
User Story Writing in Crowd Requirements
Engineering: The Case of a Web Application for

Sports Tournament Planning
Abel Menkveld∗†, Sjaak Brinkkemper∗, and Fabiano Dalpiaz∗

∗Utrecht University, Utrecht, The Netherlands
{s.brinkkemper, f.dalpiaz}@uu.nl

†Tournify, Amsterdam, The Netherlands
abel@tournify.nl

Abstract—Although users feel more engaged when they are
involved in the elicitation, negotiation and prioritization of
requirements for a product or service they are using, the quality
of crowdsourced requirements remains an issue. Simple notations
like user stories have been highly adopted by practitioners in agile
development to capture requirements for a software product, but
their utilization in crowdsourced requirements engineering is still
scarce. Through a case study of a web application for sports
tournament planning, we investigate how a dedicated platform for
user story writing in crowd requirements engineering is valued
by its users and we show that the delivered requirements are not
inferior to those written by professionals.

Index Terms—CrowdRE, user stories, requirements engineer-
ing, case study.

I. INTRODUCTION

The process of extracting informal stakeholders’ needs and
translating them into formal specifications is a key process in
Requirements Engineering (RE). These requirements are used
as an input for software development. More specifically, they
serve as the basis for project planning, risk management, trade-
off analysis, acceptance testing, and change control [1]. Clear
statements of requirements are one of the project’s success
factors, but at the same time incomplete requirements are an
important reason why projects are impaired [1].

Together with the shift from traditional (waterfall) devel-
opment to agile software development, the RE processes is
changing accordingly. This is necessary because traditional
requirement activities – elicitation, analysis and negotiation,
documentation, validation, and management – do not take the
iterative processes of agile software development into account.
However, agile RE does not only alleviate challenges of tradi-
tional RE, but also poses new ones. Minimal documentation,
customer inability, and time estimation are reported as some
of the challenges of agile RE [2]. A proper use of agile RE
artifacts is necessary to overcome these problems [3].

In this study, we focus on one type of RE artifacts: user
stories (USs). USs are estimated to be used by over half of the
practitioners in the software industry to capture requirements
[4] and there is tight coupling of USs with agile methods [5]. A
US is “a description of a feature written from the perspective

of the person who needs this” [6]. The written text is a semi-
structured natural language statement. The most widespread
format of a US is: “As a <role>, I want <goal>, so that
<benefit>, as used in the following example [7]:

As an administrator, I want to receive an email when
a contact form is submitted, so that I can respond.

Next to the use of simple notations like USs to capture
requirements, user involvement is vital in RE. Involving users
in RE can not only improve system acceptance, diminish
project failure, and deliver greater system understanding by the
user; it also helps to improve customer loyalty and broaden the
market [8]. Therefore, crowdsourced RE has been investigated
by a series of studies [9]. For example, a research group from
RWTH Aachen University developed Requirements Bazaar,
an open source web-based platform for crowd-based RE [10].
Snijders et al. [11] advocate Crowd-Centric RE, by combining
crowdsourcing and gamification to involve users in the elicita-
tion, negotiation and prioritization of requirements. According
to the researchers, this helps fostering user involvement, is
valuable in all stages of RE and gives equal priority to both
customers and end users when they are not the same.

The embodiment of the Crowd-Centric RE vision is REfine,
a gamified platform for eliciting and refining requirements.
Dalpiaz et al. [8] showed in a case study how users perceived
this crowdsourcing platform as more useful and more engaging
compared to previous feedback experiences. However, they
were worried that the quality of requirements would not
match the quality resulting from experts’ methods, and the
requirements may not be detailed enough for a focus group
or product backlog. This is an interesting observation, since
one of the main incentives to involve the crowd in software
development in general [12] and RE in specific [9] is to
achieve higher quality. It can be a challenge or limitation
at the same time [13], [14], [15], [10]. It is argued that
simple notations such as USs may improve the quality of
crowdsourced requirements and can therefore mitigate this risk
[8], but to the best of our knowledge no study has yet been
performed on US writing by crowd workers.

Therefore, in this paper we investigate how a crowdsourced



RE platform can be employed to enable crowd workers to
express requirements in the form of USs. We implemented
and validated the platform in the case of a web application
for sports tournament planning.

The rest of the paper is organized as follows. Section II
describes the case study, covering both the company and its
existing practices regarding RE. Section III presents the crowd
RE platform and details the evaluation protocol. We report the
results from our case study in Section IV and discuss them in
Section V. Finally, Section VI presents a summary and future
research directions.

II. CASE STUDY: TOURNIFY

We performed a single-case study, which involved the
design and validation of a crowdsourced RE platform using
a Technical Action Research approach [16].

A. The Tournify company and tournament manager

Tournify is a software development company based in Am-
sterdam, The Netherlands. Their services, which are provided
through an online application, are targeted at sports and e-
sports tournament and competition organizers. The main prod-
uct is the Tournify tournament manager. This web application
allows tournament organizers to manage participants, create
a match schedule based on a chosen tournament format, and
process the results as the tournament processes. The organizer
can also use the tournament manager to create a tournament
website to present the event to the audience. The athletes and
supporters are able to view the schedule, results and standings
by visiting this tournament website or by looking at a big
screen, as new information comes in real time.

The Tournify tournament manager is written in Javascript.
It uses React, an open-source JavaScript library developed by
Facebook, for the creation of the interactive user interfaces.
For the dynamic content, Firebase is used: a mobile and
web development platform maintained by Google that allows
storing and syncing data across multiple clients. The total
lines of code (LOC) is near 25k and around 110 components
are used. They serve over 10k registered users (tournament
organizers) and host over 25k created tournaments since the
website1 became publicly available in late 2017.

B. The current elicitation process

The company receives several feature requests from its cus-
tomers. In five months, 44 unique customers requested 77 new
features. Most of them are requested via email (57%) or via the
support chat (38%). The requesters organize tournaments in
sixteen different sports and two different e-sports. Tournify can
be used free of charge, which 39% of the requesters did. The
other 61% of the requesters upgraded at least one tournament
to one of the paid packages, a requisite to host tournaments
with more than eight participating teams.

Further analysis of the requests and conversion of the texts
to USs caused no difficulties in 71% of the cases: the role
was clear, a goal was expressed, and the potential benefit was

1www.tournifyapp.com

highlighted. In the other cases, the benefit was not explicitly
mentioned. Although this benefit is optional in a US, it
may provide valuable information, especially when a request
comes in without any context via email or chat. Consider the
following request that came in:

Why is the number of teams I can add to a group
limited? I want to place 46 teams into one group.

A corresponding US would be:

As an organizer, I want to place 46 teams into one
group.

This is a valid US but raises questions since it is unknown
why one wants to place this many teams into one group: even
the biggest leagues in the world have place for a maximum
of 20 teams. Only after further communication between the
product manager and requester, it becomes clear the user does
not want to place 46 teams into one group, he wants to host a
tournament with different games (currently Tournify is built to
host tournaments for a single sport). Rather than focusing on
making the workaround possible, this user (and most likely,
many others) will receive a higher benefit by the development
of a dedicated feature for hosting multi-sports tournaments.

This lack of context information is one of the reasons that
makes the current workflow time-consuming for the product
owner. Responding to the feature requests, even if they are
clearly stated, also takes time. And as the business grows,
the number of requests will increase. Another downside of
the current workflow is that it does not allow for proper
requirements prioritization and does only involve a small
subset of the users.

III. CROWDSOURCED RE PLATFORM FOR US AUTHORING

We designed a crowdsourced RE platform, integrated into
Tournify, which enables users of the software application to
submit feature requests in the strict format of USs: role, goal,
and benefit. In order to help users formulate these stories,
even if they have never seen or heard of a US before, we
use a form with four simple self-explanatory and small steps
(Figure 1). We deliberately decide to stop at the level of user
stories, without refining them through acceptance criteria [17],
to keep the crowd task simple.

Step 1: Role. The user who is requesting a feature is
asked which role they play regarding the way s/he uses the
application. The user can select one of the roles from the
predefined options using radio buttons. In the case of Tournify,
three roles are defined: organizer, participant, and supporter.

Step 2: Goal. The user is asked what s/he wants to do with
Tournify: a feature that is missing. The textbox contains static
text before the user input, i.e., the phrase ‘I want to’.

Step 3: Benefit. A textbox is employed here too, through
which the user is asked why s/he wants to have the requested
feature, to know what the user sees as the potential benefit



Fig. 1. The four steps to author a US regarding Tournify

when the feature would be implemented in the software
application. The answer starts with ‘so that’.

Step 4: Verification and category selection. Before sub-
mitting the idea, the user is able to verify the US that has been
formulated based on the answers he or she provided in the first
three steps. The user also has to select one of the predefined
categories. These categories are part of the main menu of the
application, so the users are already familiar with the terms.
Labeling the requests with the corresponding category allows
for easy categorization later on.

All requests are published on a feature request overview
page in the Tournify web app, which can be accessed via
the support menu. Besides showing the outputs of elicitation,
the platform also supports a second goal: to negotiate and
prioritize requirements utilizing the crowd. This is done by two
simple means: voting and commenting. For the requirements
prioritization, we follow the general advice of Maiden &
Ncube [18], also advocated by Berander & Andrews [19], to
use the simplest appropriate prioritization technique. This is
especially true in crowd-centric requirement engineering [8],
since end-user crowd workers are likely to be less experienced
with requirement prioritization than product managers.

The prioritization technique should also allow for easy repri-
oritization, as requirements will be added, changed or deleted
continuously. We used the confirmation or negation feedback
type, in which users agree or disagree on problems or opinions
of other users [20]. This feedback type is also used in the
Requirements Bazaar [10] and REfine [14] platforms. Lastly,
a commenting section enables users and product managers to
respond or add suggestions to the requests.

The crowdsourcing platform was deployed and announced
on February 25th, 2019. The announcement was sent via an
email to a selected group of 337 users (63% of which opened
the link). These users had either requested a feature in the past,
subscribed to the newsletter, or made a purchase recently. A
reminder was sent one month later (55% of which opened the
link). The total data collection period was five weeks, so all
requests submitted after March 31st, 2019 are not included in

this research. Among all requesters, voters and commenters,
one free tournament upgrade has been raffled. Users were
also informed of the feature request platform via a snack
bar message which was shown when opening the Tournify
tournament planner. The researchers initiated the first request
and commented on some of the requests during the study. They
were also able to label features as in development or done. This
first request by the researchers will be included in the report on
the number of requests, because users were able to comment
and vote on this request. However, it is not further evaluated
regarding the quality and complexity criteria we discuss below.
Comments from the researchers are excluded from the results.

Perceived Usefulness. After the data collection process,
the users who submitted an idea received an email with a
link to a short questionnaire. This questionnaire measures
the perceived usefulness of the platform from an end user
perspective through four questions that use a five-point Likert
scale. Each question concerns the perceived usefulness of a
functionality of the platform: requesting, viewing, voting, and
commenting. One closed question is included to verify if the
requester had experience with formulating USs before, and
one open text field can be used to comment on the experience
with the platform.

Quality. The Quality US framework [7] was used to assess
the USs individually based on their syntactic, semantic and
pragmatic quality. While QUS was originally proposed to
assess how well the product team members would formulate
user stories, we use it here to test whether external stakeholders
are able to author high-quality user stories. The eight criteria
and their descriptions are shown in Table I.

TABLE I
THE EIGHT CRITERIA TO ASSESS USS INDIVIDUALLY FROM THE QUALITY

US FRAMEWORK [7]

Criteria Description

Syntactic
Well-formed A US includes at least a role and a means
Atomic A US expresses a requirement for exactly one feature

Minimal A US contains nothing more than role, means, and
ends

Semantic
Conceptually
sound

The means expresses a feature and the ends expresses
a rationale

Problem-
oriented

A US only specifies the problem, not the solution to
it

Unambiguous A US avoids terms or abstractions that lead to multi-
ple interpretations

Pragmatic
Full sentence A US is a well-formed full sentence

Estimatable A story does not denote a coarse-grained requirement
that is difficult to plan and prioritize

Each US was evaluated on its quality manually by three
experts individually. The experts used the description of the
criteria from Table I, as well as the additional information
from the accompanying article, to analyze the USs. The USs
were distributed among six members of the Requirements
Engineering Lab at Utrecht University. They analyzed one



third of the USs each and the main author of this paper
analyzed all USs. If there was no consensus in the judgement
of the experts, majority voting was employed to decide.

Complexity. We made an estimation of the amount of work
it would take to implement each US individually, based on the
assessment of the lead developer of Tournify. For the scaling,
the Fibonacci sequence (1, 2, 3, 5, 8, 13, 21) was used. We
assigned a value of ‘0’ when it concerned a feature that has
already been implemented but overlooked by the requester.
The other numbers represent development hours. Since it is
difficult to estimate large work items with a high degree of
confidence, the upper limit for our estimation was 21 hours.
In practice, USs who take more than 21 hours to implement
have to be broken down into smaller items.

IV. RESULTS

In the five-weeks period, 157 unique visitors accessed the
feature request platform. From those visitors, 39 users inter-
acted with the platform by submitting an idea (23), voting on
an idea (28), and/or commenting on an idea (9). Together, they
submitted 57 ideas, voted 89 times and commented 14 times
(Table II). The functionality to downvote an idea (‘I don’t need
this’) was not used and in five times a requester voted on its
own idea, which was not prevented by the platform.

TABLE II
USE OF THE CROWDSOURCED RE PLATFORM

Value Total Unique users

Page views 247 157
Interactions 160 39
Requests 57 23
Votes 89 28
Comments 14 9

More than half of the requesters (15, 65%) submitted only
one idea, two users submitted respectively two and three ideas
and four users submitted five or more ideas (respectively 5, 6,
7, and 14 ideas). All ideas are written in Dutch and constructed
based on the template of a US. A screenshot of part of the
Feature Requests overview page is shown in Figure 2.

Fig. 2. Screenshot of the feature request overview page

Next to the feature description, each element also contains
the submission date and selected category. If applicable, the
element also contains the number of votes, number of com-
ments, and development status. Two feature requests got nine
upvotes, which is the most times a feature has been upvoted.
The categorization of USs turned out to be a difficult task for
the crowd workers, judging by the numbers. In more than half
of the cases (52%), the category selection of the requester does
not match the category assignment done by the first author.

After the study period, thirteen users who interacted with
the crowdsourcing platform responded to the questionnaire
that was sent to them via email. Most of them (10) requested
a feature themselves, while the other three respondents only
voted for a feature. They perceived the platform as very useful,
regarding all four possible interactions when rated on a five-
point Likert scale: requesting (M = 4.9; SD = 0.28), viewing
(M = 4.8; SD = 0.38), voting (M = 4.5; SD = 0.88), and
commenting (M = 4.5; SD = 0.66). One user who requested a
feature, voted for and commented on an idea and had previous
experience in writing USs commented:

“You implemented the agile methodology in a very
fun way. In such a manner the users get involved
better and at least have the feeling their opinion
matters”

Others found it “a fantastic way to improve the applica-
tion”, “very useful to allow users to submit ideas” and see it
as a way to “improve the software for your own tournament".
Another user noted how “every user gets new ideas while
using Tournify on their tournament” and how this is “the best
feedback to improve the application”.

Out of the people who requested a feature, 70% had never
written a US before. When asked if they find it helpful to
formulate the ideas as USs, compared to free text, the average
score was 3.5 (SD = 0.85). There is hardly any preference to
write the feature requests in free text (M = 3.2; SD = 1.14).

The results of the quality analysis are shown in Table III.
In total, 52% of the USs met all requirements, meaning that
48% of the USs contained one or more easily preventable
error(s). A Pearson Chi-Square test showed that there is a
strong association between the minimal and full sentence
criteria, which is statistically significant (χ2 = 31.6, p < .001).
This might provide an explanation for the higher number of
USs with two defects (11%), compared to those with only one
defect (7%).

TABLE III
QUALITY OF THE CROWDSOURCED USS

criterion # USs with defect % USs with defect

Well-formed 3 5.4
Atomic 5 8.9
Minimal 24 42.9
Conceptual 5 8.9
Problem-oriented 8 14.3
Unambiguous 9 16.0
Full sentence 19 33.9
Estimatable 3 5.4



The crowdsourced USs are evaluated based on their com-
plexity by the developer of Tournify. Nine out of ten crowd-
sourced USs can be developed within one workday, according
to his estimation. One US could not be estimated, because it
was formulated too vaguely. Seven USs were already imple-
mented but overlooked by the user. They are not included in
the estimation shown in Figure 3, which includes 48 USs.

Fig. 3. Complexity of the identified USs, according to their estimated effort

V. ANALYSIS & DISCUSSION

Our results show that the use of crowdsourcing in RE
is perceived as very useful by the end-users of a software
product, while at the same time empowering the product owner
with a better overview of feature requests. Commenting and
voting on ideas is not only valued by the crowd workers, but
may also help in the prioritization and negotiation process.
Interestingly, our four-step US formulation wizard was not
perceived as an extra difficulty by the users while expressing
feature requests: there is hardly any preference to submit
ideas in free text instead. This is promising, as research has
shown how “stakeholders enjoy working with USs, using a
common template benefits RE and the simple structure of USs
enables developing the right software" [5]. Furthermore, we
have found that 95% of the crowdsourced USs are both easy
to estimate and easily implementable based on our quality
analysis and hour estimation as done by the main developer.
Almost 90% of the feature requests can even be implemented
within one workday.

In terms of US quality, the most frequent occurring defects
are USs violating the minimal criterion (42.9%) or not being
written as one full sentence (33.9%). Lucassen et al. [7] tested
1,000+ USs written by professionals from different companies
and found that the minimal criterion is violated in 13.3% of the
cases. In our case, this defect occurs three times more often:
compared to user stories written by professionals, those written
by crowd members include more comments, descriptions of
the expected behavior, or testing hints. In our aim, this
additional information should be left to the ‘comment’ section
of the platform. The violation of the minimal criterion is
also reflected by the length of the crowdsourced USs. The
goal is expressed in 108 characters on average and crowd
workers needed 97 characters on average to formulate the

potential benefit. When compared to 551 real-world English
USs from eight different projects, retrieved from a publicly
available data set [21], we found the means plus end of the
Dutch crowdsourced USs (204 characters) to be over two times
longer than the USs written by professionals (97 characters),
which had an average goal description of 51 characters and
benefit expression in 55 characters, if present. The length
of the crowdsourced User Stories is similar to the length
of the feature requests that were sent in by email or the
support chat (192 characters) prior to the deployment of the
platform. Note that we did not count the terms from the
US format (I want to and so that) and did not control for
the information density of the different languages the USs
are written in. Moreover, 17% of the real-world USs lack
a description of its benefit. There is also a major difference
in the use of roles. Three roles are defined for the Tournify
application (organizer, participant, supporter). All requesters
indicated they are organizers, whereas the examined data set
from professionals shows, on average, 12 roles.

The crowdsourced USs and the USs written by professionals
show a similar number of defects regarding the well-formed
criterion (5.4% crowd, 4.5% professionals) and atomic crite-
rion (8.9% crowd, 10.3% professionals). In total, 52% of the
crowdsourced USs meet all requirements, meaning that 48%
of the USs contains one or more easily preventable error(s).
Lucassen et al. [7] conclude that 56% of USs written by
professionals have at least one defect as detected by their
automatic testing tool. However, these results are difficult to
compare as Lucassen et al. [7] tested against less, but different,
criteria from the framework than we did.

Based on our results, we see opportunities for improving the
crowdsourced RE platform to enhance the quality of the USs.
Defects on the minimal and full sentence criteria can be pre-
vented with simple means like a spelling checker and warnings
when there is additional text after a dot, hyphen, semicolon,
or other separating punctuation marks. Text between brackets
should also trigger a warning message on the screen.

During the five-weeks testing period, 17 features were
requested via email or through the support chat, bypassing
the feature request platform. In most cases, those users were
unaware the platform existed. When compared to the engage-
ment prior to the deployment of the platform, while correcting
for the duration of the measurement, the number of ideas
that were sent per day remained unchanged. However, since
the number of organizers using the service exhibited a 175%
increase, we estimate the platform could save the requirements
engineer circa 2 hours of work per month. This estimation is
based on the 10 minutes it takes the requirements engineer
to process each request, and the decrease in the number of
requests via email or chat per 1,000 unique page views from
13.6 to 7.2. This little time saving may have a higher impact if
the business grows in the number of customers. Nevertheless,
we believe that the main incentive to employ a crowdsourced
requirements platform should be to engage users and gather,
prioritize and negotiate high-quality requirements.



A. Validity threats

The main threat affecting the generalizability of this study
is the focus on a single case. However, generalizability was
not our prime concern: this study is mainly exploratory and it
constitutes one of the first attempts to let a crowd write USs
for a software product they use.

The personal involvement of the first author (who is one
of the co-founders of Tournify) allows for full access to the
development artifacts and stakeholders, and a comprehensive
knowledge of the organization and business processes. At the
same time, it raises relevant questions about possible bias and
prejudice. Action Research in general has been criticized for
its “lack of methodological rigor, its lack of distinction from
consulting and its tendency to produce either research with
little action or action with little research” [22]. To ensure
the rigor and relevance of this study, we made sure the five
principles of Canonical Action Research (CAR) were taken
into account at all stages of the research. This set of principles
and associated criteria are developed by Davison, Martinsons
& Kock in 2004, to allow for a study in which organization
problems are addressed while at the same time contributing to
scholarly knowledge [22]. However, it is still possible that the
results are influenced by the respondents’ knowledge of their
participation in a study (the Hawthorne effect).

The biggest limitation is the small sample size. Over half of
the crowdsourced USs is written by four users. This means that
their expertise highly influenced the overall results regarding
the quality evaluation, even though it is likely that also in other
software products there will be a group of highly engaged
users with presumably more technical expertise.

VI. SUMMARY AND FUTURE RESEARCH

This paper presented one of the first attempts (for another
recent effort, see Kolpondinos and Glinz [23]) to let a crowd
of external stakeholders express their requirements via the
user story format. The results are positive: the participants
appreciated the platform and our results did not provide
reasons why crowd workers would be unable to author USs.

The work is a first step to combine user stories and crowd-
sourcing and paves the way for future directions. Feedback
techniques can be implemented to assist the stakeholders
during the authoring of USs, aiming to improve the syntactic
quality. Further research should also investigate the relevance
and usefulness of having a role in USs specified by the crowd
members, and study how the identified user stories are refined
and implemented. Finally, the expertise of crowd workers, in
relation to their involvement with the software product, is also
worth investigating.

ACKNOWLEDGMENT

The authors would like to thank the members of the Grimm
research group for the valuable discussions about this work,
Jesse Bouma for implementing the platform, and all the
Tournify users who provided their feedback.

REFERENCES

[1] J. Dick, E. Hull, and K. Jackson, Requirements engineering. Springer,
2017.

[2] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband, “A
systematic literature review on agile requirements engineering practices
and challenges,” Computers in Human Behavior, vol. 51, pp. 915–929,
2015.

[3] O. Liskin, “How artifacts support and impede requirements communica-
tion,” in International Working Conference on Requirements Engineer-
ing: Foundation for Software Quality. Springer, 2015, pp. 132–147.

[4] M. Kassab, “The changing landscape of requirements engineering prac-
tices over the past decade,” in International Workshop on Empirical
Requirements Engineering. IEEE, 2015, pp. 1–8.

[5] G. Lucassen, F. Dalpiaz, J. M. E. van der Werf, and S. Brinkkemper,
“The use and effectiveness of user stories in practice,” in International
Working Conference on Requirements Engineering: Foundation for
Software Quality. Springer, 2016, pp. 205–222.

[6] E.-M. Schön, J. Thomaschewski, and M. J. Escalona, “Agile require-
ments engineering: A systematic literature review,” Computer Standards
& Interfaces, vol. 49, pp. 79–91, 2017.

[7] G. Lucassen, F. Dalpiaz, J. M. E. van der Werf, and S. Brinkkemper,
“Improving agile requirements: the quality user story framework and
tool,” Requirements Engineering, vol. 21, no. 3, pp. 383–403, 2016.

[8] F. Dalpiaz, R. Snijders, S. Brinkkemper, M. Hosseini, A. Shahri, and
R. Ali, “Engaging the crowd of stakeholders in requirements engineering
via gamification,” in Gamification. Springer, 2017, pp. 123–135.

[9] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use
of crowdsourcing in software engineering,” Journal of Systems and
Software, vol. 126, pp. 57–84, 2017.

[10] D. Renzel, M. Behrendt, R. Klamma, and M. Jarke, “Requirements
bazaar: Social requirements engineering for community-driven inno-
vation,” in IEEE International Requirements Engineering Conference,
2013, pp. 326–327.

[11] R. Snijders, F. Dalpiaz, M. Hosseini, A. Shahri, and R. Ali, “Crowd-
centric requirements engineering,” in IEEE/ACM International Confer-
ence on Utility and Cloud Computing, 2014, pp. 614–615.

[12] K.-J. Stol and B. Fitzgerald, “Two’s company, three’s a crowd: a
case study of crowdsourcing software development,” in International
Conference on Software Engineering. ACM, 2014, pp. 187–198.

[13] M. Cohn, User stories applied: For agile software development.
Addison-Wesley Professional, 2004.

[14] R. Snijders, F. Dalpiaz, S. Brinkkemper, M. Hosseini, R. Ali, and
A. Ozum, “Refine: A gamified platform for participatory requirements
engineering,” in International Workshop on Crowd-Based Requirements
Engineering. IEEE, 2015, pp. 1–6.

[15] S. L. Lim, D. Damian, and A. Finkelstein, “Stakesource 2.0: using
social networks of stakeholders to identify and prioritise requirements,”
in International Conference on Software Engineering. IEEE, 2011, pp.
1022–1024.

[16] R. Wieringa and A. Moralı, “Technical action research as a validation
method in information systems design science,” in Design Science
Research in Information Systems. Advances in Theory and Practice,
K. Peffers, M. Rothenberger, and B. Kuechler, Eds., 2012, pp. 220–238.

[17] D. North, “Introducing BDD,” Better Software, vol. 12, 2006.
[18] N. A. Maiden and C. Ncube, “Acquiring cots software selection require-

ments,” IEEE software, vol. 15, no. 2, pp. 46–56, 1998.
[19] P. Berander and A. Andrews, “Requirements prioritization,” in Engineer-

ing and managing software requirements. Springer, 2005, pp. 69–94.
[20] N. Sherief, W. Abdelmoez, K. Phalp, and R. Ali, “Modelling users

feedback in crowd-based requirements engineering: An empirical study,”
in IFIP Working Conference on The Practice of Enterprise Modeling.
Springer, 2015, pp. 174–190.

[21] F. Dalpiaz, “Requirements data sets (user stories),” Mendeley Data, v1,
2018, http://dx.doi.org/10.17632/7zbk8zsd8y.1.

[22] R. Davison, M. G. Martinsons, and N. Kock, “Principles of canonical
action research,” Information Systems Journal, vol. 14, no. 1, pp. 65–86,
2004.

[23] M. Z. Kolpondinos and M. Glinz, “Garuso: a gamification approach
for involving stakeholders outside organizational reach in requirements
engineering,” Requirements Engineering, 2019.

http://dx.doi.org/10.17632/7zbk8zsd8y.1

