
Specification of Requirements and Software

Architecture for the Customisation of

Enterprise Software
A multi-case study based on the RE4SA model

Tjerk Spijkman§*, Sjaak Brinkkemper*, Fabiano Dalpiaz*, Anne-Fleur Hemmer§, Richard van de Bospoort§

* Dept. of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands
§ Forza Consulting, Soest, The Netherlands

{tjerk.spijkman, anne-fleur.hemmer, richard.van.de.bospoort}@forzaconsulting.eu, {s.brinkkemper, f.dalpiaz}@uu.nl

Abstract— Many failed software projects can be traced to bad

requirements management. Additionally, there is a big gap be-

tween state of the art and practice in software architecture. For

enterprise software customisation, not only do these issues apply,

but additional challenges exist too. Instead of one standard soft-

ware product, vendors often have to deal with customised ver-

sions with additional maintenance challenges. In this research, we

apply the Requirements Engineering for Software Architecture

(RE4SA) model via a multi-case study to show how the require-

ments engineering and software architecture disciplines can be

linked, and in doing so provide improvements to both areas. Our

multi-case study regards enterprise software customisation and

shows improvements in requirements management and higher

alignment between the software architecture and requirements.

Index Terms— Requirements Engineering, Software

Architecture, Case study, Enterprise software, Software

products, Customisation.

I. INTRODUCTION

Requirements engineering (RE) is one of the key processes

in the creation and customisation of software products, as it

addresses the critical problem of designing the right software

for the customer [1]. Poor requirement management can com-

plicate software development projects, and lead to project fail-

ure. A survey conducted by PMI in 2014 shows that almost

half project failures can be linked to poor requirements man-

agement [2]. By placing appropriate focus on requirements

engineering, it is possible to prevent project failure, meet dead-

lines, effectively plan releases, facilitate communication, and

ensure that a solution meets the stakeholder’s needs [1-3].

The second concept that we study in this research is soft-

ware architecture (SA). Bass, Clements and Kazman define SA

as the set of structures needed to reason about the system,

which comprise software elements, relations among them, and

properties of both [4]. Bass et al. also state that software archi-

tecture constitutes a common language for all stakeholders and

captures design decisions in the early stages of a software

product. As software products get bigger, good architecture

design is required to ensure a loose coupling within the soft-

ware, and to facilitate more effective collaboration [5]. Good

architecture documentation is often scarce in practice, and there

is a gap between state of the art and state of the practice in

software architecture [6]. Therefore, there are clear opportuni-

ties to improve the use of software architecture in practice.

Nuseibeh’s Twin Peaks model is one of the first attempts to

link requirements to software architecture in order to improve

both disciplines and to more effectively suit agile development

[7]. Applying the model results in a stepwise, concurrent re-

finement of the requirements and the architecture, which adds

details to both. Lucassen et al. extend this approach and intro-

duce the Reciprocal Twin Peaks (RTP) model and discuss how

to achieve alignment between RE and SA in practice [8]. They

also analyse how this approach is different for product software

compared to tailor-made software, due to the necessity to ac-

commodate requirements that originate from many customers.

These requirements can lead to multiple different imple-

mentations of a standard enterprise software product. The ma-

jority of enterprise resource planning (ERP) project costs are

devoted to software setup, installation and customisation [9].

While one benefit of enterprise software is the provision of a

standard solution, they often need to be customised to support

specific business processes or meet the company’s needs [10].

In 2013, Panorama consulting [11] reported that 90% of enter-

prise software had at least minor customisations. There are

different categories of customisation. Software can be modi-

fied, by changing existing functionality; extended, by adding

functionality to an existing module; or additional modules can

be added to the software product. These customisations can

cause issues when a new version of an extension is deployed,

or when the enterprise software is updated. [12, 13] Fig. 1

illustrates these customisation types on a sample architecture.

One recent, pragmatic approach to help align RE and SA is

the RE4SA model [14], which consists of links between specif-

ic artefacts in requirements engineering and software architec-

ture. The model differs from feature driven design (FDD) [15]

in that it focuses on the creation of functional architecture in

parallel with the design as opposed to the more technical UML

models used in FDD, and by directly linking concepts of the

requirements to a functional architecture. RE4SA also provides

a less abstract view compared to architecture centric Extreme

programming [16]. Practitioners often view architecture-centric

methods as excessive work [16], and RE4SA comes to help by

proposing specific links between concrete artefacts and by

suggesting the derivation of an architecture from the already

existing requirements place.

Fig. 1. Customisation types for a software product

 The RE4SA model is an active field of research at Utrecht

University. Although initial findings on the use of this model

are promising, there is a lack of evidence of its effectiveness in

practice. In this research, we apply the RE4SA model to a

multi-case study on four cases of a specific product software

solution. We aim to validate the use of the model in a real-

world setting, and to further build the theory by observing how

the model can provide improvements to practitioners. To such

extent, we define the following research questions:

RQ: How can RE4SA be applied to improve communica-

tion and documentation for customisations of enterprise appli-

cation software?

As this research aims to build and test RE4SA and its gen-

erality in different situation, we purposefully choose four dif-

ferent use cases instead of focusing on near-identical cases. We

focus specifically on the application of RE4SA to enterprise

software. These products often lack architectural design and

documentation, receive requirements from different customers,

and have customer-specific implementations [8, 14].

The literature on the customisation of enterprise software is

limited, and we attempt to fill this gap, by testing the RE4SA

model and reporting on its use in practise. We share the results

of our case studies, and in doing so propose an improvement to

current processes, provide an effective way for requirements

management and leverage the opportunities for applying func-

tional software architecture in practice.

The rest of this paper is structured as follows. Section II de-

tails the RE4SA model. Section III introduces the context of

the case study. Section IV reports on the main findings of the

case studies. Section V details the findings from expert evalua-

tions of the case studies and list the lessons learned through the

case studies. Finally, Section VI discusses the findings, and

puts forward research directions.

II. THE RE4SA MODEL

The Requirements Engineering for Software Architecture

(RE4SA) model aims to align the RE and SA disciplines. Un-

like the Reciprocal Twin Peaks model [8], it does not link the

responsibilities of actors within the RE and SA disciplines, but

rather proposes links between specific artefacts. This allows to

base the software architecture directly on the requirements

gathered for the product and ensure that the requirements are

met by the software. Additionally, RE4SA suggests specific

trace links between RE and SA that can facilitate communica-

tion between team members, and customers.

Fig. 2. Illustration of the Requirements Engineering for Software Architecture

(RE4SA) model [10]

A. Explanation of the Model

The model is especially promising because it utilizes user

stories, a requirements notation that is widely used in practice

[17, 18]. Because of the high adoption of user stories in prac-

tice, this model allows for the use of available documentation

to keep an up to date software architecture. In this model we

link epic stories (ES) [19] to modules [20] in the software, and

user stories (US) [21] to features [20]. ES are based on the job

stories introduced by Klement [22], which were renamed at

Utrecht University to Epic Story because the term Epic is al-

ready existent in Scrum.

Epic stories can be used to detail the requirements that

should be solved in functional modules of a software product,

while US can be used to detail the requirements for more spe-

cific features within a module.

Among the expected benefits of the model, we foresee it fa-

cilitates alignment between RE and SA, improves communica-

tion and collaboration, helps with release planning, prevents

architectural drift, provides traceability from requirements to

solutions, and delivers concise yet detailed documentation.

The links between RE and SA artefacts can provide a recip-

rocal benefit between the two disciplines. In the context of

enterprise software, we can visualize where customer specific

changes are located in the software, saving time in a later pro-

ject (for example an update) at the same client. An overview of

the dependencies for a customisation can provide valuable

information in the risk assessment of a customisation. In this

context, the model can also be applied to plan future releases.

B. Example: the RE4SA Model Applied

To illustrate the RE4SA model, we present an example that

shows how it helps link the artefacts. This example is based on

the case study that we conducted, and highlights a small section

of the software product analysed for the case studies.

Consider the following epic story for an invoice automation

application: “When there is an issue with an invoice, I want a

way to contact another user, so that the issue can be resolved

by the relevant user.” This requirement was addressed via a

“QA Form” module in the application. Each epic story contains

multiple user stories, one such US for this example could be:

“As an approver, I want to set a subject for my question, so

that the person who I ask the question can quickly see what it is

about.”, which can be addressed through a “set subject” feature

in the QA module. The RE4SA model with the artefacts for

this example can be seen in Fig. 3; note that this figure shows

only a fragment of the architecture and the requirements to

illustrate the example.

Fig. 3. RE4SA applied to the SCANMAN QA example

III. CASE STUDY CONTEXT

In this research, a case study was performed in which we

analysed four different cases within a single company. The case

study protocol was based on the guidelines as described by

Runeson and Höst [23]. The results from applying the RE4SA

model in the cases was evaluated through 11 expert interviews.

In this section, we discuss the goals of the four cases and we

introduce the case company and the software product that is

central for each of the cases.

The goal of the case studies was to identify how the RE4SA

model can be applied, and to analyse the benefits of applying

the model in the context of enterprise software customisation,

and management (see RQ1-RQ3). Each of the cases describe

the application of the model to a project for the SCANMAN

software product (see Table I). For each of the cases, we created

all the RE4SA artefacts based on available documentation and

evaluated this through expert interviews. By performing case

study research, we test the applicability of the model to a range

of cases and use the outcomes as an input for expert evalua-

tions of the model. Based on our research question we aimed to

test if the RE4SA model can be applied:

 to a broad range of projects for a software product;

 to effectively and efficiently document requirements

and software architecture;

 to provide an overview of customer specific functional-

ities in an environment; and

 to facilitate communication between functional and

technical experts.

Table I. Overview of the four cases

ID Description # Inter-

views

Interviewees

1 Customisation at the

feature level

2 Developer,

Deployment expert

2 Customisation at

module & feature

level

3 Functional consultant

(x2), developer

3 Version update 3 Developer (x2),

management

4 Recreation of the ES

addon

3 Project manager,

functional consultant,

developer

A. The Company

Forza IT group is a company that is mainly focused on sup-

porting their customers in using Oracle enterprise software.

The company has offices in Soest, The Netherlands and in

Sofia, Bulgaria. They provide consultancy services, perform

ERP implementations, and develop extensions to the enterprise

software. This means they are involved in both the RE and SA

fields, as they set up the ERP environment to match the cus-

tomers’ requirements. Occasionally, they make changes to the

software so that it fits the customers’ business processes. Be-

sides the standard Oracle software, they also develop their own

add-on solutions to the software that extend the functionality of

the ERP system.

B. The Software: SCANMAN

One of Forza’s most successful add-ons is SCANMAN.

SCANMAN is an invoice automation application that is fully

integrated within the JD Edwards (JDE) ERP system. SCAN-

MAN uses Optical Character Recognition (OCR) to scan in-

coming invoices, and to automatically enter these values into

JDE. These values can then be validated, and the add-on also

adds an acceptance flow to JDE, in which users can accept or

reject an invoice.

For SCANMAN, Forza obtains a high number of requests

for functionality/features from customers. In most cases, these

new functionalities/features become part of the standard ver-

sion of SCANMAN, but some of the additions are customer

specific. These customer-specific functionalities cause addi-

tional challenges. These customisations need to be retrofitted in

upgrades, can cause conflicts with new version of the ERP, and

cause other maintenance issues. For example, during an up-

grade, it first needs to be identified what customer specific

changes were made, and then the decision to recreate the cus-

tomisation or leave it out needs to be made based on the cir-

cumstances. In these situations, it would be very beneficial to

have an overview of the software architecture so that identify-

ing customisations can be made easier.

IV. CASE STUDY FINDINGS

We describe the context and the main findings for each of

the four cases. As a prerequisite for the cases, we first had to

recover the software architecture of the current version of

SCANMAN, and the functionalities of JDE that it relies on.

This recovery was done manually by the researchers, through

an analysis of the tool, its documentation and the user guides.

This resulted in a functional architecture diagram (FAD) and a

feature diagram. The FAD shows the modules of the applica-

tion, and how these interact [20]. The feature diagram shows

the user-visible aspects of the software system [24] and was

recovered by modelling all aspects of the GUI. Since the fea-

ture diagram was recovered from the GUI, the features are

likely at a more detailed level than feature diagrams created to

define a software design. By focusing on the GUI, we can

recover nearly all functional features as these are often repre-

sented in the GUI. The recovered architecture contained 62

(sub-) modules, and the feature model contained 1,340 features.

The case studies introduced additional elements to all of these

artefacts The epic stories and user stories mentioned in the case

studies were written manually and validated with experts at the

case company.

A. CS 1: Tracing Customer Requirements to the Architecture

In this retrospective case study, we applied the RE4SA

model to a requirement set sent to the case company by a re-

cently acquired SCANMAN customer. The set of 46 require-

ments were rewritten to 32 functional user stories, and 7 quality

requirements. Only two of the requirements detailed functional-

ity that was not in the current software. The quality require-

ments were tracked in JIRA and left out of scope for this case

study. None of the requirements were on an ES or module

level, so only the lower part of the RE4SA model was used.

For this case study, we traced each of the requirements to

the corresponding features and marked these in green. This

colour coding allowed for quick identification of the relevant

features, which was necessary due to the high number of total

features. The new features were added to the feature diagram

and colour coded in red to signify that they represent customer-

specific additions. The RE4SA model proved useful for decid-

ing the appropriate location for the new features, for we could

use the user stories to locate relevant features as seen in Fig. 4.

Fig. 4. New feature placement based on a user story

In this case, we found that once the “standard” feature

diagram is made, this can easily be copied and extended to

capture the customer specific environment. The traceability

between requirements and architecture can be utilitzed to

identify an appropriate placement for new features. Since the

feature diagram is rather complex and has a high number of

features, this complicates the use of the model for

communication. However, by collapsing irrelevant modules, or

using only a small section of the model, like in Fig. 4, can

mitigate this issue and makes the model useful for

communication purposes. Furthermore, colour coding specific

elements, like customer specific features, makes it possible to

easily spot important features in the model.

B. CS 2: Customer specific module and features

The second retrospective case was chosen because it had a

customisation that was on the ES / module level. For this case,

all JIRA issues concerning the specific customer were analysed

and transformed to user stories. This resulted in 1 new ES, and

14 US; these numbers are lower than those of case 1 because

only new functionalities were included in the JIRA tickets, and

not existing ones like those matched in the first case.

The ES that was written for this case was “When I receive

an invoice that does not match an existing purchase order, I

want to receive a report when it exceeds the tolerance set in

the ERP, so that the invoice can be rejected.” This resulted in

the user visible sub-module VMA comparison report. This

shows one limitation of the GUI-based feature diagram, which

depicts only the features visible to the user, and not the

processes “in the background” that are required to generate the

report. The ES for this case contained 7 user stories, and the

VMA report consists of 23 features. This difference in

cardinality can have a number of possible reasons: (i) the

included information field already existed within the ERP so

all relevant fields might be selected which results in a higher

number of fields than required, due to limited context

knowledge for the case study some customer requirements

could have been missed in the US, or (ii) some features might

be considered 'common knowledge’ and do not need a user

story to be included in the solution.

In this case, we extended the colour coding to the FAD,

thereby allowing for a quick overview of which modules have

been altered for the customer environment. Note that this in-

formation can be used to facilitate the information seeking

mantra [26]. The colour coded FAD for this case, with drill-

down navigation to the feature level can be seen in Fig. 5,

where red was used to signify customised modules, cyan for

JDE modules that the application relies on, and orange as a

warning because that JDE module is required specifically for a

modification.

Fig. 5. Colour coded software architecture with drill-down navigation

The colour coding allows for zooming from the FAD for

the high-level modules to sub module(s) to features in the fea-

ture diagram. This drill-down navigation is currently only pos-

sible by manually opening views based on the naming in other

views. Ideally, this process would be facilitated through a tool

which links all the models together, allowing for navigation by

zoom on click.

C. CS 3: Version Update

We applied the RE4SA model side by side with the current

method in an ongoing project. The version update collects

requirements from many different customers that are to be

included in the standard version. Some of these additions are

already developed in specific customer environments and need

to be moved to the standard software product.

For the update case study, we documented a total of 3 ES

(one of these is the QA functionality from Fig. 3) containing

16, 2 and 6 US, respectively. Additionally, 18 US that extend

already existing modules were identified, which did not belong

to an epic story. For these user stories we had a challenge to

solve, as they could not be linked to a relevant ES since the ES

for existing modules were never created. To mitigate this issue,

we decided to apply the RE4SA model, and considered the link

between ES and modules. This meant that instead of having to

recover ES for existing modules, we could just use the name of

the relevant modules to categorize these user stories.

While we had only 3 ES and 40 US, the feature diagram

was updated with 104 new features and the FAD was updated

with one new module and three submodules. The difference in

ES and module is because two modules were added for the QA

epic, a QA overview & specific QA module, this indicates that

we either forgot to formulate an ES, or it was added due to goal

focused nature of the requirements. Multiple explanations exist

to explain the US-to-feature cardinality ratio of 1:2.6: (i) like in

case 2 some features were added based on ‘common sense’

(e.g. fields in the reports); (ii) developers might have added

unrequested features; and (iii) some user stories can be solved

by a collection of features. An example of this can be seen in

Fig. 6; this is not inherently a bad thing, as it ties into the US

principle of focusing on goals [21]. This principle implies that

we don’t care how we get to our goal, as long as we can get

there. Fig. 6 also shows an example of ‘common sense’ fea-

tures in the sub-features of the “show QA history” feature.

Fig. 6. A single user story which is addressed by two features

As the software architecture evolves in new versions and

customisations, this also allows for adaptations to the architec-

ture models. While adding the new features to the feature dia-

gram, it was noticed that some existing functionalities were not

yet included in the reconstructed architecture. For example, in

this update new features were added to the invoice processing

module, however in the process of adding these features to the

feature diagram it appeared that the invoice processing module

had not been included in the feature diagram yet. Because these

new features extended a module that was not mapped, this error

in the feature diagram could be detected and fixed. Thus, the

application of the RE4SA model in multiple projects also al-

lows for refinement of the architecture model and increases the

accuracy of the models over time.

The case study report was used as a basis for the update

notes of the version update. The software architecture provided

a quick overview of all added functionalities, which was a lot

less effort to analyse than all the logged JIRA issues. By using

cut-outs of the relevant parts of the feature diagram (like Fig.

6), it becomes possible to detect the new functions within the

software. Combined with a short textual explanation, the di-

gram can provide enough information for the update notes.

D. CS 4: Recreation of SCANMAN for NetSuite

The fourth case study is somewhat different than the others,

as it is not focused on the JDE version of SCANMAN, but on

recreating the functionality of SCANMAN in NetSuite, another

Oracle enterprise application. For this case study, we used the

software architecture and documentation of the JDE version to

discover the core functionalities and to decide what needed to

be included for the first version of SCANMAN NetSuite. This

case can still be seen as a customisation, as it extends the func-

tionality of NetSuite.

Fig. 7. FAD of the SCANMAN NetSuite intended architecture

The design for a first version of the NetSuite add-on con-

sisted of a total of 10 ES, and 70 US. This resulted in 10 mod-

ules and 69 features. The reason why we have almost a 1:1

relation between the RE and SA concepts is that this case study

is based on the intended architecture, instead of the actual ar-

chitecture (like in the other 3 cases). The reason for not using

the actual architecture is that the project is still in progress as of

the time of writing. This does indicate that the RE4SA model

can be applied to transform the RE artefacts to an intended

architecture. The developer can then refine this intended archi-

tecture with the ‘common sense’ features, and the developer’s

own additions or alternative solutions to the requirements.

Afterwards the intended architecture needs to be updated to

reflect the actual architecture.

The initial design for the NetSuite version only has about

5% of features compared to the JDE version. This can be ex-

plained, as the initial design only consists of the must haves of

the application. It also describes the intended architecture (Fig.

6) as opposed to the actual architecture (based on the GUI)

which will most likely have more features. Finally, the differ-

ence could be that the software architecture is created before

the application, which would result in a more efficient solution.

E. Case study metrics

To obtain quantitative insights on the absolute and relative

frequency of the RE4SA artefacts, we noted all the values and

calculated the ratios between the connected artefacts. These can

be seen in Table II; the numbers indicate that there is not neces-

sarily a 1:1 relation between the RE and SA concepts. There

are cases where we have more US than features, and the other

way around. Modules and epic stories are closer to the 1:1

relation with only one exception. However, the lower number

of ES makes the sample size smaller and therefore the results

less generalizable. The ES : US ratio can differ from the total

ES divided by total US, because there are US that are linked to

existing modules instead of referring to the elements specified

in the ES. The average number of user stories per epic in the

cases was 7.6, while the average number of features per mod-

ule 20.3.

Table II. Metrics for the RE4SA artefacts in the four cases

Case 1 2 3 4

Frequencies

User stories (US) 32 14 40 70

Features 21 28 104 69

Epic stories (ES) 0 1 3 10

Modules 0 1 4 10

Ratios

US : Features 1.5: 1 1 : 2 1: 2.6 1 : 1

ES : US N/A 1: 7 1: 8 1: 7

ES: Modules N/A 1: 1 1: 1.3 1: 1

Modules: Features N/A 1: 28 1: 26 1: 6.9

We also analysed the complete feature diagram of the ap-

plication after the update described in case 3. For this the met-

rics are based on the Quality in Use Integrated Measurement

(QUIM) model by Seffah et al. [27] These metrics can help

determine usability aspects of GUI-style applications. The

results of this analysis can be seen in Table III. We include the

table for use in future research to determine usability aspects of

an application based on the feature diagram.

V. CASE STUDY EVALUATION & LESSONS LEARNED

A. Expert interviews

The four cases were evaluated through interviews with ex-

perts involved with the project of the case studies. These ex-

perts play different roles within the teams and company; devel-

opers, functional consultants, project managers and JDE de-

ployment experts were interviewed. In each of the evaluations,

a semi-structured interview was used, the experts were first

presented with the results of the case study, and then asked ten

questions to obtain their opinion on the cases and application of

the RE4SA model. In this section we will discuss the findings

of these interviews.

Table III. Feature diagram metrics

Metric Value

Number of modules 11.0

Number of submodules 55.0

Average atomic features per (sub) module 20.6

Average degree 9.2

Max degree 323.0

Min degree 1.0

Average standard deviation of degree 9.8

Average degree without grids 5.0

Average standard deviation of degree without grids 2.2

Average depth 2.1

Max depth 6.0

Min depth 1.0

Average standard deviation of depth 0.4

All the experts said they had limited knowledge and experi-

ence with user stories, since the company does not currently

use them. However, user stories were also introduced through a

second source: a new partnership. Only one of the experts had

worked with user stories before. However, even with this lim-

ited knowledge, opinions were very positive; all interviewees

felt that the RE4SA concepts adequately captured the custom-

ers’ requirements, that they provide a detailed overview, and

could effectively be applied for changes in requirements. Only

one interviewee doubted if they contain enough information for

a developer. The other interviewees did think the concepts gave

enough information but were unsure if it would work properly

if development was completely outsourced, as this often re-

quires stricter guidelines since outsourced workers lack context

information for projects. It was mentioned by multiple inter-

viewees that a big factor for adoption are the skills and experi-

ence of the developer. The interviewed developers all thought

the documentation would contain enough information for de-

velopment, however, one of the developers mentioned that not

all requirements can be captured before starting development.

All interviewees were positive about the software architec-

ture diagrams, but their expected use cases for the diagrams

differed. Most experts said the diagrams gave a clear overview

of the software and thought that it would be useful for new

employees to learn about the application. Other use cases that

were mentioned are: as a checklist, for testing purposes, detect-

ing dependencies with other elements.

When asked if the SA diagrams would be used for commu-

nication with customers, the opinions were less uniform: some

interviewees said they would use (parts of) the SA in commu-

nication to show the way the application works, ensure they are

talking about the same aspects, or ensure that the features fulfil

requirements. It was also mentioned that the SA diagrams

could be used to visualise and communicate the risks of a re-

quested customisation. The other interviewees thought the

diagrams would be too complicated for use in customer com-

munications, the feature diagram would be only useful in this

scenario if cut-outs were used as opposed to the full diagram.

When presented with the scenario where customer-specific

customisations were colour coded, all experts agreed on its

usefulness. One of the interviewees mentioned that every time

the customers’ environment was accessed, it was unknown

what changes had been made in that environment. And that

having a SA on a customer level (extending a template from

the standard version) would be a time saver.

While all experts thought that applying RE4SA would be an

improvement over the current method, they also acknowledged

some disadvantages. Three of them mentioned that while the

RE4SA concepts provide a very detailed overview of the appli-

cation, they would quickly become useless if they are not kept

up to date. Due to the size of the application, the feature dia-

gram can be overwhelming which could limit the acceptance

for using it. It would also increase time spent on documenta-

tion, frontloading more effort but (hopefully) reducing the need

for rework and improving available documentation. Finally, it

could be that developers feel limited due to the specific solu-

tions mapped in the feature diagram of the intended architec-

ture. This could be mitigated by communicating clearly that the

initial feature diagram is only a suggestion.

B. Lessons learned

From execution and analysis of the case studies we gained

some additional insights in the use of the RE4SA model. The

most important lessons that we’ve learned from performing the

multi-case study are presented in. The lessons have been

grouped based on the RE4SA concepts they refer to.

VI. DISCUSSION AND FUTURE RESEARCH

In this paper, we have conducted a multi-case study where

we applied the RE4SA model to a customisation scenario of

enterprise software. We have shown that the RE4SA model can

be applied to link requirements to the software architecture and

ensure that these match with one another. By updating the SA

based on new requirements, we can ensure alignment between

the requirements and architecture. The situational method ena-

bles the company to keep an up to date architecture of the soft-

ware product in a way that minimizes required effort.

We have applied the method to each of the cases and received

positive expert feedback. Through this multi-case study, we

have provided evidence for the use of the RE4SA model in

Enterprise Software customisation and management, thereby

addressing our RQ. Application of the RE4SA model improved

the design process by increasing the goal focus of require-

ments, providing a clear overview of customer specific envi-

ronments, and providing an overview of the location of features

and modules in a new software version. Colour coding was

applied in the first three cases and allows us to emphasise cer-

tain features or models. This was especially useful to visualize

customisations and new features. Also, applying the model

results in concise yet detailed documentation, which could be

possibly used to improve the communication with customers.

Table IV: Lessons learned from performing the case studies

User stories & features

1 User stories leading, feature diagram as an aid.

It needs to be stressed in communication with developers that

the user stories are the main focus and that the feature diagram

is only an aid. Otherwise the developers will feel restricted, and

they may lose the focus on goal orientation. This does mean

that the feature diagram needs to be updated to reflect the actual

architecture after development
2 Tracing requirements to features.

User stories from a customer can be traced to features in the

feature diagram to show that their requirement is already met

(and how). This can be assisted through concept recognition,

where certain terms in the requirements can be linked to a part

of the feature diagram, or functional architecture diagram.
3 Placing new features.

New features could be placed in a logical location for the

software by first considering the different modules that could

contain the new feature, and then looking at existing features

within those modules to see if any are similar to the new

features. Candidate modules can be identified by looking at the

concepts in the user story.
4 Feature & user story metrics.

The cardinality and ratios of features and user stories differ. In

our study, we found a feature described by many user stories,

e.g., when different roles want the same thing. In other cases,

multiple features were combined to meet one user story.
5 Undocumented features.

Not all features are described in user stories; sometimes, this

occurs because some features are common sense and defining

user stories for these would be redundant. For example, when a

user story defines a customer profile, it can be deemed

unnecessary to create a user story to describe the need for a

username. Alternatively, a developer might add features that are

not described in a user story because he thinks it is important.

Features

6 Customer specific feature diagrams.

Copies of a feature model can be easily created using software

tools like the Eclipse modelling tool [28], thereby reducing the

effort for creating customer-specific feature diagrams. These-

customer-specific environments provide a lot of value, as they

efficiently document customisations.
7 Feature diagram comprehension.

As feature diagrams grow in size, they become harder to

comprehend which limits their use in communication. This can

be mitigated by using only the relevant part of the feature

diagram so that only the needed information is shared.

Feature & modules

8 Colour coding features or modules.

Colour coding can guide the viewer to relevant features or

modules. Colour coding is especially useful to visualise aspects

that deviate for an existing software product (e.g., customised

or new). Colour coding can also partly solve the issue that the

feature diagram becomes incomprehensible due to its size.
9 Iterative SA refinement.

Applying the situational RE4SA method in multiple projects

for a software product allows for refinement of the software

architecture models. This means over time the accuracy of the

model compared to the actual implementation improves.

10 Consistency in functional SA documentation.

By creating/updating the feature diagram and functional

architecture diagram in parallel the models can be made more

consistent and be tested for completeness. This includes

ensuring elements have the same names in different models and

are at the same level of depth.
11 Update intended to actual architecture.

The feature diagram should be updated after development to

properly reflect the actual architecture as opposed to the

intended architecture.
12 Drill-down navigation.

In order to properly support the information seeking mantra

[23] through drill-down navigation, the different functional

architecture views should be linked to each other. Tool support

is essential to do so.
13 Zoom out navigation.

While the drill-down navigation might be the most common use

case for functional experts, developers might benefit more from

being able to zoom-out starting from the feature level. This

would allow them to obtain an overview of the functionalities

instead of only working on the low-level details.
14 Version update visualisation.

Added features and modules can be modelled in the FAD and

feature diagrams. By colour coding the new elements, it can

easily be seen which additions were made in the update. This

can be used to create the release notes, and to identify in which

update a specific feature / module has been added.

User stories, epic stories, features & modules

15 Identification of new features / modules in SA creation.

During the creation of the software architecture new features

and modules can be identified, by using the link between

software architecture and requirements, requirements can be

recovered based on the architecture.
16 Barista problem.

Using the proper level of granularity for US and ES remains a

difficult task. With RE4SA, this problem also extends to the SA

level: what is a composite feature or a sub-module? However,

since each of the diagrams is a different view of the same

information, it should not be an issue if certain aspects are

contained in multiple views. These views can be added when

they are needed.
17 Concise yet detailed documentation.

The resulting documentation was perceived as more detailed by

the experts/interviewees, whilst decreasing the amount of text

required. By utilizing the requirements for documentation

purposes, we can keep track of the “who, what and why” of a

solution, while the SA keeps track of the “how”.
18 Facilitate communication between functional experts and

developers.

As a result of lessons 12 & 13, we can support a shared context

knowledge between developers and functional experts. As

developers can zoom out from their normal focus on the feature

level, and functional experts can zoom in from their normal

focus on module level.
19 Customisation risk assessment.

By utilizing the software architecture models, the risk of a

requested customisation can be assessed. This can be done by

analysing the information requirements from the modules, and

the hierarchy of the suggested customisation in the feature

diagram.

We also obtained initial evidence for some of the hypothe-

ses by Molenaar et al. [12]. Case 1 shows that the RE4SA

model can support placing new functionalities in an existing

software. The identified use cases for the SA aspects in the

expert evaluation also provide evidence for the hypothesis that

the model can be used to guide and support testing activities.

Finally, the version update case shows that the model can po-

tentially be used for release planning.

In this research, the hypothesis [12] that there would be a

1:1 relationship between USs and features seems not to hold

true. This can be explained as multiple roles might require a

specific feature, which would result in multiple USs per fea-

ture. Multiple features could also solve a single US as seen in

Fig. 6. For the cardinality between ES and modules our find-

ings were more consistent with the expected cardinality, as in

two cases there was a 1:1 relationship and in one there was a

1:1.25 relationship.

A. Validity threats

We have tried to minimalize the validity threats by follow-

ing established case study guidelines [13], building on previous

research [12, 19, 26], and performing four case studies, which

should increase the precision due to data triangulation [23].

However, as with all case studies, there are validity threats that

limit the generalizability of our research. All of the cases were

focused on a single enterprise software application and focus

on a single company. Forza IT group provided all available

documentation, and time of experts which facilitated the re-

search; however, since the research was done in combination

with an internship, this might have introduced a bias. The in-

terviewees all knew the interviewer, and that they were part of

a study, which might have led to more positive reactions. As

mentioned in the expert interviews section, the experts had

limited experience with user stories. This could cause validity

threats as they might have a more favourable opinion because

they were shown ‘something new’. This is somewhat limited as

it has also been introduced from a second source aside from

this research (the partnership). Furthermore, the effectiveness

of user stories has been proven in previous research, and by the

high adoption numbers. It is also possible that due to general

human resistance to change, the reactions were less positive

than if they had been familiar with US. Finally, as Forza did

not have a completely structured method for their projects, they

may have provided more positive interview reactions since any

structured method might be an improvement.

B. Future research

While we have obtained some evidence that the RE4SA can

be applied effectively in this case study, it would be beneficial

to conduct additional case studies to obtain more evidence for

the findings from this research. One particularly interesting

aspect concerns the effectiveness of the RE4SA artefacts re-

garding communication with customers, as the findings in this

research were all based on views from practitioners within the

product team. Furthermore, our scope was mostly on the design

phase; this research could be continued by applying the model

with a higher focus on the requirements elicitation and devel-

opment phases.

For outsourcing development, designing the solution with

the RE4SA model and enforcing the creation of features as

described in the feature diagram might lead to effective results.

Outsourcing development often has the issue that the develop-

ers lack context information of the application and possibly end

up creating the wrong solutions. Further research on applica-

tion of the RE4SA model on outsourced development could

provide proof for this hypothesis.

We also identified a possibility to support the RE4SA mod-

el through software tools that allow for establishing and main-

taining traceability. By linking all artefacts through a tool, the

amount of manual work required to use the method can be

minimized and the trace links between the RE and SA disci-

plines can be fully utilized. Utilizing natural language pro-

cessing it might also facilitate the automated creation of the SA

based on a requirements set. There is ongoing research on the

creation of these tools, and Lucassen et al. [29] have estab-

lished traceability between user stories and source code.

Finally, aiming to reduce the effort required to create RE

and SA documentation, we would like to investigate the auto-

mation of requirements reporting through speech and action

recognition, similar to the research on automation of medical

reporting in Care2Report [30].

ACKNOWLEDGMENT

We would like to thank the GRIMM research group at

Utrecht University for their feedback and comments throughout

the research. We would also like to thank Forza IT group for

their assistance, input on the research, and access to artefacts

and experts.

REFERENCES

[1] A. Aurum and C. Wohlin, “Requirements Engineering: Setting

the Context”, in Engineering and Managing Software

Requirements, A. Aurum and C. Wohlin, Red.

Berlin/Heidelberg: Springer-Verlag, 2005, pp. 1–15.

[2] A. Smith, D. Bieg, and T. Cabrey, “PMI’s pulse of the

profession in-depth report: Requirements management–a core

competency for project and program success,” Project

Management Institute, Newtown Square, PA, 2014

[3] D. M. Fernández e.a., “Naming the pain in requirements

engineering: Contemporary problems, causes, and effects in

practice”, Empirical Software Engineering, vol. 22, nr. 5, pp.

2298–2338, okt. 2017.

[4] P. Clements, D. Garlan, R. Little, R. Nord, and J. Stafford,

“Documenting software architectures: views and beyond”, in

25th International Conference on Software Engineering, 2003.

Proceedings., Portland, OR, USA, 2003, pp. 740–741.

[5] N. Rozanski and E. Woods, Software systems architecture:

working with stakeholders using viewpoints and perspectives.

Upper Saddle River, NJ: Addison-Wesley, 2012.

[6] M. Lindvall and D. Muthig, “Bridging the Software Architecture

Gap”, Computer, vol. 41, nr. 6, pp. 98–101, jun. 2008.

[7] B. Nuseibeh, “Weaving together requirements and

architectures”, Computer, vol. 34, nr. 3, pp. 115–119, mrt. 2001.

[8] G. Lucassen, F. Dalpiaz, J. M. van der Werf, and S.

Brinkkemper, “Bridging the Twin Peaks -- The Case of the

Software Industry”, in 2015 IEEE/ACM 5th International

Workshop on the Twin Peaks of Requirements and Architecture,

Florence, Italy, 2015, pp. 24–28.

[9] I. Shin, ‘Adoption of Enterprise Application Software and Firm

Performance’, Small Business Economics, vol. 26, no. 3, pp.

241–256, Apr. 2006.

[10] Z. Zhang, M. K. O. Lee, P. Huang, L. Zhang, and X. Huang, ‘A

framework of ERP systems implementation success in China:

An empirical study’, International Journal of Production

Economics, vol. 98, no. 1, pp. 56–80, Oct. 2005.

[11] Panorama, “Biggest ERP Customization Challenges.” 2014 ERP

report retrieved from: https://www.panorama-

consulting.com/tuesday-poll-erp-customizations/

[12] S. Molenaar, S. Brinkkemper, A. Menkveld, T. Smudde, R.

Blessinga, F. Dalpiaz. “On the Nature of Links between

Requirements and Architectures: Case Studies on User Story

Utilization in Agile Development.” Technical report UU-CS-

2019-008. Department of Information and Computing Sciences,

Utrecht University, the Netherlands. June 2019.

[13] I. van de Weerd and S. Brinkkemper, ‘Meta-modeling for

situational analysis and design methods’, in Handbook of

research on modern systems analysis and design technologies

and applications, IGI Global, 2009, pp. 35–54.

[14] S. A. Fricker, ‘Software Product Management’, in Software for

People, A. Maedche, A. Botzenhardt, and L. Neer, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2012, pp. 53–81.

[15] S. R. Palmer and M. Felsing, A Practical Guide to Feature-

Driven Development, 1st ed. Pearson Education, 2001.

[16] R. L. Nord and J. E. Tomayko, ‘Software architecture-centric

methods and agile development’, IEEE Software, vol. 23, no. 2,

pp. 47–53, Mar. 2006.

[17] M. Kassab, ‘The changing landscape of requirements

engineering practices over the past decade’, in 2015 IEEE Fifth

International Workshop on Empirical Requirements Engineering

(EmpiRE), Ottawa, ON, Canada, 2015, pp. 1–8.

[18] G. Lucassen, F. Dalpiaz, J. M. E. M. van der Werf, and S.

Brinkkemper, ‘The Use and Effectiveness of User Stories in

Practice’, in Requirements Engineering: Foundation for

Software Quality, vol. 9619, M. Daneva and O. Pastor, Eds.

Cham: Springer International Publishing, 2016, pp. 205–222.

[19] G. Lucassen, M. van de Keuken, F. Dalpiaz, S. Brinkkemper,

G.W. Sloof and J. Schlingmann, “Jobs-to-be-Done Oriented

Requirements Engineering: A Method for Defining Job

Stories.”, in International Working Conference on Requirements

Engineering: Foundation for Software Quality: Cham: Springer

International Publishing, 2018, pp. 235-252.

[20] S. Brinkkemper and S. Pachidi, ‘Functional Architecture

Modeling for the Software Product Industry’, in Software

Architecture, vol. 6285, M. A. Babar and I. Gorton, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2010, pp. 198–213.

[21] M. Cohn, User Stories Applied: for Agile Software

Development. Redwood City, CA, USA: Addison Wesley

Professional, 2004.

[22] A. Klement, ‘replacing the user story with the job story’,

https://jtbd.info/replacing-the-user-story-with-the-job-story-

af7cdee10c27 , Nov. 2003

[23] P. Runeson and M. Höst, ‘Guidelines for conducting and

reporting case study research in software engineering’,

Empirical Software Engineering, vol. 14, no. 2, pp. 131–164,

Apr. 2009.

[24] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.

Peterson, ‘Feature-Oriented Domain Analysis (FODA)

Feasibility Study’:, Defense Technical Information Center, Fort

Belvoir, VA, Nov. 1990.

[25] D. Traynor, ‘Intercom on Jobs-to-be-done.’ Book retrieved from

interface.com

[26] B. Shneiderman, ‘A Task by Data Type Taxonomy for

Information Visualizations’. In The craft of information

visualization. Morgan Kaufmann, 2003, pp. 364-371

[27] Seffah, A., Donyaee, M., Kline, R. B., & Padda, H. K.

“Usability measurement and metrics: A consolidated model.”

Software quality journal, 14(2), 2006, pp. 159-178.

[28] Eclipse modelling tool , 2019

https://www.eclipse.org/downloads/packages/release/kepler/sr2/

eclipse-modeling-tools

[29] Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., Brinkkemper,

S., & Zowghi, D. . Behavior-driven requirements traceability via

automated acceptance tests. In 2017 IEEE 25th International

Requirements Engineering Conference Workshops (REW) (pp.

431-434). IEEE.

[30] Care2Report, Automated medical reporting.

https://sites.google.com/view/care2report

https://www.panorama-consulting.com/tuesday-poll-erp-customizations/
https://www.panorama-consulting.com/tuesday-poll-erp-customizations/
https://jtbd.info/replacing-the-user-story-with-the-job-story-af7cdee10c27
https://jtbd.info/replacing-the-user-story-with-the-job-story-af7cdee10c27
https://www.eclipse.org/downloads/packages/release/kepler/sr2/eclipse-modeling-tools
https://www.eclipse.org/downloads/packages/release/kepler/sr2/eclipse-modeling-tools
https://sites.google.com/view/care2report

