
Refinement of User Stories into Backlog Items:
Linguistic Structure and Action Verbs

Research preview

Laurens Müter1, Tejaswini Deoskar2, Max Mathijssen1,
Sjaak Brinkkemper1, and Fabiano Dalpiaz1

1RE-Lab, Dept. of Information and Computing Sciences, Utrecht University
{L.H.F.Muter, M.Mathijssen, S.Brinkkemper, F.Dalpiaz}@uu.nl

2Utrecht Institute of Linguistics, Department of Languages, Literature, and
Communication, Utrecht University

T.Deoskar@uu.nl

Abstract. [Context and motivation] In agile system development
methods, product backlog items (or tasks) play a prominent role in the
refinement process of software requirements. Tasks are typically defined
manually to operationalize how to implement a user story; tasks for-
mulation often exhibits low quality, perhaps due to the tedious nature
of decomposing user stories into tasks. [Question/Problem] We in-
vestigate the process through which user stories are refined into tasks.
[Principal ideas/results] We study a large collection of backlog items
(N=1,593), expressed as user stories and sprint tasks, looking for lin-
guistic patterns that characterize the required feature of the user story
requirement. Through a linguistic analysis of sentence structures and ac-
tion verbs (the main verb in the sentence that indicates the task), we
discover patterns of labeling refinements, and explore new ways for re-
finement process improvement. [Contribution] By identifying a set of
7 elementary action verbs and a template for task labels, we make first
steps towards comprehending the refinement of user stories to backlog
items.

Keywords: Requirements engineering, user stories, backlog items, nat-
ural language processing, sprint tasks.

1 Introduction

User stories (USs) have made their way into the development process of compa-
nies [1] and their adoption is evolving to higher levels [2,1]. USs are the starting
point for specifying software that is developed, according to the agile devel-
opment paradigm, through a series of sprints. The USs are distributed to the
development teams that refine the USs into a number of (usually 3 to 6) so-called
backlog items (but also called tasks) to break down a US into specific executable
tasks for developers to carry out during the sprints.

2 L. Müter et al.

Software specifications have been thoroughly studied from the viewpoint of
their linguistic structure. Researchers have proposed approaches for finding am-
biguity [3,4] and other types of defects [5] in natural language requirements, for
generating conceptual models [6,7], and much more [8].

Previous work has conducted linguistic analyses of USs and defined guidelines
for writing a good specification in agile development [1,9]. The template structure
of a US “As a [Role] I want to [Action], so that [Benefit]” is often misused
and many real-world USs are poorly written requirements [10]. However, there
is no study on the requirements-related artifacts that stem from USs in agile
development and Scrum, i.e., backlog items or tasks.

Table 1: Example US that has been refined into 3 tasks
US: As a webshop visitor I want to add shipping addresses

so that I can send presents to my friends
Task-1 Create ShippingAddresses records for visitors
Task-2 Update validity check for Addresses
Task-3 Add data-item for LastShippingAddress to visitor

Table 1 shows the refinement of a US into three tasks. By reading the table,
one can see that tasks are the bridge between user-centered requirements (USs)
and development artifacts like code and test cases. It is not surprising that
the tasks are the basic constituents of sprint backlogs, i.e., they define what
functionality will be included in the next release of the product.

The contribution of this paper is a linguistic analysis of a large industrial
product backlog that includes 195 USs and 1,593 tasks. We study the linguistic
structure of the task labels as well as the main verb that indicates what ac-
tions the developers are expected to carry out. Based on the analysis, we distill
guidelines for writing tasks in a clear and consistent way.

After describing our research approach in Sec. 2, we present our linguistic
analysis of the sentence structure (Sec. 3) and of the main verb in a task (Sec. 4).
Finally, we present conclusions and outline future directions.

2 Research Approach

We considered a large product backlog provided to us by a multinational soft-
ware development company, located in the Netherlands, and having circa fifty
employees. The company’s main product is a web-based platform to manage
contract and tender processes of companies in the procurement industry.

The initial data consisted of 2,702 backlog items, each labeled as Epic, Fea-
ture, Task, or Bug. In this paper, we focus on the tasks (1,593, 59.04%). Each
backlog item has an attribute that defines the development status in the prod-
uct development: New (6.49%), To Do (3.74%), Approved (1.41%), Committed
(1.33%), In Progress (1.26%), Done (85.29%), Removed (0.48%).

Our linguistic analysis started with running the Stanford Part-of-Speech
(POS) tagger to determine the structure of the task labels; for example, “De-
fine (VB) box (NN) type (NN) actions (NNS) and (CC) implement (VB) them

Refinement of User Stories into Backlog Items 3

(PRP). (.)”1 indicates that “define” is a verb, “box” is a singular noun, “actions”
is a plural noun, “and” is a conjunction, and so on.

We experienced that the POS tagger accuracy was not perfect, presumably
because task labels are hardly written as grammatically correct sentences. Two
major problems we encountered were words that can be tagged as either verbs or
nouns (e.g., “update”) and spelling mistakes (e.g., “crate” instead of “create”).

We then looked at the first-occurring verb in each task label, trying to iden-
tify recurring patterns. After tagging the unique verbs, we employed classes of
VerbNet to cluster the identified verbs in families of related verbs.

Finally, we extracted regular expression patterns that fit most of the tasks
and that can be used as a recommended template for task label writers.

3 Linguistic structure of task labels

The goal of this analysis is to identify the most common linguistic structures in
the sentences that represent tasks labels. Because of the vast number of existing
POS tags, we grouped the tags as shown in Table 2. For example, verbs tagged
with different tenses (present/past) are grouped into the verb category.

Table 2: Grouping of POS tags employed in analysis
Group Tag POS Tags Occurrence % Unique first Words

verb VB, VBD, VBG, VBP, VBZ 1,173 73.63 70
noun NN, NNS, NNP, NNPS 322 20.21 65

adjective JJ, JJR, JJS 27 1.69 13
adverb RB, RBR, RBS 27 1.69 4
pronoun PRP, PRP$ 7 0.44 2
other 37 2.32 11

total 1,593 100 165

Despite the grouping, the Stanford POS tagger identified 968 different lin-
guistic structures that represent the 1,593 tasks, thereby showing the various
ways task labels are formulated by developers.

POS taggers are trained with long newswire text and not with short, sketched
sentences like task labels, so to further improve the accuracy we performed a
manual amendment of some tags (especially verb instead of noun). The ten
most frequent structures are shown in Table 3. In the table, we use the following
abbreviations: NN = noun, VB = verb, IN = conjunction, and JJ = adjective.
The most frequent pattern is a verb followed by two nouns, for example: “Create
tender-settings component“ (VB, NN, NN). Several variations exist that add an
adjective or a conjunction to the sequence of nouns. In the top-10 list, only two
structures start with a noun, which usually indicates the architectural location
of the task. Task labels starting with a noun will be analyzed in future work.

Given the variations in sentence structures as presented in Table 3, we distill
a template that we propose as a guideline for writing task labels. The extended

1 The individual tags refer to the Penn Treebank tagset [11].

4 L. Müter et al.

Table 3: The ten most frequent structures of task labels
Structure Freq. % Example

VB, NN(S), NN 130 8.17 Create tender-settings component
VB, NN(S), NN, NN(S) 67 4.18 Create Messages DB tables
NN, NN(S), NN(S) 25 1.57 Admin licenses breadcrumbs
VB, NN(S), IN, NN 21 1.32 Add filters for KO

VB, NN, NN(S), NN(S), NN 20 1.26
Implement TenderPlan actions busi-
ness logic

VB, JJ, NN(S), NN 18 1.13 Create disqualified offers card

VB, NN 27 1.67
Create TenderProcessDefinitionLevel-
Rule

VB, NN(S), IN, NN, NN 15 0.94 Bind rules per section item

VB, NN, NN, IN, NN, NN(S) 13 0.82
Create SQL Script for AcceptedById
items

NN, NN(S) 10 0.62 Update actions

Baccus-Naur form (EBNF) grammar for the template (shown below) states that
a task is expressed by a verb, followed by one or more follow elements, each
being either a noun, a conjunction, an adjective, a “to”, or a cardinal number.

task = verb, follow, {follow};

follow = noun | conjunction | adjective | "to" | cardinal number;

The pattern matches 42.4% of the tasks in the dataset (676 out of 1,593).
Further research will reveal more detailed patterns in the label set in order to
develop guidelines for task refinement.

4 On the choice of an action verb

Task labels describe an action for the developer to carry out in order to im-
plement part of a software function, or to improve existing code. We have first
analyzed the first action verb that occurs in a task label. To do so, we em-
ployed the Stanford POS tagger and extracted the action verbs from our 1,593
task labels. This resulted in 56 different verbs, which became 81 after some
manual pre-processing of spelling errors and noun-verb conversion. The 20 most
frequently occurring action verbs are shown in Table 4.

The most frequent action verb is create, which amounts to about one third
of the entire task set. This figure is a strong indicator of the feature creep phe-
nomenon [12]. On the other hand, a very related verb such as delete occurs only
in 1.5%. However, while analyzing the results, we observed that quasi-synonyms
exist; for instance, the remove verb is a synonym of delete.

The observed relatedness of some verbs and the quasi-synonyms motivate to
obtain a smaller set of action verbs for use in task descriptions. We resorted to
VerbNet [13], a taxonomy of verbs that groups similar verbs in so-called verb
classes. For example, the class create (create-26.4) includes alternative terms,

Refinement of User Stories into Backlog Items 5

Table 4: Most frequent action verbs that occur in a task label
Rank Action verb Frequency

1 Create 578
2 Modify 125
3 Add 85
4 Implement 79
5 Change 27
6 Extend 19
7 Set 18
8 Check 16
9 Load 14

10 Remove 13

Rank Action verb Frequency

11 Bind 11
12 Update 11
13 Move 10
14 Show 10
15 Delete 9
16 Get 9
17 Redesign 9
18 Setup 8
19 Fix 8
20 Review 8

besides the namesake verb, the similar verbs coin, fabricate, construct, etc. We
identified verb classes in VerbNet that could act as containers for multiple verbs;
moreover, we performed some adjustments to cope with the domain-specific jar-
gon of software development. The analysis of our dataset resulted in the seven
families of action verbs listed in Table 5.

Table 5: Families of action verbs in task labels
Family Members of the verb-family

Create code, create, define, design, implement, insert, make

Update
add, adjust, change, edit, extend, fix, improve, insert, renew, replace,
refactor, redesign

Merge bind, export, insert, integrate, invite, link, list, offer
Delete delete, remove
Validate check, evaluate, research, test, verify
Control accept, allow, apply, bind, cancel, check, configure, control, determine
Investigate inquire, investigate, research, search

Our analysis of the data set leads us to distill the following recommendations
regarding the use of elementary action verbs in task labels:

– Each task should start with an action verb.

– The family-verb defines the nature of the development action to be performed
with the code.

– The starting action verb should be in the imperative mood.

– When a suitable member-verb exists in Table 5, that verb should be used.

When re-analyzing our data set using our guidelines, we found many well
formed task labels but also several poorly defined lables. A poorly defined task
would be “Box breadcrumb component”, which could be rewritten as “Create
box breadcrumb component”. On the other hand, “Update validity check for
Addresses” from Table 1 is a well defined task, for “update” is listed in Table 5.

6 L. Müter et al.

Table 6: Elementary action verbs for task labeling
Verb Explanation Example

Create add new features Create new tender property.
Update change existing functionality Update all permissions screens.

Merge combine existing functionalities
Integrate localization in datetime
picker.

Delete remove existing functionalities Delete offer stored procedure.
Validate test existing functionalities Evaluate inserted event.
Control manage existing functionality Control of access to box content.

Investigate study potential functionality
Research angular 2.0 validation and
refactoring components.

5 Conclusions and directions

Our linguistic analysis of a large industrial product backlog resulted in prelimi-
nary guidelines for writing backlog items / tasks in a consistent manner, which
also offers possibilities for the development of tools that assist analysts in the
authoring of high-quality task descriptions.

Tasks play a key role in agile development, for they bridge the problem space
(the requirements) and the solution space (the architecture and the code). The
tasks refine the product requirements expressed as USs. A poorly formulated
task is likely to lead to issues in the developed code and sprint velocity.

This research-in-progress paper simply paves the way for future work in the
field. First and foremost, we have used a single dataset in our analysis. The
guidelines are likely to need some amplification, and their impact on software
development needs to be evaluated in vivo. In the long run, we hope this research
will bring insights and theories to the “wild” world of agile development.

References

1. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.: The Use and
Effectiveness of User Stories in Practice. In: Proc. of REFSQ. (2016) 205–222

2. Kassab, M.: The Changing Landscape of Requirements Engineering Practices over
the Past Decade. In: Proc. of EmpiRE. (2015) 1–8

3. Berry, D.M., Kamsties, E., Krieger, M.M.: From contract drafting to software
specification: Linguistic sources of ambiguity. Technical report, School of Computer
Science, University of Waterloo, Canada (2001)

4. Bano, M.: Addressing the challenges of requirements ambiguity: A review of em-
pirical literature. In: Proc. of EmpiRE. (2015) 21–24

5. Rosadini, B., Ferrari, A., Gori, G., Fantechi, A., Gnesi, S., Trotta, I., Bacherini, S.:
Using NLP to detect requirements defects: An industrial experience in the railway
domain. In: Proc. of REFSQ. (2017) 344–360

6. Lucassen, G., Robeer, M., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.:
Extracting conceptual models from user stories with visual narrator. Requirements
Engineering 22(3) (2017) 339–358

Refinement of User Stories into Backlog Items 7

7. Yue, T., Briand, L.C., Labiche, Y.: A systematic review of transformation ap-
proaches between user requirements and analysis models. Requirements Engineer-
ing 16(2) (Jun 2011) 75–99

8. Bakar, N.H., Kasirun, Z.M., Salleh, N.: Feature extraction approaches from natural
language requirements for reuse in software product lines: A systematic literature
review. Journal of Systems and Software 106 (2015) 132–149

9. Wautelet, Y., Heng, S., Kolp, M., Mirbel, I.: Unifying and Extending User Story
Models. In: Proc. of CAiSE. Volume 8484 of LNCS. (2014) 211–225

10. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.: Improving
agile requirements: The Quality User Story framework and tool. Requirements
Engineering 21(3) (2016) 383–403

11. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a Large Annotated
Corpus of English: The Penn Treebank. Computational Linguistics 19(2) (1993)
313–330

12. Jones, C.: Strategies for managing requirements creep. Computer 29(6) (1996)
92–94

13. Schuler, K.K.: Verbnet: A Broad-coverage, Comprehensive Verb Lexicon. PhD
thesis, Philadelphia, PA, USA (2005) AAI3179808.

	Lecture Notes in Computer Science
	Introduction
	Research Approach
	Linguistic structure of task labels
	On the choice of an action verb
	Conclusions and directions

