evidence e is an observed assignment of

values for some or all of the random variables in the network. An

evidence c for all the context nodesC is an observation for a certain

context; for example, Vehicles density has value low and Obstacle

has value false. For simplicity, we use the term context also to refer

to the associated evidence in the Bayesian Network.

In this paper, since we focus on revising the sanction that en-

forces a norm, we consider Norm Bayesian Networks in which the

set of norm nodes N is composed by a single node, like in Figure 3.

This node represents the only norm that is enforced in the system.

Since the norm is never disabled, in the following we ignore the

disabled value of the corresponding node in the Bayesian Network.

Trip Duration

true
false

Halted

true
false

Vehicle Density

low
high

Obstacle

true
false

N

obeyed
violated

TripDur
(true, false)

Halted
(true, false)N

(ob, viol)

Vehicle 
Density 

(low, high)

Obstacle
(true, false)

Figure 3: A Norm Bayesian Network for the ring road.

3.2 Norms and Overall Objectives in MAS
Consider a set of agent types T, each type corresponding to a

rational preference as per Section 2. Also, take a set of agents

Aд = {a1, . . . ,an }, each with a specific type from T. We use

Pref (a) ∈ T to indicate that agent a ∈ Aд behaves according to a

type from T. Moreover, we assume that the actions performed in

a multiagent system are uniformly distributed over all the agents:

no agent performs more actions than others. In the ring road sce-

nario, every car performs an action—setting its speed—at every

time instant. Since the cars in the ring road do not change, each car

performs the same number of actions in any time window.

Given these assumptions and a norm N , we say that N is well

defined if the probability that N is violated, denoted as P(N
viol

), is
never higher than the percentage of agents in theMASwith a reason

to violate N . In other words, the upper bound of the probability

P(N
viol

) is the percentage of the agents with a reason to violate N .

Let N be a norm, T = {t1, . . . , tk } be a set of agent types in the

multiagent system, and δ = (d1, ..., dk ) be a distribution over the

agent types where di is the percentage of population of agents of

type ti and ∀i ∈ 1 . . .k : di ∈ [0, 1] and ∑k
i=1 di = 1. The percent-

age of agents with a reason to violateN is

∑k
i=1(di ·hasReason(i,N )),

with hasReason(i,N ) = 1 if agent type ti has a reason to violate N ,

0 otherwise. Note that, since we represent agent types as rational

preferences, increasing the sanction s of a norm N = (p, s) does not
increase the percentage of agents with a reason to violate N . There-

fore, given k agent types and maxB(T,N ) as the maximum budget

among all agent types to violate a well-defined norm N = (p, s),
the percentage of agents with a reason to violate a well-defined

norm N ′ = (p,maxB(T,N )) is 0. This is to say that increasing the

sanction of a norm to the maximum budget that any agent is willing

to pay cause all agents to comply with the norm.

Consequently, given two well-defined norms N = (p, s1) and
N ′ = (p, s2) such that s2 > s1, the upper bound of the probability

P(N ′
viol

) is never bigger than the upper bound of the probability

P(N
viol

). Consider as an example a norm N , a set of three agent

types T = {t1, t2, t3} and a population of agents where 60% of them

has type t1, 30% has type t2 and the remaining 10% has type t3.
Suppose that each agent a with type t1 has a maximum budget to

violate N equals to 2 (i.e., maxB(a,N )) = 2), agents with type t2
have maximum budget 3 and agents with type t3 have maximum

budget 0. The maximum budget among all agents types for violating

N is 3, i.e.,maxB(T,N ) = 3. Figure 4 reports the upper bound of the

probability of violating N for this example with different sanctions.

0 1 2 3 4

0

0.5

1

Sanction of N

P
(N

v
i
o
l
)

Figure 4: Example of upper bound of the probability of vio-
lating a well-defined norm N w.r.t. the sanction associated
to N and agents’ preferences.

Note that the upper bound of P(N
viol

) describes a hypothetical
situation where all agents behave according to their preferences,

no contextual factor influences agent behavior, and interactions

among agents do not prevent them to act according to their prefer-

ences. This would happen, for example, when a single car drives on

an empty highway with perfect road and car conditions. However,

the actual probability to violate a norm is affected by the agent

interactions and by the MAS environment. Even if all agents have a

reason to violate a norm, due to their interaction or to environmen-

tal circumstances (e.g., large number of cars in the ring-road), none

of them may end up violating it. We call the monitored probability

of violating (obeying) a norm exhibited norm violation (obedience).

The concept of well-defined norm concerns the relationship be-

tween a norm and agent preferences. In a multiagent system, norms

are enforced to achieve some system-level objectives. We define

here two properties that relate a norm with the overall objectives:

the concept of synergy between a norm and the overall objectives,

and the concept of effectiveness of a norm.

We say that there is a positive synergy between a norm and

the overall system-level objectives if it is more likely to achieve

the overall objectives when the norm is obeyed than when it is

violated. A positive synergy between a norm N and a set of boolean

objectives O exists if P(Otrue |Nob
) > P(Otrue |Nviol

). We say that

there is a negative synergy between N and O if P(Otrue |Nob
) <

P(Otrue |Nviol
). Finally, we say that there is no synergy between N

and O if P(Otrue |Nob
) = P(Otrue |Nviol

).



We say, instead, that a norm N is effective if, when N is enforced,

N guarantees the desired achievement level τ of the system-level

objectives, i.e., when P(Otrue) > τ , with
P(Otrue) = P(Otrue |Nob

) · P(N
ob
) + P(Otrue |Nviol

) · P(N
viol

)
Notice that, although setting sanctions to maxB(T,N ) makes

all the agents compliant (i.e., P(N
viol

) = 0 and P(N
ob
) = 1), it does

not necessary guarantee the achievement of the overall system

objectives, as norms can be ineffective when obeyed by all agents.

The exhibited norm obedience, the synergy and the effectiveness

are hard to determine while designing a MAS, due to the complexity

of the system, the interaction between autonomous agents, and

the uncertainty of the environment. However, they can be learned

at runtime by monitoring the system performance. We follow the

approach from [10] to learn such properties by means of the Norm

Bayesian Network. We combine these properties with the agents’

preferences to revise the sanction of an ineffective norm N .

4 NORM REVISION
We propose two heuristic strategies for the revision of the sanction

of a well-defined norm whose enforcement is currently ineffective.

The two strategies that we propose, called synergy and sensitivity,

leverage the knowledge learned at runtime about norm effective-

ness and the knowledge about the preferences of the agents. Below,

our explanation assumes a specific context c.
Take the Norm Bayesian Network in Figure 3. By analyzing the

conditional probability tables (CPTs) of the objectives nodes O =
{TripDur,Halted}, we can determine whether norm N is effective

or not in context c. If N is not effective (P(Otrue |c) < τ ), a revision
of N = (p, s) is triggered. Here, we aim to revise the sanction s . For
example, if the norm (speed_50, 1) is ineffective with an obstacle

and high vehicle density, we aim to identify another value for the

sanction: 0, 2, 3, . . . . Given a norm N , a set of agent types T and

the maximum budget maxB(T,N ) among all agent types in T to

violate a well-defined norm N , the set of possible sanctions that

can be used to enforce N is S = {s ∈ N|s ≤ maxB(T,N ) + 1}. This
set is the search space within which the two strategies synergy

and sensitivity search for a new sanction for an ineffective norm.

Synergy: Sanction revision based on norm-objectives synergy. This

strategy uses the learned information about the synergy between N
and the objectives O in c and about the exhibited norm obedience.

If there is a positive synergy between N and O in c, the objectives
O are more likely to be achieved when N is obeyed. In this case, by

reducing the violations ofN we should expect to increase P(Otrue |c).
In case there is a negative synergy between N and O in c, instead,
we should expect that increasing the violations of N would also

increase of P(Otrue |c) by increasing the violations of N . We aim at

achieving the required change by revising the sanction of norm N .

In synergy, we define the new sanction s ′ as the closest sanction
to s in the set S that has never been attempted before and that is

expected to increase (or decrease) P(N
viol

|c). Note that, by choosing
the closest sanction, synergy favors stability in the normative

system of the MAS, i.e., it applies minimal changes to the norm

sanction.

Sensitivity: Sanction revision based on sensitivity analysis. This

strategy is based on the sensitivity analysis technique from prob-

abilistic reasoning [6]. We aim not only at determining the direc-

tion of the revision—i.e., increasing or decreasing the probability

P(N
viol

|c) as in the case of synergy—, but also at providing an esti-

mation of the required change in the probability P(N
viol

|c) in order

to make N effective in context c. The probability P(N
viol

|c) is a
parameter θN

viol|cof the Norm Bayesian Network. Given the node N ,

we want to identify possible changes to the parameter θN
viol|c that

can ensure the satisfaction of the constraint P(Otrue |c) ≥ τ .
We call required revision strength (RRS) the desired change∆θN

viol|c
in the parameter θN

viol|c that ensures P(Otrue |c) ≥ τ . Such a value

can be determined by performing sensitivity analysis for the Bayesian

Network [6], thus solving the following inequality:

P(Otrue |c) +
δP(Otrue |c)
δθN

viol|c
· ∆θN

viol|c ≥ τ (1)

Considering the topology of theNormBayesian Network of Figure

3, with a single norm node (we will focus on the case of multiple

norms in future work), we follow Chan et al. [6] and compute the

derivative
δP (Otrue |c)
δθN

viol|c
as follows.

δP(Otrue |c)
δθN

viol|c
=

P(Otrue,Nviol
|c)

P(N
viol

|c) − P(Otrue |Nob
, c) (2)

For the Bayesian Network of Figure 3, such derivative can be

further simplified as P(TripDur
true

|N
viol
, c) · P(Haltedtrue |Nviol

, c)−
P(TripDur

true
|N

ob
, c) · P(Haltedtrue |Nob

, c).
The calculated RRS determines the change in P(N

viol
|c) that is

estimated, based on data acquired from execution, to be required

in order to make N effective. Given a norm N = (p, s) and the

required revision strength RRS, we need to find a new norm N ′ =
(p, s ′) such that the applied revision strength (i.e., the difference

UB(N ′
viol

|c) − P(N
viol

|c) between the estimated upper bound UB

for the norm violation with N ′
and the current exhibited norm

violation with N ) is as close as possible to RRS and such that s ′ is
as close as possible to s .

After enforcing the new norm N ′
obtained by selecting a new

sanction, we monitor the new behavior of the agents and detect

the new exhibited norm violation P(N ′
viol

|c). We call actual revision

strength the difference P(N ′
viol

|c)−P(N
viol

|c) between the exhibited

norm obedience with N ′
and with N .

5 EXPERIMENTS
To evaluate our proposed norm revision strategies, we use a simu-

lation of the ring road scenario of Section 2. We consider the two

contextual variables Vehicle density, which can be low (40 cars in

the ring road) or high (100 cars); and Obstacle, which is true when

a halted car is placed on the outer lane of the ring road. Each car in

the simulation is an agent that acts according to its preference. At

each simulation step, every agent determines its desired speed in

the ring road according to its most preferred pair to act upon in the

context of the norm currently enforced, as described in Section 2.

We consider the set of propositional atoms L = {15, 8, 3} (where
each element i in L stands for speed_i m/s) and the set of sanc-

tions S = {0, 1, 2, 3} for defining norms and agent preferences. We

consider four types of agents:



• BraveRich prefers to drive fast and pay a maximum budget

of 2, i.e., (15, 0) ⪰ (15, 1) ⪰ (15, 2) ⪰ (8, 0) ⪰ (8, 1) ⪰ (8, 2) ⪰
(3, 0) ⪰ (3, 1) ⪰ (3, 2);

• BraveMiddleClass prefers to drive fast but pay a maximum

budget of 1, i.e., (15, 0) ⪰ (15, 1) ⪰ (8, 0) ⪰ (8, 1) ⪰ (3, 0) ⪰
(3, 1) ⪰ (15, 2) ⪰ (8, 2) ⪰ (3, 2);

• BravePoor prefers to drive fast but does not want to pay any

sanction, i.e., (15, 0) ⪰ (8, 0) ⪰ (3, 0) ⪰ (15, 1) ⪰ (8, 1) ⪰
(3, 1) ⪰ (15, 2) ⪰ (8, 2) ⪰ (3, 2);

• Cautious prefers to drive slow and be compliant, i.e., (3, 0) ⪰
(8, 0) ⪰ (15, 0) ⪰ (3, 1) ⪰ (8, 1) ⪰ (15, 1) ⪰ (3, 2) ⪰ (8, 2) ⪰
(15, 2).

We experiment with three distributions of agents: uniform (the

entire population of agents is uniformly distributed across the four

types), mostly compliant (75% of agents belongs to type Cautious

and the rest is uniformly distributed across the remaining types),

and mostly violating (75% of agents belongs to type BraveRich and

the rest is uniformly distributed across the remaining types). We

enforce two different norms: N = (3, s) and N = (8, s) with s ∈ S
in all the four possible operating contexts, with all the three agents

distributions. Figure 5 illustrates the upper bounds of the probability

of violating the two norms above defined (as per Section 3.2) for

the three agent type distributions.
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Figure 5: Upper bound of the probability of violating norms
(3, s) and (8, s) with different agent type distributions.

During the simulation
1
, we collected data about norms obedience

and objectives achievement in the four different operating contexts.

We monitored the behavior of the cars and sanctioned each car that

violated the currently enforced norm. A sanctioned car was not

sanctioned anymore until it completed a full round of the ring road.

The boolean value of the objectives was measured every 50 steps.

The objective Trip_Duration was considered achieved if, on average

in the 50 steps, the cars in the ring road took less than 2.5 times the

theoretical average trip time
2
to complete a round of the ring road.

The objective Halted was considered achieved if, on average, less

than 10% of cars were halted in the ring road.

To evaluate synergy and sensitivity, we used the hill climb-

ing implementation of the runtime norm supervision mechanism

proposed in our previous work [10]. We evaluated the number of

steps required by the hill climbing approach to converge to an op-

timal system configuration, i.e., an assignment of a sanction for

the enforced norm to each of the system’s operating contexts. An

example of a configuration for the ring road is {(low−true, 1), (low−
1
For our experiments we used SUMO traffic simulator [15] and CrowdNav+RTX [16].

2
The theoretical trip time is

∑
ti ∈T di × ti,N , with T set of agent types, di the

percentage of agents of type ti , and ti,N the theoretical time needed by ti to complete

a round in case of free ring road when norm N is enforced.

false, 2), (high − true, 0), (high − false, 3)}. We used our two strate-

gies synergy and sensitivity as two possible informed heuristics

for defining the neighborhood of a configuration, i.e., the config-

urations where the sanctions of the enforced norms are revised

as suggested by the heuristics. We apply the hill climbing mecha-

nism to compare the convergence speed of our informed heuristics

against three uninformed heuristics that represented the baseline in

[10]. Those heuristics do not take into account the runtime knowl-

edge about norm effectiveness: i.maximum distance 8 (D8) includes

in the neighborhood of a configuration all the configurations that

are obtained by increasing or decreasing the sanctions of at most 8

sanction units
3
; ii. maximum size 10 (S10) and iii. maximum size

20 (S20) define a neighborhood that includes the 10 and 20 clos-

est configurations to the current one, respectively. The used hill

climbing approach stops when either all the possible configurations

have been tried, or a configuration is found with an average objec-

tives achievement probability above a threshold τ , so all the tested

heuristics are always able to identify an optimal configuration.

To determine the average convergence speed to an optimal

configuration—whose average objectives achievement probability

is above τ—each strategy was executed starting from each possible

configuration. The system has 4
4 = 256 possible configurations: 4

possible sanctions for norm N in any of the 4 contexts. We defined

a different τ for each of the six scenarios—two norms enforced

in three agent type distributions—based on an exploration of the

distribution of the 256 configurations. Figure 6 shows this distribu-

tion and highlights how in each scenario the optima are differently

located in the hill climbing search space. Thus, the six test scenarios

are independent, thereby increasing the generality of our results.

5.1 Analysis of the Results
Table 1 reports results in terms of convergence speed for the six

scenarios. Visual inspection highlights that our heuristics, and in

particular sensitivity, outperform the baseline uninformed heuris-

tics. Combining all scenarios, our informed heuristics required on

average 9.85 steps to find an optimal configuration (sensitivity

only 4.98) as opposed to 92.39 steps for the uninformed heuristics.

In the six tested scenarios, configurations that are close to each

other in the search space do not necessary have similar outcomes.

This suggests that a good search strategy should weight more ex-

ploration than exploitation (i.e., diversifying the configurations to

be tried should be weighted more than refining the search in the

vicinity of the current configuration).

Among the uninformed heuristics, S10 appeared to be the best

one. In particular, this strategy was successful in scenarios where

the number of optimal solutions was higher. See, for example, sce-

nario Uniform and N = (3, s), where there are 73 optimal configura-

tions (the 28.5% of the 256 configurations that are above τ = 0.7), or

scenario Mostly violating and N = (8, s), which contains 65 optimal

configurations, 25% of all the 256 configurations. In these cases,

the balance between exploration and exploitation employed by S10

allowed to find an optimal configuration by trying less than 5% of

the possible configurations (see also Figure 7, which compares also

3
For instance, the distance between the two configurations {(low − true, 1), (low −
false, 2), (high− true, 0), (high− false, 3)} and {(low− true, 3), (low− false, 2), (high−
true, 1), (high− false, 0)} is 6. The choice of value 8 allows revisions with a maximum

average distance of 2 for each sanction.
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Figure 6: Average probability of objectives achievement for the 256 tried configurations in the 6 different tested scenarios.

Table 1: Comparison of the strategies in terms of average number of steps required to find an optimal solution.

Average number of steps (σ )

uniform mostly compliant mostly violating

Heuristic N = (3, s) N = (8, s) N = (3, s) N = (8, s) N = (3, s) N = (8, s) Total average

D8 174.45 (109.65) 230.51 (60.27) 236.44 (46.18) 199.70 (96.49) 230.52 (60.27) 185.01 (107.29) 209.44 (87.21)

S10 8.73 (6.35) 49.41 (36.37) 28.94 (18.27) 59.44 (59.88) 28.52 (19.32) 13.84 (9.91) 31.48 (35.79)

S20 15.02 (9.72) 50.01 (31.24) 41.14 (27.55) 52.48 (42.16) 34.79 (20.89) 24.04 (16.67) 36.25 (29.96)

SYNERGY 15.80 (25.91) 3.04 (1.68) 50.00 (25.74) 1.25 (0.83) 11.96 (4.19) 6.32 (4.27) 14.73 (22.40)

SENSITIVITY 1.67 (1.29) 2.25 (1.26) 14.13 (22.73) 1.81 (1.26) 3.97 (2.48) 6.02 (3.98) 4.98 (10.46)

N = (3,s) N = (8,s)
0
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Figure 7: Average percentage of explored configurations before finding an optimal one.

the average percentage of explored configurations
4
). Conversely,

the heuristic D8, defining a broader neighborhood for the con-

figurations and favouring exploitation over exploration, required

significantly more steps than all the others in all the scenarios.

Differently from the uninformed heuristics, synergy and sensi-

tivity define the neighborhood of the configurations by leveraging

runtime execution data. In synergy, the neighborhood of a con-

figuration consists of the closest configuration that is expected to

decrease (or increase, if negative synergy netween N and O) the
P(N

viol
). This strategy was successful, as expected, in scenarios

where there is a clear correlation between the norm being violated

and the achievement of the overall objectives. See for example the

results of the three scenarios with norm N = (8, s). Such scenarios

are similar and differ mostly in the number of optimal configu-

rations: 17 optimal configurations above τ = 0.8 (6.6% of all) in

4
Notice that such percentage can be lower than the number of steps performed by hill

climbing, for the number of steps also counts the backtracking operations.

scenario Uniform and N = (8, s), 49 above τ = 0.85 (19% of all)

in scenario Mostly compliant and N = (8, s), and 65 (25% of all)

in scenario Mostly violating and N = (8, s). In these scenarios the

optimal configurations are the ones where sanction is set to 3 in

context low-true (i.e., all agents’ behaviors are compliant with N ).

In scenario Uniform and N = (8, s) all agents must be compliant

also in context high-true, while in scenario Mostly compliant and

N = (8, s) in context high-true the exhibited norm violation has to

be < 0.17. In these cases there is a clear correlation between the

obedience of norm N = (8, s) and the achievement of the overall

objectives. The results of synergy confirm that such correlation

can be successfully learned and exploited at runtime to determine

optimal sanctions. Even though on average better than uninformed

ones, however, synergy performed poorly in the scenarios where

the overall objectives could be achieved only when more restric-

tive constraints about norm violation were satisfied. For instance

in scenario Mostly compliant and N = (3, s), the only 10 optimal



configurations are the ones such that the exhibited norm violation

is 0.09 ≤ p ≤ 0.17 in context low-true, ≤ 0.25 in context high-true,

and > 0 in the other contexts.

Conversely from synergy, sensitivity appeared to be successful

both in the cases where there is a clear norm-objectives synergy

and in more complex cases, like Mostly compliant and N = (3, s).
Despite the restrictive constraints, sensitivity outperformed all

other heuristics. The heuristic selects the new sanction to enforce,

based on an estimation of the required change in the amount of

exhibited norm violation. This estimation, allows sensitivity to

perform on average better than synergy and the uninformed strate-

gies and to quickly determine the optimal sanctions. On average,

sensitivity required 4.98 steps to converge to an optimal config-

uration of sanctions for 4 different contexts. Remarkably, in 3 out

of 6 tested scenario sensitivity required on average only around

2 steps, i.e., it required to explore only around 1% of the possible

configurations in order to find one of the optimal ones.

Finally, our informed heuristics have a smaller standard deviation

than the uninformed ones. This suggests they are robust, although

more research is needed. Moreover, in all the tested scenarios, we

only considered four sanctions, determined based on the agent pref-

erences. This low number of sanctions penalizes the sensitivity

heuristic, since it forces the selection of a new configuration that is

only an approximation of the required revision strength determined

by the sensitivity analysis. Nevertheless, the strategy appears to be

the most successful in all the tested scenarios, confirming the hy-

pothesis that estimating the degree of the required norm violation

change through sensitivity analysis is an effective strategy.

6 RELATEDWORK
Many approaches in the literature focused on the the design-time

construction of robust normative MASs. For example, several re-

searchers proposed techniques for proving the correctness of norma-

tive systems through the model checking of formulas that describe

liveness or safety properties [2, 9, 12]. These works are very useful

for the initial design of a MAS, but they are not sufficient to cope

with the runtime unpredictability of the system that arises from

the autonomy and heterogeneity of the participating agents.

Some frameworks have been proposed that formalize norm dy-

namics and allow assessing the impact of changed norms on the

specification of a MAS, i.e., whether the designed MAS will be

norm compliant. Knobbout et al. [14] propose a dynamic logic to

formally characterize the dynamics of state-based and action-based

norms. Both in Knobbout’s work [13, 14] and in Alechina et al.’s

approach [2], norm change is restricted to norm addition. In this

paper, instead, we explore how norms can be altered by establishing

adequate sanctions that, using knowledge about agent preferences,

maximizes the satisfaction of the system objectives.

Aucher et al. [4] introduce a dynamic context logic to describe the

operations of contraction and expansion of theories that occurwhen

removing or adding new norms. Governatori et al. [11] investigate

from a legal point of view the application of theory revision to legal

abrogations and annulments. We leave a study of the impact of

norm revisions on an existing MAS legal system to future work.

Norm approximation [3] is a concept related to revision. The con-

cept of approximation is defined with respect to a specific monitor:

an approximated norm is synthesized from the original one to max-

imize the number of violations that can be detected by an imperfect

monitor. Here, we assume perfect monitors and we investigate how

to best enforce a set of norms through revisions. A relevant future

direction is to integrate the two approaches so that our technique

fits the (common) practical case of a MAS with imperfect monitors.

Cranefield et al. [8] present a Bayesian approach to norm iden-

tification. They show that agents can internalize norms that exist

in an environment, by learning from the behavior that complies

with or violates certain norms. This work constitutes a valuable

addition to ours, for it shows that is is possible for agents to learn

norms even when they are not explicitly communicated to them.

Tumer et al. [19] use multi-agent reinforcement learning in a

smart traffic simulation to determine the behavior of the car agents

that maximizes the utility of the city designer and of the individual

agents. Their interesting work focuses on regimentation; instead,

we focus on enforcement that does not violate agents’ autonomy.

Chopra et al. [7] study how agent preferences—expressed in

terms of goals—interact with norms—represented as commitments.

In particular, they propose a framework for the agents to adapt

their behavior. We take an orthogonal approach, for we study how

to change the norms without altering the agent construction.

7 CONCLUSIONS
For a MAS to achieve its system-level objectives, the complexity

and unpredictability of the agent interactions and of the environ-

ment must be taken into account. When engineering such systems,

the available knowledge of these dynamics is only partial and in-

complete. Therefore, MASs need to be regulated at runtime.

We propose a regulatory mechanism that relies on norms with

sanction, an effective mechanism to influence agent behavior and

regulate a MAS [5]. In our approach, we automatically revise the

sanctions that are employed to enforce the norms. To do so, we first

interpret—through a Bayesian Network—runtime execution data in

terms of how well certain norms contribute to the achievement of

the system-level objectives in different operating contexts. Then,

we suggest a revision of the sanctions using two different heuristic

strategies. An evaluation through a traffic regulation simulation

shows that our heuristics outperform uninformed heuristics in

terms of how fast they identify an optimal solution, especially the

heuristic based on sensitivity analysis [6].

This work paves the way for numerous future directions. An

in-depth evaluation of the scalability and computational complexity

of the presented approach is necessary to assess its suitability for

MASs with many norms and sanctions. Our simple—yet extensible—

language for representing norms and agents’ preferences can be ex-

tended to consider complex norm types beyond atomic propositions.

Our population of agents was defined according to specific types.

Future work should study the effect of agents that deviate from the

prototypical agent type. An obvious extension of our study consists

of considering multiple norms, and the possible many-to-many

synergies that may exist between norms and objectives. Finally,

the revision strategies should be extended to revise both the norm

proposition and the sanction, and to synthesize new norms.



REFERENCES
[1] Natasha Alechina, Nils Bulling, Mehdi Dastani, and Brian Logan. 2015. Practical

Run-Time Norm Enforcement with Bounded Lookahead. In Proc. of AAMAS.

443–451. http://dl.acm.org/citation.cfm?id=2772937

[2] Natasha Alechina, Mehdi Dastani, and Brian Logan. 2013. Reasoning about

Normative Update. In Proc. of IJCAI. 20–26. http://www.aaai.org/ocs/index.php/

IJCAI/IJCAI13/paper/view/6884

[3] Natasha Alechina, Mehdi Dastani, and Brian Logan. 2014. Norm approximation

for imperfect monitors. In Proc. of AAMAS. 117–124.

[4] Guillaume Aucher, Davide Grossi, Andreas Herzig, and Emiliano Lorini. 2009.

Dynamic Context Logic. In Proc. of LORI. 15–26.

[5] Nils Bulling and Mehdi Dastani. 2016. Norm-based mechanism design. Artificial

Intelligence 239 (2016), 97–142. https://doi.org/10.1016/j.artint.2016.07.001

[6] Hei Chan and Adnan Darwiche. 2004. Sensitivity Analysis in Bayesian Networks:

From Single to Multiple Parameters. In UAI ’04, Proceedings of the 20th Conference

in Uncertainty in Artificial Intelligence, Banff, Canada, July 7-11, 2004. 67–75.

[7] Amit K. Chopra, Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos. 2010.

Reasoning About Agents and Protocols via Goals and Commitments. In Proceed-

ings of the 9th International Conference on Autonomous Agents and Multiagent

Systems. 457–464.

[8] Stephen Cranefield, Felipe Meneguzzi, Nir Oren, and Bastin Tony Roy

Savarimuthu. 2016. A Bayesian Approach to Norm Identification. In Proc. of ECAI.

622–629. https://doi.org/10.3233/978-1-61499-672-9-622

[9] Mehdi Dastani, Davide Grossi, John-Jules Ch. Meyer, and Nick A. M. Tinnemeier.

2009. Normative Multi-Agent Programs and Their Logics. In Normative Multi-

Agent Systems. http://drops.dagstuhl.de/opus/volltexte/2009/1907/

[10] Davide Dell’Anna, Mehdi Dastani, and Fabiano Dalpiaz. 2018. Runtime Norm Re-

vision using Bayesian Networks. In Proceedings of the 21st International Conference

on Principles and Practice of Multi-Agent Systems (PRIMA2018).

[11] Guido Governatori and Antonino Rotolo. 2010. Changing legal systems: legal

abrogations and annulments in Defeasible Logic. Logic Journal of the IGPL 18, 1

(2010), 157–194. https://doi.org/10.1093/jigpal/jzp075

[12] Max Knobbout and Mehdi Dastani. 2012. Reasoning under compliance assump-

tions in normative multiagent systems. In Proc. of AAMAS. 331–340.

[13] Max Knobbout, Mehdi Dastani, and John-Jules Ch. Meyer. 2014. Reasoning about

Dynamic Normative Systems. In Proc. of JELIA. 628–636. https://doi.org/10.1007/

978-3-319-11558-0_46

[14] Max Knobbout, Mehdi Dastani, and John-Jules Ch. Meyer. 2016. A Dynamic

Logic of Norm Change. In Proc. of ECAI. 886–894. https://doi.org/10.3233/

978-1-61499-672-9-886

[15] Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura Bieker. 2012.

Recent Development and Applications of SUMO - Simulation of Urban MObility.

International Journal On Advances in Systems andMeasurements 5, 3&4 (December

2012), 128–138.

[16] Sanny Schmid, Ilias Gerostathopoulos, Christian Prehofer, and Tomás Bures. 2017.

Self-Adaptation Based on Big Data Analytics: A Model Problem and Tool. In Proc.

of SEAMS. 102–108. https://doi.org/10.1109/SEAMS.2017.20

[17] Yuki Sugiyama, Minoru Fukui, Macoto Kikuchi, Katsuya Hasebe, Akihiro

Nakayama, Katsuhiro Nishinari, Shin-ichi Tadaki, and Satoshi Yukawa. 2008.

Traffic jams without bottlenecksâĂŤexperimental evidence for the physical mech-

anism of the formation of a jam. New journal of physics 10, 3 (2008), 033001.

[18] Bas Testerink, Mehdi Dastani, and Nils Bulling. 2016. Distributed Controllers

for Norm Enforcement. In Proc. of ECAI. 751–759. https://doi.org/10.3233/

978-1-61499-672-9-751

[19] Kagan Tumer, Zachary T Welch, and Adrian Agogino. 2008. Aligning social

welfare and agent preferences to alleviate traffic congestion. In Proceedings of the

7th international joint conference on Autonomous agents and multiagent systems-

Volume 2. International Foundation for Autonomous Agents and Multiagent

Systems, 655–662.

[20] Michael J. Wooldridge. 2009. An Introduction to MultiAgent Systems (2. ed.). Wiley.

http://dl.acm.org/citation.cfm?id=2772937
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6884
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6884
https://doi.org/10.1016/j.artint.2016.07.001
https://doi.org/10.3233/978-1-61499-672-9-622
http://drops.dagstuhl.de/opus/volltexte/2009/1907/
https://doi.org/10.1093/jigpal/jzp075
https://doi.org/10.1007/978-3-319-11558-0_46
https://doi.org/10.1007/978-3-319-11558-0_46
https://doi.org/10.3233/978-1-61499-672-9-886
https://doi.org/10.3233/978-1-61499-672-9-886
https://doi.org/10.1109/SEAMS.2017.20
https://doi.org/10.3233/978-1-61499-672-9-751
https://doi.org/10.3233/978-1-61499-672-9-751

	Abstract
	1 Introduction
	2 Normative Multiagent Systems
	2.1 Illustrative example
	2.2 Norms and Agents Preferences

	3 Norm-based Supervision
	3.1 Norm Bayesian Network
	3.2 Norms and Overall Objectives in MAS

	4 Norm Revision
	5 Experiments
	5.1 Analysis of the Results

	6 Related Work
	7 Conclusions
	References

