
Defining Key Concepts in Information Science
Research: The Adoption of the Definition of

Feature

Sabine Molenaar, Emilie Steenvoorden, Nikita van den Berg, Fabiano
Dalpiaz[0000−0003−4480−3887], and Sjaak Brinkkemper[0000−0002−2977−8911]

Dept. of Information and Computing Sciences, Utrecht University, The Netherlands
{s.molenaar, e.r.m.steenvoorden, i.a.n.vandenberg, f.dalpiaz,

s.brinkkemper}@uu.nl

Abstract. This paper analyzes the definitions of the concept feature in
the information science literature. The concept of feature has been de-
fined in various ways over the last three decades. To be able to obtain
a common understanding of a feature in information science, it is im-
portant to conduct a thorough analysis of the definitions that can be
used in research and in practice. The main contribution of this paper is
a categorization of the existing definitions, which highlights similarities
and differences. By means of a Concept Definition Review process, we
gather a total of 23 definitions from Google Scholar using five search
queries complemented by backward snowballing. Our analysis organizes
the definitions according to their level of abstraction and the taken view-
point. Within the range of analyzed definitions, we do not wish to argue
that one is better or worse than another. We provide, however, guide-
lines for the selection of a definition for a given goal. These guidelines
include: popularity based on the citations count, the research field, the
abstraction level, and the viewpoint.

Keywords: Feature · Requirements Engineering · Information Science
· Definition · Literature Review · Concept Definition Review

1 Introduction

The concept of feature, in relation to software and information systems, has been
defined in many ways over the last three decades. One of the first definitions
dates back to the 1990s, and it is stated in a highly influential technical report
on feature-oriented domain analysis [20]. This definition seems to be adapted
from the American Heritage dictionary entry for feature. Ever since, alternative
definitions of the concept of feature emerged, which deviated from it.

The existence of multiple, diverging definitions has both conceptual and
practical consequences. Conceptually, researchers may use the same terminology
while referring to different meanings (denotations [28]), leading to undetected
conflicts in verbal or written communication. Practically, the choice of a defini-
tion may affect the artifacts that are created based on the concept. For instance,



2 S. Molenaar et al.

since features are at the basis of feature diagrams [20], different definitions may
lead to conflicting interpretations of a feature diagram, or to different models
for the same system depending on the modeler’s preferred definition.

To reach the goal of analyzing the different definition of feature, we sketch a
more general literature review approach that we call Concept Definition Review
(CDR). Literature reviews are a widely practiced type of research method in
various flavors in all scientific disciplines [12]: systematic literature review, meta-
analysis, argumentative literature review, systematic mapping review. This new
approach was made necessary by the need to identify the definitions of a certain
term without conducting a heavyweight systematic literature review. Definitions
of newly introduced concepts are usually made in an explicit statement (e.g.,
“We define the concept of feature as follows . . . ”) at the beginning of the paper
in order to establish a common understanding with the reader. For the CDR,
the definition text with some context suffices and the remainder of the paper
is then ignored. We envision that CDRs can be used to bring clarity regarding
several concepts in the domains of information science, information systems, and
software engineering, e.g., those of class, function, task, and goal.

We choose to investigate the concept of feature because of its importance
both in Requirements Engineering (RE) and in Software Architecture (SA). For
example, in our RE4SA framework [30], features are an elementary abstraction
to define the functional architecture of a system, and atomic functional require-
ments are expected to justify individual features.

The rest of the paper is organized as follows. In Section 2, we describe the
Concept Definition Review approach and its application to the concept of fea-
ture. In Section 3, we analyze the types of definitions, the research topics, the
abstraction level, and the viewpoint on the concept of feature. Finally, we pro-
vide guidelines for researchers on the usage of the definitions of feature, and we
conclude, in Section 4.

2 Research Method and Data Collection

The goal of this research is to recommend definitions that fit various perspec-
tives and multiple purposes, rather than that of creating an exhaustive list of
all definitions of the concept of feature. We are particularly interested in col-
lecting and analyzing definitions from the domains of RE and SA. Therefore the
main research question for this paper is formulated as follows: “How are features
defined for different purposes in the context of information science literature?”.

2.1 Concept Definition Review

In an attempt to properly define the concept feature and categorize existing
definitions in the field of information science, we devised a literature research
method that focuses on analyzing and clarifying the meaning of a concept in the
literature. The high-level structure of the CDR method consists of the following
six steps, which are inspired by the SLR guidelines by Okoli and Schabram [25]:



Defining Key Concepts in Information Science 3

1. Purpose of the concept definition review: the goal and research scope of the
concept at hand is established by selecting the scientific sub-domains where
the concept plays a critical role;

2. Searching for papers containing definitions: querying bibliographic indexes
with the name of the concept in the identified scientific sub-domains;

3. Relevancy screen and quality appraisal: for each paper that fulfills the quality
criteria of renowned scientific publication venues, an explicit formulation of
the concept definition is to be identified;

4. Data extraction: various data items are collected from the literature re-
sources, e.g. syntactical structure, research domain, and citation impact data;

5. Synthesis of studies: analysis of the data items provides insights on con-
cept definition adoption, variations over abstraction levels, and evolution
over time, i.e. old-fashioned definitions versus new interpretations (see, for
instance, the changes of definitions by the same author group in Table 3);

6. Documenting the concept guidelines: based on the synthesis findings, a guide-
line is formulated for the most suitable concept definition usage in the re-
search domains.

The remainder of this paper describes an instantiation of the CDR for the
concept of feature. The six steps are illustrated by presenting our experience. A
more general definition of the techniques that can be used is left to future work.

In our research, the definitions are collected by searching in Google Scholar,
and by complementing those identified sources via backward snowballing. After
the definitions are identified, we gathered the number of citations. The data
collection is done at two points in time to observe usage evolution. The collection
started in November 2018, then the research paused for two years, and additional
data is collected in October 2021. The collected information is then analyzed
from various perspectives. We first analyze the definition type and the research
topic based on the abstract, keywords, introduction, and research topic of the
venue where it has been published. Next, a categorization is made based on the
level of abstraction and the viewpoint. The differentiation between abstract and
technical is done through the method proposed by Apel and Kästner [4]. Based
on the data collection and the analysis, we provide guidelines on how to select a
suitable definition of feature for use in a given context.

2.2 Data collection

Initially, relevant papers are found using the search operators in Google Scholar.
Through citation tracing, other literature repositories became involved (Scopus,
ACM DL, IEEE Xplore, etc.). All definitions should be related to the term
feature; thus, this term is included in all search queries. Since that term in
combination with the term ‘definition’ often leads to results not related to in-
formation science, more specific queries were used instead. The second term in
the search query is based on other topics relevant to this paper, as explained
in the introduction: RE and SA. This is aligned with the objective of our re-
search, which aims at identifying definitions for various purposes, but within the
research sub-fields we have defined.



4 S. Molenaar et al.

To scale down the number of results and to assure quality, some results are
excluded. The definition and the source where the definition appears should meet
the following selection criteria:

– They must be written in English.
– They must be scientific literature.
– They must present a unique definition of the concept feature.

Table 1 provides an overview of the used search queries and their included results.
At first, we hoped we could restrict our search to a limited number of citations.
However, since the works used in the literature study range from 1990 to 2021,
this would be an unfair criterion, since older works have had more time to get
cited. The third criterion traces to the original first definition of the concept.
Furthermore, since the aim is to provide an overview of existing definitions,
less cited definitions should be featured as well for completeness. The results
are presented in order of the search results (relevance in relation to the search
query). It should be noted that the work by Apel et al., published in 2013, is
stated as a work from 2016 by Google Scholar. However, the book itself includes
a copyright text from 2013 and the foreword was also dated 2013. The identified
results that did not match the selection criteria are not listed in the table.

Table 1. Overview of the search queries on Google Scholar and of the returned results.

Search query Included results
“feature” AND “requirements engineering” Classen et al., 2008; Kang et al., 1990
“feature” AND “software architecture” Apel & Kästner, 2009; Kang et al., 1990; Zhang et al., 2019
“feature” AND “product lines” Apel et al., 2013
“feature” AND “software system” Apel et al., 2013; Apel & Kästner, 2009
“feature” AND “feature-oriented specification” Guerra et al., 1996; Apel & Kästner, 2009
“feature” AND “source code” Dit et al., 2013

In addition, the snowballing technique was utilized. In this case, this consisted
of backwards searching. Two articles were selected as a starting point, since
these two works explicitly cited various definitions of the term feature. Table 2
summarizes which and how many works have been found per article.

Table 2. Works found through the use of the backward snowballing technique.

Source References Total

Classen et al., 2008
Kang et al., 1990; Kang et al., 1998; Bosch, 2000; Czarnecki & Eisenecker, 2000;
Batory, 2004; Batory et al., 2004; Pohl et al., 2005; Batory et al., 2006;
Apel et al., 2007

9

Apel & Kästner, 2009

Kang et al., 1990; Kang et al., 1998; Bosch, 2000; Czarnecki & Eisenecker, 2000;
Zave, 2003; Batory et al., 2004; Chen et al., 2005; Czarnecki et al., 2005;
Pohl et al., 2005; Batory et al., 2006; Apel et al., 2007; Classen et al., 2008;
Kästner et al., 2008

13



Defining Key Concepts in Information Science 5

Table 3. Definitions of feature obtained in our instantiation of the CDR. The ‘Year’
column refers to the year of publication.

Authors Year Definition
Kang, Cohen, Hess, Novak & Peter-
son [20] 1990 “a prominent or distinctive user-visible aspect, quality or char-

acteristic of a software system or systems”

Guerra, Ryan & Sernadas [17] 1996 “is a part or aspect of a specification which a user perceives as
having a self-contained functional role”

Kang, Kim, Lee, Kim, Shin & Huh
[19] 1998 “distinctively identifiable functional abstractions that must be im-

plemented, tested, delivered, and maintained”

Bosch [9] 2000 “a logical unit of behaviour specified by a set of functional and
non-functional requirements”

Czarnecki & Eisenecker [13] 2000
“a distinguishable characteristic of a concept (e.g., system, com-
ponent, and so on) that is relevant to some stakeholder of the
concept”

Zave [33] 2003 “an optional or incremental unit of functionality”
Batory [6] 2004 “the primary units of software modularity”

Batory, Sarvela & Rauschmayer [5] 2004 “a product characteristic that is used in distinguishing programs
within a family of related programs”

Chen, Zhang, Zhao & Mei [10] 2005 “a product characteristic from user or customer views, which
essentially consists of a cohesive set of individual requirements”

Czarnecki, Helsen & Eisenecker [14] 2005
“a system property that is relevant to some stakeholder and is
used to capture commonalities or discriminate among systems
in a family”

Pohl, Böckle & van der Linden [26] 2005 “an end-user visible characteristic of a system”
Batory, Benavides & Ruiz-Cortes
[7] 2006 “an increment in product functionality”

Apel, Lengauer, Batory, Möller &
Kästner [3] 2007

“a structure that extends and modifies the structure of a given
program in order to satisfy a stakeholder’s requirement, to im-
plement and encapsulate a design decision, and to offer a con-
figuration option.”

Classen, Heymans & Schobbens [11] 2008
“a triplet, f = (R,W,S), where R represents the requirements the
feature satisfies, W the assumptions the feature takes about its
environment and S its specification”

Kästner, Apel & Kuhlemann [21] 2008 “represents an increment in functionality relevant to stakehold-
ers”

Apel & Kästner [4] 2009
“is a unit of functionality of a software system that satisfies a re-
quirement, represents a design decision, and provides a potential
configuration option”

Apel, Batory, Kästner & Saake [2] 2013 “is a characteristic or end-user-visible behavior of a software sys-
tem”

Dit, Revelle, Gethers & Poshyvanyk
[15] 2013 “represents a functionality that is defined by requirements and

accessible to developers and users”
Berger, Lettner, Rubin, Grün-
bacher, Silva, Becker, Chechik &
Czarnecki [8]

2015 “describe the functional and non-functional characteristics of a
system”

Andam, Burger, Berger & Chau-
dron [1] 2017 “are high-level, domain-specific abstractions over implementa-

tion artifacts”

Krüger, Gu, Shen, Mukelabai,
Hebig & Berger [23] 2018

“used to specify, manage, and communicate the behavior of
software systems and to support developers in comprehending,
reusing, or changing these systems”

Rodríguez, Mendes & Turhan [27] 2018
“represent needs that are gathered via meetings with customers
or other stakeholders, which, once selected, are refined during a
requirements elicitation process”

Zhang, Wang & Xie [34] 2019 “indispensably basic functional modules available to users, which
can be captured by one or two words in the review”

Overlapping references between the two works are included for both in the
interest of completeness. Based on correspondence with Sven Apel, an additional



6 S. Molenaar et al.

three works co-written by Thorsten Berger are included (S. Apel, personal com-
munication, February 12, 2019). More than one definition written by Apel is
included and the article providing an overview of feature-oriented development
is used not only as a starting point for searching for more definitions, but also
because it inspired the synthesis in part. Therefore, the recommendation was
gladly accepted. Moreover, these three works are published more recently than
most of the other included works, providing a scientific evolution of the term
feature over the past thirty years.

Table 3 shows the feature definitions in chronological order and, if two or
more works were published in the same year, alphabetical order is applied. The
references are provided via short citations to increase the readability of the table.
The table highlights the high number of definitions of the term feature in the
context of RE and SA: we identified 23 relevant ones. This leads to possible
ambiguity and conflict [28] when discussing the literature in the field, and also
when interpreting or creating models that refer to the concept of feature such
as feature diagrams [20].

2.3 Popularity of the Definitions

After collecting the definitions, additional data about the number of citations
per work was gathered. This data can suggest a first selection of a definition to
use. Fig. 1 shows the number of citations per article measured in 2018 (blue)
and 2021 (green). Also, the percentage growth of the number of citations in this
time period is visible for each work. Interestingly, from the three most cited
works, Kang et al., Eisenecker and Czarnecki and Pohl et al., the latter two
experienced a stronger growth: 32% and 29%, respectively, much higher than
the 5% growth of Kang et al. Since more recently published works have had
less time to get cited, the picture may convey a slightly skewed view. Therefore,
the publication year should also be taken into account when selecting the most
cited works. This can be done by looking at a trend line. From the trend line
based on the citations measured in 2021, it is apparent that four works are cited
significantly more often relative to the others, being the works from Kang et al.
(+271 citations), Eisenecker and Czarnecki (+1,177), Bosch (+279), and Dit et
al. (+245). However, using only the number of citations does not take research
topics into account.

3 Analysis and Categorization of the Concept Definitions

The previous section provided a basic recommendation for selecting a definition
based on the number of citations. That straightforward criterion, which is very
easy to adopt, does not actually answer the question as to what definition should
be used in what context. To answer this question, we propose various analyses
of the definitions of Table 3, which include the categorization of the definitions
according to various facets: definition type, research topic, level of abstraction,
and viewpoint.



Defining Key Concepts in Information Science 7

Fig. 1. Overview of number of citations on Google Scholar of works in which definitions
are provided (from November 2018 to October 2021).

3.1 Definition types

Within the broad range of types of definitions, an important distinction is that
between intensional and extensional.

An intensional definition describes the common characteristics of the mem-
bers of the category, e.g., birds have feathers, they can fly, and they have a specific
shape [16]. For example, Kang et al. (1990): “a prominent or distinctive user-
visible aspect, quality or characteristic of a software system or systems”. Here,
a feature is described by means of common characteristics. Another example is
that of Zhang et al. (2019): “indispensably basic functional modules available to
users, which can be captured by one or two words in the review”. An extensional
definition lists the members of the category, e.g. robins, eagles, nightingale, etc.
Furthermore, other definition types exist. For example, ostensive definitions,
which are like extensional definitions, but where extensional definitions call for
an exhaustive list of members of the category, ostensive definitions only call for
a couple of example members [32].



8 S. Molenaar et al.

Besides this main distinction, other types of definitions can be identified.
First off, a stipulative definition is used when a term is made up for the first
time. Often consisting of a general category the concept belongs to, followed by
a differentiator. Secondly, lexical definitions provide descriptions that depends
on the term’s use in particular communities: the definition depends on the au-
dience. Common examples come from the legal domain. Partitive definitions
explain concepts as being part of a greater whole. A partitive definition of fea-
ture is that of Guerra et al. (1996): “is a part or aspect of a specification which a
user perceives as having a self-contained functional role”. Next, functional defi-
nitions explain actions or activities of a concept in relation to another concept.
The definition of Batory et al. (2004) is functional: “a product characteristic that
is used in distinguishing programs within a family of related programs”. Ency-
clopedic definitions often include additional information on the concept. Next,
theoretical definitions attempt to add an argument for a concept and can be
compared to scientific hypothesis. The last type of definition is the synonym
definition, which describe a concept by mentioning a similar concept [31].

All definitions in this research, except for those of Guerra et al. (1996) and
Batory et al. (2004), are intensional definitions, because the definitions analyze
the concepts into constituent characteristics. It would be interesting to explore
whether other types of definitions would be suitable for providing a clear, ho-
mogeneous characterization of the notion of feature.

3.2 Research topics

To recommend definitions based on context, it is useful to see in what research
field or sub-field a definition is proposed. This organization based on research
topic is provided in Table 4.

Table 4. Feature definitions categorized by research topic.

Research topic Related works

Feature-oriented software Kang et al., 1990, 1998; Batory, 2004; Apel et al., 2007;
Apel & Kästner, 2009; Dit et al., 2013; Zhang et al., 2019

Feature-oriented specifications Guerra et al., 1996; Zave, 2003
Generative programming Czarnecki & Eisenecker, 2000

Software product lines
Bosch, 2000; Batory et al., 2004; Pohl et al., 2005;
Kästner et al., 2008; Apel et al., 2013; Berger et al., 2015;
Andam et al., 2017; Krüger et al., 2018

Feature modeling Chen et al., 2005; Czarnecki et al., 2005; Batory et al.,
2006

Requirements engineering Classen et al., 2008
Release planning Rodríguez et al., 2018

The research topics are determined based on which topics or fields in the
abstract, keywords or introduction. In addition, we also considered the research



Defining Key Concepts in Information Science 9

fields or topics related to the journal or conference proceedings where the work
was published. Some overlap between the topics is possible, since some works
include a more specific topic or field than others. For example, in Table 4, feature-
oriented software may also be interpreted as feature-oriented programming in
some cases, but to keep it more generic, the former topic description is used
instead. In addition, it is possible that a definition could fit more than one
research topic, in such cases the most important or prominent one is selected.
For instance, the definition by Rodríquez et al. could also fit the RE topic, but
it is categorized as release planning, since this was the main topic of the work.

This categorization per research topic can be used to select a definition to
utilize in the context of one of the research topics. For topics that have multiple
fitting definitions, the additional factor of number of citations can suggest a
preference. However, different and more extensive approaches for establishing
the most suitable concept definition could be envisioned.

3.3 Abstraction level

Some definitions might be more suitable than others given a certain context
or aim. In all definitions, two aspects can be distinguished: abstraction level
and viewpoint. The former aspect was inspired by the differentiation between
abstract and technical feature definitions as proposed by Apel and Kästner [4].
They also recognize that features have more than one use and describe the
differentiation as follows:

1. Abstract: “features are abstract concepts of the target domain, used to specify
and distinguish software systems” (problem space)

2. Technical: “features must be implemented in order to satisfy requirements”
(solution space)

Czarnecki and Eisenecker have separated the problem space from the solu-
tion space, in which the former focuses on domain-specific abstractions and the
latter on implementation-oriented abstractions [13]. Apel and Kästner use this
distinction to further define abstract and technical, relating abstract definitions
to the problem space and technical definitions to the solution space [4]. In ad-
dition to this distinction between abstract and technical definitions, they have
provided a list of ten definitions (all of which are also included in Table 3) and
ordered them from abstract to technical. However, they have not described how
they decided on which definition is more technical than another. Moreover, they
identified seven abstract definitions and only three technical ones. In short, while
the line between abstract and technical is clear, the gap between the two is not
and the reasoning behind the order within both distinctions is vague at best.

To clarify the interpretations of abstract and technical, Sven Apel was asked
to comment on the paper. He stated that the first seven definitions “take a user-
centric/problem-space-centric perspective”, while the eighth definition is only
formal from an RE perspective. The last two definitions focus on the implemen-
tation and are thus solution-space-specific. He continues by saying that, within



10 S. Molenaar et al.

these categorizations, the definitions are more or less sorted by date (S. Apel,
personal communication, February 12, 2019). To conclude, this approach was
quite informal and therefore difficult to replicate. Moreover, it still does not
solve the mystery of which definition is more abstract or technical than another.
A more formal categorization is needed to tackle these challenges.

In an attempt to recreate and extend such an order based on level of ab-
straction (from abstract to technical), nine characteristics were extracted from
the collection of 19 definitions (the other four were added later due to addi-
tional communication and refreshing of the data in 2021). The following nine
characteristics were extracted:

– Abstract: characteristic, distinct (or variations thereof), aspect, abstraction
– Technical: specification, functionality (or variations thereof), requirements,

behavior, unit

The identified abstract characteristics are assigned a score of 1, the technical
characteristics receive a 0, then we divide this value by the number of character-
istics, leading to a score between 0 and 1. In this case, 1 is the most abstract and
0 the most technical (or least abstract). A test comparing the order based on
these nine characteristics and resulting score and the order of seven definitions
as presented by Apel and Kästner resulted in the following findings:

– Six out of seven definitions were ordered differently.
– Two definitions were shifted three positions.
– If the line between abstract and technical is placed at 0.5, one definition

shifts from abstract to technical and one is shifted the other way around.

Due to the deviation from the original order and the sensitivity of the place-
ment of the abstract/technical line, it is concluded this approach has certain
drawbacks. A second attempt, adopting a different interpretive approach, yielded
better results. After analyzing the different characteristics of abstract and tech-
nical as stated by Czarnecki and Eisenecker, and Apel and Kästner, as discussed
earlier in this section, the following eight characteristics were identified:

– Abstract: problem space, description of requirements, description of intended
behavior and characteristic/abstract/abstraction

– Technical: solution space, satisfaction of requirements, implementation of
intended behavior and functionality

Using this approach, with the same method for calculating a score, the 19
definitions were ordered once again (the results are shown in Fig. 2) with the
following results:

– If the line between abstract and technical is placed at 0.5, none of the defi-
nitions shift from abstract to technical or vice versa.

– The three technical definitions are in the same order.
– Out of the seven abstract definitions, only two are out of order (and the

order among those two is the same as in the order by Apel and Kästner).



Defining Key Concepts in Information Science 11

To summarize, out of the ten definitions, only two were out of order (and
disregarding the other definitions, those two were in the correct order). An-
other advantage of this approach is that it is not based on terms/characteristics
extracted from the definition, but on theoretical resources by Czarnecki and
Eisenecker, and Apel and Kästner. Furthermore, it should not be forgotten that
it is unclear whether the original order as devised by Apel and Kästner is on an
ordinal scale. It is reasonable to assume so, since the definitions are numbered.
However, the reasoning behind this specific order is not thoroughly explained,
apart from the descriptions of abstract and technical as stated previously. The
one fully unambiguous aspect is the distinction between the abstract and tech-
nical definitions, since this was explicitly mentioned.

3.4 Viewpoint

In addition to the level of abstraction, five viewpoints were also extracted from
exactly mentioned terms in the definitions:

– System
– Product
– Developer (stakeholder)
– User (stakeholder)
– Customer (stakeholder)

Firstly, system and product are considered separate viewpoints, since a sys-
tem can be contained within a product, but a product can indicate more than
just a system. Secondly, three stakeholders were identified and only human be-
ings are considered a stakeholder. The developer was included, not because it
was explicitly mentioned in any of the definitions, but sometimes the word stake-
holder also refers to the development viewpoint. Thirdly, the user viewpoint also
includes end-users and differs from the developer viewpoint, since developer do
not necessarily use the product or system, but other employees of the product’s
or system’s company might. Fourthly, customers are separated from user, since
they are more specific than just any (end-) user. Finally, whenever no specific
viewpoint is mentioned or can be reasonably assumed given a definition, the
system is considered the viewpoint, due to features being part of the SA, which
describes a system. Fig. 2 shows the categorization of the definitions based on the
level of abstraction score (as described previously) and the identified viewpoints.

The 19 definitions and the scoring system were also presented to a group of
26 information science students and researchers. Both expressed a difficulty in
understanding what the term ‘technical’ was supposed to mean in this context.
Given their background, they automatically assumed technical characteristics to
be related to development aspects or implementations (such as code). Moreover,
the level of abstraction is often seen as the level of granularity, while in this
categorization that is not the case. To make the categorization easier to read and
understand, a different name and more specific minimal and maximum values
would be desirable. Changing ‘technical’ to ‘detailed’ might solve the issue of



12 S. Molenaar et al.

Fig. 2. Categorization of the 19 definitions, based on abstraction level and viewpoint.

misinterpreting technical characteristics, but would be an inaccurate description.
The definitions do not necessarily refer to a certain level of detail and abstract
definitions can still provide a detailed description of the term feature.

The role of RE versus SA appears crucial in this concept definition study.
As Shekaran et al. explain the role of SA in RE by referring to RE as being
concerned with the ‘shape of the problem space’, while SA focuses on the ‘shape
of the solution space’ [29]. The distinction between problem and solution space
is already present in the categorization, given the fact that the description of the
problem space is considered an abstract characteristic and, on the other hand,



Defining Key Concepts in Information Science 13

the solution space is considered a technical characteristic [22]. To strengthen
this reasoning, the Quality User Story (QUS) framework is in agreement stating
that a user story (US) should be problem-oriented, meaning that “a user story
only specifies the problem, not the solution to it” [24]. Moreover, Hofmeister et
al. mention that architecture solutions help move the design from the problem
space (in which architecturally significant requirements (ASRs) are formulated)
to the solution space [18]. Splitting the definitions into two main categories can
make selecting a definition easier, depending on the purpose for and context
in which it is used. However, problem-space definitions (RE) can arguably be
considered of higher quality or more useful, based on research by Berger et
al. They state that “good features need to precisely describe customer-relevant
functionality” [8]. Moreover, this would mean that definitions which include the
customer viewpoints are more suitable in RE than those that do not.

4 Concept Definition Guidelines and Conclusion

Addressing our main research question “How are features defined for different
purposes in the context of information science literature?”, we could not find a
definitive answer. Many definitions of the term exist and one is not necessarily
better or more accurate than the next. The selection of a definition is clearly de-
pendent on the chosen perspective, and there is a wide difference in the adoption
of a particular definition as derived from the citation count.

This paper distinguishes the definitions based on the research topics feature-
oriented software, feature-oriented specifications, generative programming, soft-
ware product lines, feature modeling, requirements engineering and release plan-
ning. If one definition had to be selected, it would have to be that of Kang et
al. (1990) [20]. This is the oldest, it has been cited most frequently, and it is
referenced more often by like-minded researchers than the other works included
in this study.

However, the meaning of the term feature is largely dependent on its pur-
pose, be it for requirements, architecture, development, modeling, target audi-
ence or otherwise. To complicate matters further, the viewpoint can influence
the definition. Besides that, in this research a distinction was made between
problem-oriented (abstract) and solution-oriented (technical). The only aid that
can be provided when selecting a definition is the popularity of the definition,
the research field and/or context, the intended viewpoint and audience. Even
then, multiple options may be available.

With all this taken into account, the following guidelines are most fitting.
First consider the research topic and select a definition that fits the topic to be
written about. If that topic has multiple definitions, choose the definition with
the most citations relative to its publication year.

For the topic feature-oriented software, the recommendation would be “a
prominent or distinctive user-visible aspect, quality or characteristic of a soft-
ware system or systems” from Kang et al. (1990). For feature-oriented specifica-
tion, it is “an optional or incremental unit of functionality” from Zave (2003).



14 S. Molenaar et al.

For generative programming, it is “a distinguishable characteristic of a concept
(e.g., system, component, and so on) that is relevant to some stakeholder of the
concept” from Czarnecki & Eisenecker (2000). For the research topic of software
product lines, the definition “an end-user visible characteristic of a system” from
Pohl et al. (2005) should be used. For feature modelling, “a system property that
is relevant to some stakeholder and is used to capture commonalities or discrim-
inate among systems in a family” from Czarnecki et al. (2005). For the topic
requirements engineering, “a triplet, f = (R,W,S), where R represents the re-
quirements the feature satisfies, W the assumptions the feature takes about its
environment and S its specification” from Classen et al. (2008). Lastly, for the
research topic of release planning, “represent needs that are gathered via meetings
with customers or other stakeholders, which, once selected, are refined during a
requirements elicitation process” from Rodríguez et al. (2018) should be used.

If the specific topic is not present in Table 4, we recommend to look at
the corresponding viewpoint and to choose the most fitting definition for that
viewpoint based on Fig. 2. Opt for the higher level of abstraction when talking
about RE, and for the technical abstraction level when talking about SA. When
there are no definitive viewpoints used, work with the definition that is most all-
encompassing and relatively includes most of the most frequently used terms. So,
the definition we advise would be “a unit of functionality of a software system
that satisfies a requirement, represents a design decision, and provides a potential
configuration option” by Apel and Kästner [4].

Future work could look at the use of the concept feature in practice rather
than in the literature. Perhaps, investigating whether or not features are used
differently in open source and industrial software projects or in relatively large
or small software development departments could yield interesting insights.

Applications of the Concept Definition Review process to other concepts in
the domain of information science, computer science, or artificial intelligence
would possibly reveal the plethora of concept definitions. Agreement and stan-
dardization will assist researchers to read and understand concepts better in
order to utilize them in presenting and explaining their scientific contributions.

Acknowledgements We would like to thank Sven Apel for clarifying and dis-
cussing the categorization of definitions on the level of abstraction.

References

1. Andam, B., Burger, A., Berger, T., Chaudron, M.: Florida: Feature location dash-
board for extracting and visualizing feature traces. In: Proceedings of the Eleventh
International Workshop on Variability Modelling of Software-intensive Systems pp.
100–107 (2017)

2. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Berlin, Heidelberg (2013)

3. Apel, S., Lengauer, C., Batory, D., Möller, B., Kästner, C.: An algebra for feature-
oriented software development. Department of Informatics and Mathematics, Uni-
versity of Passau, Tech. Rep. MIP-0706 (2007)



Defining Key Concepts in Information Science 15

4. Apel, S., Kästner, C.: An overview of feature-oriented software development. Jour-
nal of Object Technology 8(5), 49–84 (2009)

5. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling step-wise refinement. IEEE
Transactions on Software Engineering 30(6), 355–371 (2004)

6. Batory, D.: Feature-oriented programming and the ahead tool suite. In: Proceed-
ings of the 26th International Conference on Software Engineering, pp. 702–703
(2004)

7. Batory, D., Benavides, D., Ruiz-Cortes, A.: Automated analysis of feature models:
challenges ahead. Communications of the ACM 49(12), 45–47 (2006)

8. Berger, T., Lettner, D., Rubin, J., Grünbacher, P., Silva, A., Becker, M., Chechik,
M., Czarnecki, K.: What is a feature? A qualitative study of features in industrial
software product lines. In: Proceedings of the 19th International Conference on
Software Product Lines. pp. 16–25 (2015)

9. Bosch, J.: Design and use of software architectures: Adopting and evolving a
product-line approach. Pearson Education (2000)

10. Chen, K., Zhang, W., Zhao, H., Mei, H.: An approach to constructing feature
models based on requirements clustering. In: Proceedings of the 13th IEEE Inter-
national Conference on Requirements Engineering, pp. 31–40 (2005)

11. Classen, A., Heymans, P., Schobbens, P.: What’s in a feature: A requirements
engineering perspective. In: Proceedings of the 11th International Conference on
Fundamental Approaches to Software Engineering, pp. 16–30 (2008)

12. Creswell, J.W., Creswell, J.D.: Research design: Qualitative, quantitative, and
mixed methods approaches. Sage publications (2017)

13. Czarnecki, K., Eisenecker, U.: Generative programming: methods, tools, and ap-
plications (Vol. 16). Reading: Addison Wesley (2000)

14. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature
models and their specialization. Software Process: Improvement and Practice
10(1), 7–29 (2005)

15. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code:
A taxonomy and survey. Journal of Software: Evolution and Process 25(1), 53–95
(2013)

16. Geeraerts, D.: Meaning and definition. In: van Sterkenburg, P. (ed.) A Practical
Guide to Lexicography. John Benjamins Publishing Company (2003)

17. Guerra, S., Ryan, M., Sernadas, A.: Feature-oriented specifications. In: Proceedings
of the ModelAge Workshop (1996)

18. Hofmeister, C., Kruchten, P., Nord, R., Obbink, H., Ran, A., America, P.: A gen-
eral model of software architecture design derived from five industrial approaches.
Journal of Systems and Software 80(1), 106–126 (2007)

19. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-oriented
reuse method with domain-specific reference architectures. Annals of Software En-
gineering 5(1), 143–168 (1998)

20. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Tech. rep., Carnegie-Mellon University,
Software Engineering Institute (1990)

21. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In:
Proceedings of the 30th International Conference on Software Engineering, pp.
311–320 (2008)

22. Kästner, C., Thum, T., Saake, G., Feigenspan, J., Leich, T., Wielgorz, F., Apel,
S.: FeatureIDE: A tool framework for feature-oriented software development. In:
Proceedings of the 31st International Conference on Software Engineering. pp.
611–614. IEEE (2009)



16 S. Molenaar et al.

23. Krüger, J., Gu, W., Shen, H., Mukelabai, M., Hebig, R., Berger, T.: Towards a
better understanding of software features and their characteristics: a case study of
marlin. In: Proceedings of the 12th International Workshop on Variability Mod-
elling of Software-Intensive Systems pp. 105–112 (2018)

24. Lucassen, G., Dalpiaz, F., van der Werf, J., Brinkkemper, S.: Improving agile re-
quirements: the quality user story framework and tool. Requirements Engineering
21(3), 383–403 (2016)

25. Okoli, C., Schabram, K.: A guide to conducting a systematic literature review of
information systems research. Sprouts: Working Papers on Information Systems
10(26) (2010)

26. Pohl, K., Böckle, G., van der Linden, F.: Software product line engineering: Foun-
dations, principles and techniques. Springer Science & Business Media (2005)

27. Rodríguez, P., Mendes, E., Turhan, B.: Key stakeholders’ value propositions for
feature selection in software-intensive products: An industrial case study. IEEE
Transactions on Software Engineering 46(12), 1340–1363 (2018)

28. Shaw, M.L., Gaines, B.R.: Comparing conceptual structures: Consensus, conflict,
correspondence and contrast. Knowledge acquisition 1(4), 341–363 (1989)

29. Shekaran, C., Garlan, D., Jackson, M., Mead, N., Potts, C., Reubenstein, H.: The
role of software architecture in requirements engineering. In: Proceedings of the
First International Conference on Requirements Engineering, pp. 239–245 (1994)

30. Spijkman, T., Molenaar, S., Dalpiaz, F., Brinkkemper, S.: Alignment and granular-
ity of requirements and architecture in agile development: A functional perspective.
Information and Software Technology 133, 106535 (2021)

31. UCFMapper: The various types of definitions (2021), https://www.ucfmapper.co
m/education/various-types-definitions/

32. Whiteley, C.: Meaning and ostensive definition. Mind 65(259), 332–335 (1956)
33. Zave, P.: An experiment in feature engineering. In: McIver, A., Morgan, C. (eds.)

Programming methodology, pp. 353–377 (2003)
34. Zhang, J., Wang, Y., Xie, T.: Software feature refinement prioritization based on

online user review mining. Information and Software Technology 108, 30–34 (2019)

https://www.ucfmapper.com/education/various-types-definitions/
https://www.ucfmapper.com/education/various-types-definitions/

	Defining Key Concepts in Information Science Research: The Adoption of the Definition of Feature

