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Abstract. [Context & Motivation] Requirements and architectural components
are designed concurrently, with the former guiding the latter, and the latter re-
stricting the former. [Question/problem] Effective communication between re-
quirements engineers and software architects is often experienced as problematic.
[Principal ideas/results] We present the Requirements Engineering for Software
Architecture (RE4SA) model with the intention to support the communication
within the development team. In RE4SA, requirements are expressed as epic sto-
ries and user stories, which are linked to modules and features, respectively, as
their architectural counterparts. Additionally, we provide metrics to measure the
alignment between these concepts, and we also discuss how to use the model and
the usefulness of the metrics by applying both to case studies. [Contribution]
The RE4SA model employs widely adopted notations and allows for explicitly
relating a system’s requirements and architectural components, while the metrics
make it possible to measure the alignment between requirements and architecture.

Keywords: Requirements engineering · Software architecture · User stories ·
Alignment ·Metrics · Case study · Agile RE.

1 Introduction

Requirements and design are interdependent and cannot be conducted as separate ac-
tivities [28]. The Twin Peaks model describes how requirements and architecture are
defined concurrently, yet being separate activities, with the former guiding the latter
and the latter constraining the former [28]. Extending Nuseibeh’s model, the Recipro-
cal Twin Peaks model [22] focuses on agile development and discusses why the synergy
between requirements and architectural elements matters. Throughout the development
process, one has to manage a continuous flow of requirements, as well as a continuously
changing architecture.

Since software engineering is essentially a social activity among collaborating hu-
mans [36], communication within and across the various disciplines of software engi-
neering (requirements analysis, architectural design, development, testing, etc.), is of
primary importance [25]. In Requirements Engineering (RE), flawed communication
within the development team is a common cause of project failure [15]. Furthermore,
client wishes and needs change continuously, leading to volatile requirements that are
hard to cope with [13,39].
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While RE is still mostly rooted in a written set of requirements, the lack of proper
documentation is a serious problem in Software Architecture (SA), which creates high
risks of architectural drift and erosion, as well as increased costs and a decrease in
software quality [34]. Inaccurate or missing documentation leads to difficult to maintain
software. To make matters worse, the impact of new requirements are uncertain and
reuse of components is nearly impossible [21].

The challenge that we tackle in this paper is how to keep RE and SA aligned in
the context of agile development. While both Nuseibeh [28] and Lucassen [22] iden-
tified challenges and explained how RE and SA can support each other, they did not
specify how to tackle them. What makes the problem hard is that a good solution
should not increase stakeholders’ workload or costs, in line with the principles of ubiq-
uitous traceability [9]. Furthermore, Cleland-Huang et al. [10] identified seven chal-
lenges concerning the Twin Peaks model, of which we aspire to address five: lack of
in-depth communication between requirements analysts and architects, lack of require-
ments/architectural knowledge, lack of architectural visualization and explicit traceabil-
ity between the two domains.

As a solution, we present explicit concepts and relationships that link functional
requirements and functional architectural components in order to achieve alignment,
among other purposes. While this solution requires some upfront work, aimed at creat-
ing or recovering the architecture and linking the requirements, we expect it to decrease
rework in the subsequent development phase. Furthermore, to minimize the extra effort,
we make use of notations that are widely adopted in agile development and in software
architecture. Specifically, we make the following contributions:

– We present a refined version of the RE4SA model [32], which includes notations
and relationships for linking RE and SA in agile development;

– We introduce metrics that allow quantifying the relationship between the two do-
mains. While meant for RE4SA, the metrics can be applied more in general to other
notations for expressing requirements and architectures;

– We report on two case studies that apply RE4SA for the purpose of architecture
discovery and architecture recovery, respectively.

The rest of the paper is structured as follows. Section 2 discusses background work.
In Section 3 we present the RE4SA model, followed by the alignment metrics in Sec-
tion 4. Section 5 illustrates how the model and its metrics can be applied in practice,
using two case studies. Limitations, expected benefits and future work are discussed in
Section 6, followed by the conclusion in Section 7.

2 Background

The rise of agile development created new challenges for the RE and SA disciplines.
Requirements documentation changed from long, detailed specifications to less detailed
documentation and increased face-to-face contact [8]. The most common notation for
requirements in agile development is user stories, a concise notation that captures only
the essential elements of a requirement [23]. Regarding the SA discipline, agile prac-
tices require the incremental, step-wise construction of a product’s functionality, which
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calls for modular architectures that require minimal coordination with other modules
and are easy to extend [12]. This dynamic context is the one within which this paper is
positioned.

Keeping software artifacts aligned falls under the umbrella term of software trace-
ability [9], which includes techniques for establishing and maintaining trace links be-
tween different artifacts like requirements, architecture, code, and tests. Among the
open challenges that pertain to our work, ubiquitous traceability [17] is especially im-
portant, as it stresses the need of tools and techniques that minimize the required human
effort to create and keep the trace links up to date.

Many automated tools exist for the automated establishment of trace links. Trace
Analyzer [14] uses certain or hypothesized dependencies between artifacts and common
ground and then considers nodes that contain overlapping common ground to establish
a trace link. The common ground they use, however, is source code, which is unusable
when the system is still under design. Zhang et al. [38] use an ontology-based approach
to recover trace links, but only link the source code to documentation. Traceability
links have also been explored in agile development, with a focus on establishing links
between commits and issues [30].

The systematic mapping by Borg et al. [4] shows that the most frequently studied
links in information retrieval-based traceability are the links between requirements and
between requirements and source code. Other popular links are between requirements
and tests, and other artifacts and code. Linking requirements and architectures is a less
studied topic.

Tang et al. [33] study the creation of traces between requirements and architec-
ture. They provide an ontology for annotating manually specifications and architectural
artifacts, which are then documented in a semantic wiki. This wiki shows which archi-
tectural design outcome realizes which requirement, which decisions have been made,
and the links to quality requirements.

Rempel and Mäder [31] are among the first ones to propose traceability metrics
in the context of agile development. They propose graph-based metrics that link re-
quirements and test cases. Numerous researchers in the field of software maintenance
proposed metrics, starting from the seminal work by Pfleeger and Bohner [29]. Our
work, however, focuses solely on metrics between requirements and architectures in
the context of agile development for software products.

Recently, Murugesan et al. [27] presented a hierarchical reference model to cap-
ture the relationship between requirements and architecture. Their goals are similar to
those of this research, but they focused on technical architectures. Our work, instead,
investigates functional architectures and suggests the use of specific artifacts to for-
mulate more specific guidelines, as opposed to a generally applicable requirement-to-
component connection model.

3 The RE4SA Model

To facilitate good communication within the development team and support consis-
tency, we propose the Requirements Engineering for Software Architecture (RE4SA)
model. Fig. 1 shows the four core concepts of the RE4SA model, and an example for
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each of the concepts from a case study [32]. RE4SA was assembled on the basis of tight
collaboration with industrial partners in the software products domain and combines
artifacts that we often found employed in their agile practices [24,32]. Like the Twin
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Fig. 1. The Requirements Engineering for Software Architecture (RE4SA) model.

Peaks model, RE4SA links the RE and SA domains. More specifically, it relates Epic
Stories (ESs) [24] and User Stories (USs) [11] in the requirements domain, and mod-
ules and features from the functional architecture model [7]. The problem space, which
describes the intended behavior through requirements, is related to the solution space
that defines how such intended behavior is implemented, i.e., how the requirements are
satisfied [2]. Note that the model is only concerned with horizontal traceability [18].

3.1 Representing Requirements and Architecture

The concepts that are part of the RE4SA model encompass notations that are highly
adopted in the industry, in an attempt to minimize the need for change and training of
professionals. USs, for example, are often found to be among the requirements docu-
ments used in agile methods [20], and a US describes a requirement for one feature [23].
Features are often represented using feature diagrams, a graphical language for orga-
nizing features hierarchically [19]. By focusing on the details, USs and features make it
hard for the stakeholders to obtain an overview of the system that is necessary for clear
and easy communication within the development team, thereby calling for a higher level
of abstraction.

In practice, USs are grouped together using themes, epics or ‘large USs’ [35]. How-
ever, themes and epics tend to consist of one or a few words and thus lack the rationale
that justifies why a requirement should be satisfied by the system [37]. Therefore, we
propose the use of ESs [24], which make use of a clear template including both a mo-
tivation aspect and an expected outcome. From the architectural standpoint, we take
the notion of ‘module’ from the functional architecture framework [7] as a grouping of
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features, that also allows for the visualization of usage scenarios through information
flows [5].

3.2 Relationships between the RE4SA Concepts

The RE4SA model supports the establishment of relationships between the four con-
cepts in two ways: (i) Architecture Discovery (AD) is a top-down process that takes
the requirements as input in order to create an architecture; (ii) Architecture Recovery
(AR) is a bottom-up process that extracts the architecture from an implemented sys-
tem [1]; then, the architectural components can be linked to the requirements. Fig. 2
illustrates the four types of relationships between the concepts of RE4SA. The solid
arrows indicate relationships in an AD process, while dashed arrows indicate an AR
process. Furthermore, the relationships can be classified depending on whether they af-
fect the granularity of the specification (refinement and abstraction) or they support the
alignment between requirements and architecture (allocation and satisfaction).

Fig. 2. Relationships between the RE4SA concepts.

Refinement. According to the SWEBOK guide “decomposition centers on identifying
the major software functions and then elaborating and refining them in a hierar-
chical top-down manner” [6]. In an AD process, the major functions are described
first, in ESs and modules, and subsequently refined into more specific functions and
descriptions (here, in USs and features).

Abstraction. “[. . . ] refers to both the process and result of generalization by reducing
the information of a concept, a problem, or an observable phenomenon so that one
can focus on the “big picture”” [6]. USs are grouped together using ESs, while
features are bundled together based on similar functionality and placed in modules.
The groupings of USs and features differ in the functionality they describe and the
functionality they provide, respectively. The process of placing these sets of USs
and features in ESs and modules we refer to as abstraction.
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Allocation. The process of relating requirements to architectural components is “the
assignment to architecture components responsible for satisfying the requirements” [6].
Since both requirements and architectural components exist on two levels of gran-
ularity, this relationship is included on both levels.

Satisfaction. The SWEBOK guide states that “the process of analyzing and elaborat-
ing the requirements demands that the architecture/design components that will be
responsible for satisfying the requirements be identified” [6]. Therefore, we refer to
this relationship from architectural components to requirements as satisfaction.

Since this paper investigates requirements-architecture alignment, we leave the study
of refinement and abstraction to future research.

3.3 Architecture Discovery and Architecture Recovery

The AD process (solid arrows in Fig. 2) aims to design an intended architecture based
on the requirements. It is advisable to start at the highest level of granularity, for the
collection of ESs describe the functionality of the entire system, while USs specify the
details of how such a high-level functionality is to be delivered. Once the requirements
have been defined, they can be allocated to architectural components. W e suggest start-
ing at the highest level: ESs are allocated to modules, then USs to features within the
identified modules. Finally, it is useful to check if the features included in the software
architecture are all represented in the requirements set. Features that cannot be linked
to a requirement can indicate missing requirements or unnecessary features.

The goal of an AR process (dashed arrows in Fig. 2), instead, is to recover the im-
plemented architecture from the system, using available documentation, such as source
code and a run-time version of the system, and linking the recovered components to
requirements. We suggest starting at the lowest level of granularity, and documenting
the identified elements in a feature diagram. Different modules can then be defined to
group the features.

Then, the architectural components can be linked to requirements by creating satis-
faction links. We recommend starting at the highest level of granularity: the ES-module
alignment. If these relationships are established first, it should be easier to identify
which feature satisfies which US, for the USs are abstracted to ESs. Optionally, miss-
ing ESs or USs can be formulated, if the module or feature they will be allocated to is
still relevant and/or required. On the other hand, ESs or USs that cannot be allocated
to an architectural component need to be assessed. If the functionality the requirement
describes is not required or desired, the requirement can be removed. If the opposite
is true, the implementation of the feature(s) that would satisfy the requirement can be
added to the backlog.

4 Alignment Metrics

We introduce metrics that allow for quantitative investigation of the relationship be-
tween requirements and architecture through the lenses of the RE4SA model. To do
so, we present the necessary formal framework the metrics build on. We use numbered
definitions only for the core concepts of our framework.
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Let R = {r1, r2, . . . , rn} be a collection of requirements and C = {c1, . . . , cm}
be a collection of architectural components. In the RE4SA model, a requirement can
be either an Epic Story (ES) or a User Story (US), while a component can be either a
module or a feature.

Since a requirement can denote multiple needs (e.g., using the conjunction ‘and’),
we introduce the function needs : R → 2C that maps a requirement r to the needs it
expresses. Formally, given a set of needs N , we have that for any r ∈ R, needs(r) =
{n ∈ N. requested by(n, r)}, where requested by(n, r) is true when n is expressed in
the text of requirement r. In this paper, the identification of the needs that are requested
by a requirement is left to human analysis.

We can now define the set NR =
⋃
r∈R needs(r) as the collection of needs that are

requested by individual requirements in the collection R.

Definition 1 (Alignment matrix). A matrix A of size |NR| × |C| such that aij = 1 if
and only if the need ni ∈ NR matches the component cj ∈ C. Formally,

aij =

{
1, if matches(ni, cj)

0, otherwise.

The alignment matrix is a key element of our framework that can be used to explore the
mutual relationship between requirements and components. Based on the matrix, we
define the function allocation : R→ 2C that returns the set of components that match
the needs in a requirement. Formally, allocation(r) =

⋃
ni∈needs(r){cj . aij = 1}.

Conversely, we define a function satisfaction : C → 2R that returns all the re-
quirements with needs matching a given component. Formally, satisfaction(cj) =⋃
r∈R{ni. aij = 1 ∧ ni ∈ needs(r)}.

Based on the allocation function, we can partition the set of requirements into four
non-disjoint subsets: R = Rnot ∪Runder ∪Rexact ∪Rmulti, defined as follows:

– Rnot = {r ∈ R. allocation(r) = ∅}
– Runder = {r ∈ R. 0 < |allocation(r)| ∧ ∃ni ∈ needs(r). (

∑
j aij) = 0}

– Rexact = {r ∈ R. ∀ni ∈ needs(r). (
∑
j aij) = 1}

– Rmulti = {r ∈ R. ∃ni ∈ needs(r). (
∑
j aij) > 1}.

Rnot is the set of requirements that are not allocated,Runder are those requirements
with some but not all allocated needs, Rexact are those requirements with each need
allocated to exactly one component, and Rmulti are those requirements having at least
one need allocated to multiple components. The four sets are not disjoint. For example,
a requirement requesting needs n1 and n2, with n1 matching components c1 and c2 and
with n2 matching no components would be both multi-allocated (because of n1) and
under-allocated (because of n2).

Definition 2 (Allocation degrees). The partitioning of R into Rnot, Runder, etc. can
be used to define metrics on the allocation degree of a set of requirements. We introduce
three degrees, each in the [0, 1] range:

– multi-allocation degree: multi allocd = |Rmulti| / |R|
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– exact allocation degree: exact allocd = |Rexact| / |R|
– under-allocation degree: under allocd = (|Rnot|+ |Runder|) / |R|

The ideal case is one in which the exact allocation degree is close to 1 and the other
two degrees are close to zero: in that case, indeed, each need in a requirement can
be traced to exactly one architectural component. This situation is good because the
needs are homomorphically mirrored in the architectural design, thereby facilitating the
conversation between experts in either discipline. An exception to this case is when the
system includes variability: in that case, it is desired to have a multi-allocation degree,
for multiple components may be devised as alternative ways to fulfill one requirement.

Similar to the partitioning of requirements based on the allocation function, we
can partition the set of components based on the satisfaction function. Specifically, the
set of components is partitioned into two disjoint subsets: C = Cnot ∪ Csat, where
Csat = {c ∈ C. satisfaction(c) 6= ∅} and Cnot = C \ Csat.
Definition 3 (Satisfaction degree). It defines the ratio of components that satisfy at
least one need in a requirement as follows: satd = |Csat| / |C|.
When the satisfaction degree reaches the value of 1, all architectural components trace
back to at least one requirement and, thus, their existence is justified. Unlike Def. 2, we
do not include a notion of multi-satisfaction, for we are interested in assessing whether
a component is justified or not, instead of counting how many needs the component
accommodates.

To represent the combination of allocation and satisfaction, we introduce the metric
of alignment which is a weighted arithmetic mean of the extent to which needs are
allocated, and the extent to which components can be traced back to requirements. To
do so, we first need to introduce the need allocation degree:

need alld =
|{ni ∈ NR. (

∑
j aij) = 1}|

|NR|
.

Definition 4 (Alignment degree). It is a weighted arithmetic mean (with α ∈ [0, 1])
of the need allocation degree and the component satisfaction degree: alignd = α ·
need alld + (1− α) · satd.

In this paper, we set α = 0.5 and give equal weight to the requirements and architecture
perspectives. Similar to the debate on the β in the Fβ-score [3], in-vivo studies are nec-
essary to tune our parameter based on the relative impact of need allocation degree and
component satisfaction degree. However, our experience with the software production
industry reveals that early product releases include several implicitly expressed needs
(e.g., printing, storage, menu interaction), thereby requiring a high α > 0.5, whereas
later releases focus on explicit (customer) requirements allocation with α < 0.5.

The concepts and definitions above apply to the generic notions of requirement and
component. In RE4SA, as per Fig. 2, we can reason about alignment at two granularity
levels: high and low. The definitions and metrics can therefore be applied at either level:

– high: the set R contains ESs, C includes modules, N consists of outcomes from an
ES, and the function needs returns the set of outcomes of an ES;

– low: R contains USs, C consists of features, N includes actions from a US, and the
function needs returns the set of actions of a US.
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5 The RE4SA Model in Practice

To assess the feasibility and usefulness of RE4SA and our metrics, we apply them
to two case studies. The first presents an AD process, while the second illustrates an
AR process. After introducing each case, we discuss the granularity relationships in
Sec. 5.1, and analyze the alignment metrics in Sec. 5.2.

VP. The discovery case concerns a portal for vendors to manage their open invoices
through an integration with the customers’ ERP system. Following a requirements elic-
itation session with the customer, a list of USs was created and then grouped in themes.
We defined ESs from the themes by rewording them and by splitting one of them into
two (based on the word “and”). The SA was created by transforming the requirements
into an intended architecture following the AD process described in Sec. 3.3. The soft-
ware architect was allowed to include his interpretation of the requirements, e.g., by
adding missing features and modules.

YODA. The recovery case regards a research application called Your Data (YODA,
https://github.com/UtrechtUniversity/). A rich collection of USs was
available, already grouped in themes. We used these one-word themes to formulate
ESs. The functional architecture had to be recovered. As described in Sec. 3.3, this was
done using a bottom-up approach. Using the implemented system, in this particular
case a web application, all features were recovered by modeling every user-interactive
element in the GUI as a feature.

5.1 Granularity: Exploring Refinement and Abstraction

Descriptive statistics of both cases are shown in Table 1, including the arithmetic mean
for the granularity. The average number of USs in an ES is shown on the top row, while

Table 1. Descriptive statistics of both the Vendor Portal (VP) and YODA case.

Case Level of
granularity

Requirements Comp. Granularity
R Needs Rnot Runder Rexact Rmulti C Csat µES-US µM-F

VP
ES-module 8 9 1 0 4 3 14 11 3.8 3
US-feature 30 37 2 2 17 9 43 35 1 1

YODA
ES-module 12 12 0 0 12 0 12 12 8 12.6
US-feature 96 102 3 3 84 6 161 66 1 1

the number of ESs a US is abstracted to, on average, is shown below that. The same is
done for the averages of modules and features.

VP. This collection of requirements has an average of 3.8 US per ES. Analyzing our
artifacts, we see that one ES only contains a single US, four modules have a single fea-
ture, and five modules only have two features. On average, a module has three features.
This may indicate either the existence of few requirements per ES, high modularity, or
non-detailed requirements. Due to the use of Scrum in the project, it is likely that the

https://github.com/UtrechtUniversity/
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number of requirements will grow during development. The ES with a single US can
indicate missing requirements, that it should actually be a US, or that it is expected to
be extended in later phases. On the SA side, the aforementioned modules with one or
two features should be analyzed as they can indicate missing features, modules to be
extended, or an incorrect organization of features.

YODA. While all ESs contain at least two USs, thereby representing a proper refine-
ment, three of them are larger than average. Regarding the modules, three contain less
than two features, and one contains far more features than the average. The YODA de-
velopment team can use these results to analyze their architecture and code. The larger-
than-average module, for instance, may include too much functionality. In addition, the
three modules with zero or one feature may lead the team to consider removing these
modules or expanding upon them in the future. After speaking with the lead developer,
it turns out that they have recently been working on ‘simplifying’ the largest module,
since it was difficult to maintain and complex to use. On the other hand, they have been
adding features to the modules that are relatively small.

5.2 Alignment: Studying Allocation and Satisfaction

The alignment metrics for both cases are presented in Table 2, including the ES-module
alignment and the US-feature alignment.

VP. On both levels of granularity, the under-allocation degree shows that 13% of the
requirements contain needs that are not addressed by architectural components. The
exact allocation degree is 0.50 for ES-M and 0.57 for US-F; roughly half of all require-
ments have each of their needs allocated to exactly one SA element. The remaining
requirements are multi-allocated, with a degree of 0.38 for ES-M and 0.30 for US-F,
which could indicate duplicate features or inefficient solutions. Only around 80% of
the the components satisfy a requirement; the remaining components are not explicitly
justified by the requirements.

Table 2. The alignment-related metrics applied to the VP and YODA cases.

Relationship Metric VP YODA
ES-M US-F ES-M US-F

Allocation
multi allocd 0.38 0.30 0.0 0.06
exact allocd 0.50 0.57 1.0 0.88
under allocd 0.13 0.13 0.0 0.06

Satisfaction satd 0.79 0.81 1.0 0.41

Alignment need alld 0.89 0.86 1.0 0.94
alignd 0.84 0.84 1.0 0.68

Since this is an AD process, we expect a high alignment degree, as the architec-
ture is based on the requirements before taking implementation factors into account (as
opposed to the AR process). The alignment degree is 0.84 on both granularity levels,
indicating some discrepancies between the requirements and the architecture. Together
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with the multi-allocation degrees of 0.30 and 0.38, this seems to indicate the require-
ments set is not sufficiently detailed. The under-allocation degree indicates that the soft-
ware architect either did not agree with certain requirements, or missed them during the
AD process. The inexact allocation on the ES-M level can indicate an incorrect catego-
rization of requirements, that the granularity of ES is not on a module level, or that the
architect’s categorization differs from that of the requirements engineer.

Fig. 3 shows how USs can be allocated to features. The first US in the figure is multi-
allocated, as it is linked to two features, specifically the need “use password forgotten
functionality” is allocated to the features “initiate password recovery”, and “send pass-
word recovery email”. The other two USs are exact-allocated as they contain a single
need and are allocated to a single feature.

Fig. 3. Example of how USs were allocated to features.

The metrics from the VP case were discussed with the CEO of the company that
developed the portal. He was surprised by the low alignment score, for the project was
rather simple and the requirements were the basis for the architecture. The metrics were
mentioned to be useful in highlighting potential issues with the requirements, and it
was noted that the requirements specification was not revisited after the SA creation.
Multi-allocation was seen as the most important allocation degree, as it can indicate
unnecessary costs, while under-allocation was expected to be detected during use of
the application, or denote missing features to add later. The modules that did not satisfy
a requirement were judged to be a result of missing requirements. Finally, he mentioned
the potential for making agreements when outsourcing development, e.g., requiring the
architecture to have a 0.9 alignment degree with the requirements.

YODA. The ESs were allocated one-to-one to modules, while all modules satisfied
exactly one ES; thus, these metrics are not further discussed. Nearly all USs were allo-
cated to a feature in the architecture. Only three USs are missing completely and three
others have not been fully implemented. The latter three USs contained two needs, of
which only one was allocated to a feature. Regarding the features, instead, not even half
of the features satisfy at least one need.
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The missing satisfaction links may be due to a granularity levels discrepancies: the
features are probably more specific than the USs. Also, since our feature recovery was
based on exploring the GUI, some features (e.g., those related to navigation) might not
need to be listed in a requirement.

According to the metrics, not all requirements are currently allocated: some fea-
tures still need to be implemented. Moreover, since around 60% of the features do not
satisfy a requirement, either the requirements are incomplete or unnecessary features
exist. The lead developer explained that they do not consider anything in retrospect:
when a US is considered completed, it is removed from the backlog. Thus, he was
unaware that six USs have not yet been fully implemented in the system.

An example of how modules and features were recovered from the GUI is shown
in Fig. 4. For the sake of brevity, the alternative features related to F2 and F3 were
collapsed. The module satisfies an ES that was based on the “Metadata” theme: “When

Fig. 4. Example of how architectural components were recovered from the GUI.

I am storing research data, I want to include metadata about the content, so that I can
document my data.” Only two of the features satisfy a US, features F3 and F4 (in Fig. 4)
satisfy US3 and US4, respectively:

US3: “As a researcher, I want to specify the accessibility of the metadata of my
dataset, so that access can be granted according to policy [...].”

US4: “As a researcher, I want to be able to discard existing metadata and re-begin
adding metadata, so that I can document a data package.”
Therefore, F1 and F2 are part of the Cnot count, while F3 and F4 are considered part of
the Csat.

YODA’s lead developer expects the metrics to be useful, as they could help fos-
ter the creation of trace links, currently nonexistent. The situation is problematic when
new colleagues join (“it takes approximately three months to get up to speed and be
able to add something of value to the system”) or when someone leaves the team, for
their knowledge is lost. Also, team members often do not know where features originate
from. To discover the rationale, the source code is checked to locate features; if unused,
it is removed. This happens because the team sometimes adds features without defining
the requirements first. Moreover, he expects under-allocation to be useful during de-
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velopment, e.g., during or at the end of every sprint, to check whether all requirements
were satisfied and if they were satisfied in full. Finally, the multi-allocation metric may
help identify duplicate features; the user stories often have overlap, causing the team to
implement the same feature twice. The developer stated they are planning on using the
metrics in their next sprint aiming to improve their work efficiency and quality.

6 Discussion

We present expected benefits from the use of RE4SA in practice, and present the validity
threats to our study.

Expected benefits. RE4SA can improve requirements-architecture communication in
agile development product teams, which include product managers and product owners,
through (1) simple communication means, (2) clear structural guidelines, and (3) con-
sistent domain terminology. Combining the two granularity levels of the RE4SA model
provides a shared context view of the software for the functional and technical experts.
Functional experts tend to employ a high-level overview (ES-module), while technical
experts are mostly focused on the detailed level (US-feature) [32].

The objective of the RE4SA model, however, is not limited to improving commu-
nication. Gayer et al. [16] argued for the need of dynamic architecture creation. This
architecture allows for traceability that can make software more maintainable, change-
able and sustainable. The alignment relationships in RE4SA support traceability, with
little documentation and effort required.

We also surmise that RE4SA helps reason about the system, for all stakeholders
know which parts of the system are being discussed. In addition, when requirements
are changed (modified, added, or deleted), it is apparent which other parts of the system
are affected, due to the explicit relationship between concepts. Obviously, some effort
is required to maintain the artifacts updated.

The RE4SA model and its metrics can be utilized for communication outside of
the development team as well, such as when interacting with clients. One expected
benefit is the ability provide proof for contractual obligations, which could also be
applied to ensuring requirements alignment when outsourcing development. Using the
alignment metrics, a company can prove that its system complies with the contractual
requirements they and the client agreed on for the project. Furthermore, the company
can provide feedback on its progress in percentage of realized functionality or satisfied
requirements. At times, customers will have requirements for a software product that
form a risk to the maintainability of the product. In these cases, the architecture can be
used to visualize the risks of these particular elements and ensure that the customer is
aware and agrees to the risks before the requirement is accepted as part of the project.

Finally, RE4SA may support release planning. The architecture highlights feature
dependencies, while the requirements show the priorities. Using both perspectives, the
developers can determine the top-priority features and, optionally, the pre-requisite fea-
tures. When customers have a customized version of a software product, the architecture
of the new release can be compared to the architecture of the customer [32]. Through
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this comparison, incompatibilities can be detected, allowing for better planning in an
upgrade project for a new release.

Validity threats. Concerning construct validity, the formulation of ESs presents some
difficulties; in RE practice, ESs are formulated using the US template (epics) or as
themes. Although our re-formulation did not present particular difficulties, we need to
acknowledge that the ES notation we suggest is not mainstream yet. All other concepts
of RE4SA (user stories, modules, features) are adopted by the industry. An internal
threat in using the RE4SA model is determining the ‘right’ levels of granularity. While
USs should describe a requirement for exactly one (atomic) feature [23], this is often
unfeasible or inefficient and a US might describe a composite feature instead. For ex-
ample, a US like “As a user, I want to select a language.” would result in one feature
‘select language’. Depending on the chosen granularity level, this feature may either be
atomic, or be a composite one that is refined into separate features to switch to each
supported language. To minimize this threat, we used the same levels of granularity
and metrics for both cases. Conclusion validity is indirectly affected by the granularity
problem: should we have employed a different granularity level, the conclusions we
have drawn may have differed. Regarding external validity, we considered only two
case studies; nevertheless, the metrics are applied to real-world examples of documen-
tation and cover common software applications.

7 Conclusion

In this study on requirements and architecture alignment, we presented the RE4SA
model [26] that supports communication within the development team. We formalized
the links between the four core concepts in RE4SA and we provided metrics to quantify
the alignment between RE and SA. The results of these metrics can be used to analyze
and improve the alignment. The metrics were applied in two industry provided cases
and allow for detection of improvements in both the architecture and the requirements.

The results presented in this paper and in previous work regarding RE4SA [26,32]
provide initial evidence on the suitability of our model for experimentation in practice.
In particular, the AR process detailed in Sec. 3.3 allows for the RE4SA model to be
used even if currently no architecture artifacts are in place.

This paper paves the way for various research directions. Firstly, we would like to
study whether the linguistic structure of the artifacts, e.g., the specific words used, can
help relate requirements with architectural components, and support the proper posi-
tioning of new functionality within an existing architecture. Moreover, using the sen-
tence structures in USs, it might be possible to extract feature names from USs automat-
ically. Secondly, evolution in agile environments [10] is a notable challenge that could
benefit from the use of RE4SA. By capturing software changes introduced in exten-
sion, customisation and modification of a product in the architecture, the evolution of
the product becomes visible and manageable. Utilizing the alignment relationships can
be used to ensure that both the requirements and architecture stay up to date. Thirdly,
we intend to apply the RE4SA model and its alignment metrics to additional cases,
aiming to validate them and to determine best practices. One of the first steps in this
direction is to formalize metrics for the granularity relationships, in the same manner as
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for the alignment relationships as presented in this paper. Finally, it is important to in-
vestigate how quality requirements are represented in agile development and how they
are mapped to quality aspects in architectures.
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A., Antoniol, G., Maletic, J., Mäder, P.: Traceability fundamentals. In: Software and Systems
Traceability, pp. 3–22. Springer (2012)

19. Hubaux, A., Tun, T.T., Heymans, P.: Separation of concerns in feature diagram languages: A
systematic survey. ACM Computing Surveys (CSUR) 45(4) (2013)



16 S. Molenaar et al.

20. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic literature
review on agile requirements engineering practices and challenges. Computers in Human
Behavior 51, 915–929 (2015)

21. Lindvall, M., Muthig, D.: Bridging the software architecture gap. Computer 41(6), 98–101
(2008)

22. Lucassen, G., Dalpiaz, F., Van Der Werf, J.M., Brinkkemper, S.: Bridging the twin peaks:
the case of the software industry. In: Proc. of TwinPeaks, pp. 24–28 (2015)

23. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E., Brinkkemper, S.: Improving agile require-
ments: the quality user story framework and tool. Requirements Engineering 21(3), 383–403
(2016)

24. Lucassen, G., van de Keuken, M., Dalpiaz, F., Brinkkemper, S., Sloof, G.W., Schlingmann,
J.: Jobs-to-be-done oriented requirements engineering: a method for defining job stories. In:
Proc. of REFSQ, pp. 227–243 (2018)

25. McChesney, I.R., Gallagher, S.: Communication and co-ordination practices in software en-
gineering projects. Information and Software Technology 46(7), 473–489 (2004)

26. Molenaar, S., Brinkkemper, S., Menkveld, A., Smudde, T., Blessinga, R., Dalpiaz, F.: On
the nature of links between requirements and architectures: Case studies on user story uti-
lization in agile development. Tech. Rep. UU-CS-2019-008, Department of Information and
Computing Sciences, Utrecht University (2019), http://www.cs.uu.nl/research/
techreps/repo/CS-2019/2019-008.pdf

27. Murugesan, A., Rayadurgam, S., Heimdahl, M.: Requirements reference models revisited:
Accommodating hierarchy in system design. In: 2019 IEEE 27th International Requirements
Engineering Conference (RE). pp. 177–186. IEEE (2019)

28. Nuseibeh, B.: Weaving together requirements and architectures. Computer 34(3), 115–119
(2001)

29. Pfleeger, S.L., Bohner, S.A.: A framework for software maintenance metrics. In: Proceed-
ings. Conference on Software Maintenance 1990, pp. 320–327 (1990)

30. Rath, M., Rendall, J., Guo, J.L.C., Cleland-Huang, J., Mäder, P.: Traceability in the wild:
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