
Requirements Information in Backlog Items:
Content Analysis

Ashley T. van Can [0009−0001−1190−8327] and
Fabiano Dalpiaz [0000−0003−4480−3887]

Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
{a.t.vancan, f.dalpiaz}@uu.nl

Abstract. [Context and motivation] With the advent of agile devel-
opment, requirements are increasingly stored and managed within issue
tracking systems (ITSs). These systems provide a single point of ac-
cess to the product and sprint backlogs, bugs, ideas, and also tasks for
the development team to complete. [Question/problem] ITSs combine
two perspectives: representing requirements knowledge and allocating
work items to team members. We tackle a knowledge problem, address-
ing questions such as: How are requirements formulated in ITSs? Which
types of requirements are represented? At which granularity level? We
also explore whether a distinction exists between open source projects
and proprietary ones. [Principal ideas/results] Through quantitative
content analysis, we analyze 1,636 product backlog items sampled from
fourteen projects. Among the main findings, we learned that the label-
ing of backlog items is largely inconsistent, and that user-oriented func-
tional requirements are the prevalent category. We also find that a single
backlog item can contain multiple requirements with different levels of
granularity. [Contribution] We reveal knowledge and patterns about
requirements documentation in ITSs. These outcomes can be used to
gain a better empirical understanding of Agile RE, and as a basis for the
development of automated tools that identify and analyze requirements
in product and sprint backlogs.

Keywords: Agile Requirements Engineering · User Stories · Backlog
Items · Issue Tracking Systems · Content Analysis.

1 Introduction

Agile software development emerged as a means for many software companies
to stay competitive by improving market responsiveness, gaining the ability to
continuously and quickly define and re-prioritize software requirements based on
the ever-changing stakeholder needs [11].

In agile software development, requirements are defined in an iterative and
incremental fashion. Documenting and discussing requirements in agile practices
is commonly carried out by writing and discussing user stories [4], which are key
elements of the product and sprint backlogs [9].

2 A.T. van Can and F. Dalpiaz

While researchers have explored and reviewed the benefits and challenges of
agile RE [11] and the nature of the product backlog [23], there is limited research
that analyzes how requirements are documented in real-world product and sprint
backlogs, which are often stored in an issue tracking system like JIRA.

In this paper, we conduct a preliminary analysis of 1,636 issues from fourteen
JIRA repositories (seven open source, seven proprietary), aiming to address our
main research question MRQ: How are requirements documented within backlog
items?. Since we focus on requirements that are stored in product and sprint
backlogs, we examine only those JIRA repositories that we know are used or
that are likely to serve as a representation of these backlogs1. Methodologically,
we employ content analysis [14, 27] as the lens through which we analyze a sample
of the issues in these repositories, leading to a bottom-up understanding that is
rooted in empirical data.

Studies that adopt a similar research method to analyze data from product
or sprint backlogs include the investigation of architectural knowledge in JIRA
issues [25], the analysis of emotions in backlog items [20], and linking JIRA issues
to software life-cycle activities [18].

Given the informal nature of issue tracking systems as documentation tools,
in this paper we use the term requirement to denote a variety of textual frag-
ments, without limiting ourselves to the use of specific templates such as the
‘shall’ format, user stories, or the like. This is in line with the CPRE Glossary
by IREB [7], which states that a requirement is “A documented representation
of a need, capability or property”.

This paper makes two contributions to the state-of-the-art:

– Through content analysis of a large sample of backlog items from fourteen
projects, we present first insights on how requirements are documented in
agile RE via issue tracking systems;

– As a byproduct of the analysis, we share a coding scheme that can be used
for the analysis of additional datasets.

The rest of the paper is structured as follows. Sect. 2 refines the MRQ into five
research questions. Sect. 3 presents our research method, including the sampled
dataset and the coding scheme. Sect. 4 shows our results. Sect. 5 contrasts our
work with related work. Sec. 6 discusses the results in terms of the research
questions. Finally, Sect. 7 draws conclusions and sketches future directions.

2 Research Questions

In order to address the main research question stated in the introduction, we
put forward five more specific research questions: RQ1 through RQ5.

RQ1. To what extent do the backlog item labels chosen by practitioners reflect
the requirements expressed in the items?

1 We do not make a distinction as to whether the items belong to the product backlog
or to the sprint backlog; in the remainder of this paper, we therefore use the term
‘backlog items’ to refer to the components of either backlog.

Requirements Information in Backlog Items: Content Analysis 3

RQ1 focuses on whether the practitioners use suitable issue labels (e.g.,
‘Story’ or ‘Epic’ in JIRA) to distinguish requirements from issues that repre-
sent other aspects, such as bugs or tasks. In particular, we define one hypothesis
that emerges when separating issues with labels about requirements from issues
with labels that concern the execution of tasks:

H1. Backlog items with requirement-related labels contain requirements more
often than backlog items with task-related labels.

In addition to analyzing backlog items based on the appropriateness of the
labels, we dig deeper into the understanding of the requirements categories that
are represented. A full explanation of the categories we employ is presented later
in the paper (see Table 1); for now, an example is the classic distinction between
functional and non-functional requirements [3]. This leads to RQ2:

RQ2. What categories of requirements information are more commonly used?

One of the key properties of requirements, when stored in a requirements
management system, is for them to be uniquely identifiable [10]. We want to
study whether this is the case also with issue tracking systems, or if multiple re-
quirements co-occur in the same backlog item (in issue tracking systems, backlog
items are the smallest identifiable piece of information). This entails RQ3:

RQ3. How often does a single backlog item include multiple requirements?

We can further refine RQ3 based on the question regarding categories (RQ2),
leading to studying whether – when multiple requirements appear in the same
backlog item – certain combinations of different categories are prevalent:

RQ3.1. What different requirements categories do co-occur more often in a back-
log item?

Given the importance of justifying the why in requirements engineering [28],
we put forward RQ4 that explores whether the requirements in backlog items
also include information concerning why they are needed.

RQ4. To what extent are requirements complemented by a motivation for their
existence?

Finally, we aim to conduct a preliminary analysis on whether open source
software (OSS) projects, which are easier to retrieve and access, are represen-
tative of how requirements are represented in proprietary projects, which are
subject to confidentiality rules. To this extent, we introduce RQ5:

RQ5. Can we identify differences w.r.t. RQ1–RQ4 when comparing proprietary
projects and open-source projects?

4 A.T. van Can and F. Dalpiaz

3 Research Method

We apply content analysis to gain insight into the requirements information
present in issue tracking systems. Content analysis is a “research technique for
making replicable and valid inferences from texts (or other meaningful matter) to
the contexts of their use” [14]. In our case, in line with the distinction by White
and Marsh [27], we make use of quantitative content analysis: after defining our
research questions and hypotheses when suitable, we collect data, determine the
collection unit (issues organized into projects), define the coding scheme, tag the
data, analyze, and write up the results.

One important deviation from the classic approach is that, while we started
from literature knowledge to define basic codes (we performed inductive coding),
we have used a subset of the data to refine the coding scheme by introducing
specific sub-categories (deductive coding). Our process is visualized in Fig. 1.

Data collection Sampling Sample
Selection

Define coding
scheme

final scheme

Review and
update schemeCreate tags

Extract all
samples

industry

Extract small
portion of one

sample

open-
source

Tag samples Report and infer
findings

1. Data collection
and sampling

2. Define and review
coding scheme

3. Tag dataset and
report findings

Fig. 1: The research method describing how we 1) collected and sampled the
data, 2) defined and reviewed the coding scheme and 3) tagged the data.

3.1 Data collection and sampling

The topmost row of Fig. 1 illustrates how we collected data and we sampled the
backlog items to analyze.

Data collection. We analyze data extracted from issue tracking systems of sev-
eral projects, aiming to identify backlog items. We also collected seven internal
development projects from a collaborating company: the low-code development
platform provider Mendix. The other projects were sampled from two large pub-
lic datasets of issue tracking systems for OSS projects [26, 18].

From a quick scan, we could determine that many of the issue tracking sys-
tems for the open-source projects are employed mainly for reporting bugs rather

Requirements Information in Backlog Items: Content Analysis 5

than for documenting requirements. We automatically excluded projects with
≥80% issues labeled as ‘bug’ and <10% labeled as ‘story’. This screening al-
lowed us to filter out the projects whose dataset is likely not to serve as sprint
or product backlog, retaining 88 projects.

In addition, since user stories (arguably the main requirements artifact in Ag-
ile RE [4, 13, 16]) are user-oriented requirements, we decided to focus on projects
with a clear user interaction component, eliminating projects without a clear user
interface. The first author assessed the 88 retained projects based on their UI
component and excluded irrelevant projects.

This led to 16 candidate open-source projects. Since we knew that the JIRA
issues from all seven industry projects were used to represent the sprint backlog,
we did not exclude any industry projects.

Sampling. Since the projects varied in size (from 57 to 5,750 issues), we selected
a sample from each project. We defined an initial sample size of 100 items, as
we found that a sample selection based on a time period would result in a large
variation in sample sizes (as each project varies greatly in how often items are
uploaded). We aimed to select a sample that represents well the backlog items
that the development teams worked upon in a given time period. Therefore, we
randomly selected one issue and included the 99 subsequent issues (not counting
bugs) in order of creation time, excluding the last 100 issues from the random
selection phase. In other words, considering the dataset as a set of sliding win-
dows of size 100 (and sliding interval of 1), we randomly selected one sliding
window per project.

Links between issues provide additional context regarding how various back-
log items relate and depend on one another [17]. Thus, we decided to include this
information when extracting samples of the projects. We considered each issue
as part of a cluster of linked issues. After selecting a sample S of 100 issues, we
added all issues that were directly and transitively linked to a particular issue
in S, excluding those created later than the last issue in S.

Sample selection. Before the different OSS projects2 could be utilized further, the
two authors of this paper independently evaluated the first 12 issues of each sam-
ple in order to verify if the initial selection contained a sufficiently high volume
of relevant requirements information and were not merely exploited for bug re-
ports and task lists. Each of the 12 issues per project was classified as to whether
it contained information related to requirements. After an independent tagging,
the authors reviewed the classification together and subsequently discussed any
differences. Finally, the projects with over 50% (of the 12 issues) marked as
requirements relevant were shortlisted (details in our online appendix3). This
resulted in 7 open-source projects and 7 private projects.

2 Thanks to our collaboration with Mendix, we knew those projects were using the
issue tracking system to represent the backlog items the teams would implement in
the various sprints.

3 Online appendix: https://doi.org/10.5281/zenodo.10643450

6 A.T. van Can and F. Dalpiaz

3.2 Coding scheme construction

The coding scheme was constructed through the analysis of two of the 14 project
samples, one OSS (QT Design Studio) and one proprietary (Portfolio). We de-
fined the coding scheme iteratively and performed the tagging using the software
Nvivo. In each iteration, one tagger examined a small additional section of data
to identify a variety of information in the backlog items, focusing specifically on
content and writing patterns. After creating the codes, the first tagger grouped
related codes or adjusted codes to construct a coding scheme. When the first
tagger was unsettled about certain scenarios, the first and second taggers dis-
cussed the situation, adjusting the scheme accordingly. The rest of the process
was repeated each time adding new data to adjust the scheme until the scheme
no longer required adjustment.

After the two projects were all tagged based on the scheme, the second tagger
checked the scheme and the tagged dataset, resulting in some minor final ad-
justments, leading to the coding scheme that is available in our online appendix
and that is summarized in Sect. 3.3.

The first tagger applied the scheme to 50% of the remaining projects. The
second tagger independently tagged a random 20% of each project. We sub-
sequently compared the tagged items and discussed any conflicts. We consider
tagging difference as a conflict when a specific text is tagged with a different
granularity level or type. This resulted in a percent agreement rate of 65%, after
which we made a few minor adjustments to 6 projects.

Next, the first tagger completed the remainder of the projects, of which the
second tagger independently tagged 20%. After comparing the tags, we agreed
on 71% of the items, which is an improvement over the first 6 projects. Based
on these minor mismatches, we adjusted the dataset.

3.3 Coding scheme

The coding scheme (Table 1) distinguishes two characteristics on which a re-
quirement can be classified: a) the requirement type and b) the granularity level.
The requirement type indicates whether it is a functional or non-functional re-
quirement. For functional requirements, we have defined two possible subcate-
gories: a) user-oriented (indicating that the user directly experiences the added
functionality, and b) system-oriented (the added functionality is not directly ex-
perienced by the user but is necessary for the system to function as desired). The
granularity level denotes the level of refinement of the requirement, where we
distinguish between low-level (e.g., acceptance criteria), medium-level (e.g., user
stories), and high-level requirements (e.g., epics). Recognizing the importance
of the reason for the requirement, we also tag whether there exists a motivation
for the requirements in that backlog item. The complete tagging guidelines are
available in our online appendix.

Requirements Information in Backlog Items: Content Analysis 7

Table 1: Overview of our coding scheme.

Characteristic Category Description

Requirement
type

User-oriented
functional

Functionality directly experienced by the user.

System-oriented
functional

Functionality that the system will implement but
that is not directly experienced by the user.

Non-functional Requirement that constrains or sets some quality at-
tributes upon functional requirements [5].

Granularity
level

Low Requirement that is directly verifiable (e.g., accep-
tance criterion).

Medium Requirement that refers to one specific functional or
non-functional aspect of the system (e.g., user story).

High Requirement that encompasses multiple aspects or
functionalities of the systems (e.g., epic or theme).

Table 2: The projects selected in this study, showing the total size, sample size,
number of items with requirements labels (E : Epic, F : Feature, US : User Story,
SU : Suggestion), number of task-labelled issues (T : Task, ST : Sub-task, TT :
Technical task, ST : Support ticket), and other issues.

Project Size Req-labeled Task-labeled Other
Total Sample E F US SU T ST TT ST

Control 738 120 15 0 90 0 0 14 0 1 0
Service 173 100 6 0 57 0 37 0 0 0 0
Store 634 109 12 0 69 0 0 0 0 21 7
Company 29 29 0 0 29 0 0 0 0 0 0
Portfolio 97 97 4 0 84 0 0 9 0 0 0
Data 57 57 8 0 27 0 20 2 0 0 0
Learn 994 143 15 0 116 0 0 5 0 7 0
Cost Management 2,038 179 15 8 99 0 28 29 0 0 0
Jira Performance Testing Tools 777 105 2 0 26 57 12 8 0 0 0
Lyrasis Dura Cloud 1,125 113 0 0 105 0 7 0 0 0 1
Network Observability 137 102 2 0 99 0 1 0 0 0 0
OpenShift UX Product Design 369 130 3 0 113 0 3 11 0 0 0
Qt Design Studio 4,983 180 5 0 51 6 11 21 86 0 0
Red Hat Developer Website 5,750 172 21 0 151 0 0 0 0 0 0

Total 17,901 1,636 108 8 1,116 63 119 99 86 29 8

3.4 Selected projects

Table 2 shows the different projects included in this study, indicating the number
of items in the original dataset, the sample size and the labels used. Each backlog
item consists of a label, which is specified by one of the team members and
should reflect the content of the item. In addition to the label, we examine the
description, summary (i.e., title) and cluster to which each item belongs.

8 A.T. van Can and F. Dalpiaz

4 Results

We present the findings of our content analysis for RQ1–RQ5. We address RQ1–
RQ4 in four sections, each of which ends with a reflection on RQ5: we split the
projects population between proprietary and OSS projects in order to assess if
differences exist. Given the small sample size for RQ5 (7 projects per group), we
do not run statistical significance tests as their reliability would be low. Due to
space limitations, the raw data are available in our online appendix.

4.1 Do practitioners choose accurate backlog item types (RQ1)?

RQ1 examines whether practitioners’ labeling accurately reflects the content of
backlog items and to identify any inconsistencies. We expect backlog items of
types ‘Epic’, ‘Feature’, ‘Story’ and ‘Suggestion’ to contain requirements infor-
mation, while items with types ‘Task’, ‘Technical task’, ‘Sub-task’ and ‘Support-
tickets’ not to. We exclude 8 issues with a rarely occurring type that are hard
to relate to requirements or tasks. Our hypothesis H1 is that the the first kind
of backlog items will more frequently contain requirements-related tags.

Table 3 shows, for each project, the ratio of items that (i) are labeled as
tasks and include at least one requirement, and that (ii) are labeled as require-
ments and include at least one requirement. The columns on the left focus on
proprietary projects, the ones on the right on OSS projects.

Table 3: Ratio of items task-labeled and requirements-labeled items that include
at least one requirement according to our tagging.

Project (proprietary) Task Req Project (OSS) Task Req

Control 0.2 0.62 Cost Management 0.28 0.58
Service 0.14 0.92 Jira Performance Testing Tools 0.15 0.64
Store 0 0.49 Lyrasis Dura Cloud 0.29 0.75
Company 0 0.66 Network Observability 0 0.42
Portfolio 0.22 0.51 OpenShift UX Product Design 0.79 0.58
Data 0.73 1 Qt Design Studio 0.30 0.52
Learn 0.25 0.45 Red Hat Developer Website 0 0.44

Macro-average 0.22 0.66 0.26 0.56
Std- dev 0.25 0.22 0.27 0.11

Macro-average (all) 0.24 0.61
Std-dev (all) 0.25 0.17

To confirm H1 statistically, given the limited sample size of n=14, we choose
a robust non-parametric test: Mann-Whitney’s U, verifying whether the ratio of
requirements in the requirements-labeled items is greater than that in the task-
labeled items (H1), or alternatively if they can be considered equal (H0). The
Mann-Whitney U test results in a test statistic of 173 with a p-value of 0.0001.

Requirements Information in Backlog Items: Content Analysis 9

At a significance level of α >0.05, we can reject the claim H0 that the two rates
are equal. The effect size is large, as dcohen = 1.716.

When comparing proprietary and OSS projects, task-labeled items exhibit
similar results: for proprietary projects we obtain an average x = 0.22 (σ = 0.25),
and for OSS projects an average x = 0.26 (σ = 0.27). Similarly, when comparing
the items labeled as requirements, the proprietary projects yield an average
x = 0.66 (σ = 0.22) while the OSS projects result in x = 0.56 (σ = 0.11).
The results indicate a slight difference, with the proprietary projects having
on average more items correctly labeled as requirements in comparison to OSS
projects, although more investigations are necessary to draw robust conclusions.

4.2 What are the most commonly used categories (RQ2)?

RQ2 aims to reveal what type of requirements are frequently present in backlog
items and with what degree of granularity they are formulated. Fig. 2 shows, for
each combination of type and granularity (see Table 1), the occurrence across
the 14 projects, distinguishing between proprietary from OSS projects.

low user

low system
low nfr

medium user

medium system

medium nfr
high user

high system
high nfr

0.0

0.2

0.4

0.6

0.8

Pe
rc

en
ta

ge
 a

pp
ea

ra
nc

e

RQ2: appearance of type & granularity level
project category

OSS
proprietary

Fig. 2: Percentage of occurrence of the type-granularity combinations.

When examining the medians per combination, medium-level user-oriented
requirements appear to be most prevalent in all projects with an overall median
of 0.266 (x = 0.313, σ = 0.199). The second more frequent ones are low-level
user-oriented requirements with a median of 0.106 (x = 0.237, σ = 0.228). As

10 A.T. van Can and F. Dalpiaz

can be seen by the relatively high standard deviation (compared to the x) and
the gap between the median and x, low-level user-oriented requirements also
exhibit the largest fluctuations across projects.

Fig. 2 shows that certain combinations exhibit a considerable difference be-
tween the OSS and proprietary projects. In particular, for low-level user-oriented
requirements, the large variation for proprietary projects contrasts with a nearly
nonexistent one for OSS projects. The results also show the higher percentage of
medium-level requirements for OSS projects compared to proprietary projects.
For high-level requirements and low-level non-functional requirements, only a
slight variation exists between project types.

4.3 Do backlog items include multiple requirements (RQ3)?

Since requirements are expected to be uniquely identifiable [10], RQ3 examines
whether backlog items comply with this property. We explore how many of the
backlog items with requirement-related information have more than one require-
ment (RQ3). Then, we examine which combinations of tags (type and granularity
level) are most prevalent when 2+ requirements per item are identified (RQ3.1).

Table 4 shows the percentage of requirements-related backlog items consisting
of multiple requirements. The results show that the projects in our sample does
not only comprise requirements that are uniquely identifiable. Nonetheless, the
standard deviation indicates large per-project variations. For example, among
the items containing requirements in Jira Performance Testing Tools, only 14%
contain items with multiple requirements, while the project Company has almost
95% items containing multiple requirements.

Table 4: Presence of multiple requirements in a single issue.

Project (proprietary) Multiple (%) Project (OSS) Multiple (%)

Control 0.632 Cost Management 0.540
Service 0.048 Jira Performance Testing Tools 0.140
Store 0.550 Lyrasis Dura Cloud 0.235
Company 0.947 Network Observability 0.286
Portfolio 0.745 OpenShift UX Product Design 0.538
Data 0.549 Qt Design Studio 0.164
Learn 0.419 Red Hat Developer Website 0.434

Macro-average (propr) 0.556 Macro-average (OSS) 0.334
Std-dev (propr) 0.280 Std-dev (OSS) 0.170

Macro-average (all) 0.445 Std-dev (all) 0.251

Table 5 shows the most common combinations of different tags that co-occur
in an issue (RQ3.1) having at least 10 total occurrences. The most frequent
combination is having a medium requirement to be refined into one or more low-
level requirements of the same type. In addition to its frequency, this combination

Requirements Information in Backlog Items: Content Analysis 11

appears in 12 of our 14 projects. The second most common combination is two
medium-level requirements: one non-functional and one functional user-oriented:
this occurs in 13 projects. The third row is complementary to the first one
and it shows that in several projects, medium-level system-oriented functional
requirements are refined into low-level requirements of the same type.

Table 5: Most frequent combinations of different tags in the same issue, showing
both the total and the per-project counts.

Combinations Total C
o
n
tr
o
l

S
er
v
ic
e

S
to
re

C
o
m
p
a
n
y

P
o
rt
fo
li
o

D
a
ta

L
ea
rn

C
o
st

m
g
m
t

J
IR

A
P
er
f

L
y
ra
si
s

N
et
w
o
rk

O
b
s

O
p
en

S
h
if
t

Q
T

D
es
ig
n

R
H

D
ev
el
o
p
er

low user, medium user 96 16 0 1 1 17 17 17 2 1 0 6 1 2 15
medium nfr, medium user 61 2 3 3 0 0 2 0 6 2 15 1 23 2 2
low system, medium system 34 3 0 4 12 6 0 0 8 0 0 0 0 0 1
low user, medium user, low system 16 7 0 2 0 3 0 3 0 0 0 0 0 0 1
low user, low nfr, medium user 13 4 0 1 0 1 2 1 1 0 0 0 1 0 2
low user, medium nfr 13 2 0 2 0 3 3 0 0 0 0 0 1 1 1
low nfr, medium nfr 11 1 0 2 0 2 0 0 0 0 0 0 4 0 2
low user, medium nfr, medium user 10 0 0 0 0 0 4 0 2 0 0 0 1 1 2

Table 4 also compares the two types of projects (RQ5) in terms of the pres-
ence of multiple requirements. On average, the proprietary projects hold more
items with multiple requirements (x = 0.556, σ = 0.280) than the OSS projects
(x = 0.334, σ = 0.170). The standard deviations likewise show larger fluctuations
in these percentages among proprietary projects compared to OSS projects.

4.4 Are requirements complemented by a motivation (RQ4)?

RQ4 examines whether a backlog item containing requirements includes an as-
sociated motivation. Table 6 shows the percentage of backlog items where we
identified at least one requirement that contain at least one justification. The
overall macro-average shows that the motivation behind many requirements is
not present in the backlog. The standard deviation of 0.169 also indicates that
the percentages fluctuate only slightly across the projects. In ten of the fourteen
projects, less than 50% of the requirements-containing items have an associated
justification. The other four projects have less than 60% of their backlog items
with motivations.

Table 6 compares the type of projects (RQ5) in terms of the presence of
motivation. The macro average reveals only a small difference, with OSS projects
having slightly more frequent motivations for their backlog items.

12 A.T. van Can and F. Dalpiaz

Table 6: Backlog items with at least one requirement that also have a motivation.

Project (proprietary) Yes (%) Project (OSS) Yes (%)

Control 0.088 Cost Management 0.540
Service 0.524 Jira Performance Testing Tools 0.649
Store 0.525 Lyrasis Dura Cloud 0.383
Company 0.368 Network Observability 0.238
Data 0.529 OpenShift UX Product Design 0.487
Portfolio 0.319 Qt Design Studio 0.269
Learn 0.194 Red Hat Developer Website 0.171

Macro-average (propr) 0.364 Macro-average (OSS) 0.391
Std-dev (propr) 0.176 Std-dev (OSS) 0.175

Macro-average (all) 0.377 Std-dev (all) 0.169

4.5 Threats to validity

We discuss threats to validity, ranging from internal to external factors, and
discuss how we mitigated these to preserve the credibility of the study.

Regarding project selection, only one tagger eliminated irrelevant projects.
Since this evaluation was conducted by a single tagger, it is possible that some
interesting projects in the OSS datasets were excluded. Moreover, we did not
tag all issues in the projects, but only a subset. We reduce this vulnerability by
randomly selecting a subset of a representative size.

In addition, a single tagger created the initial coding scheme. To eliminate
bias, the second tagger reviewed all the data on which the initial coding scheme
was built. The feedback from the second tagger was used to adjust the coding
scheme. Additionally, only one tagger coded the full sets of remaining projects
for the final tagging of the projects. We mitigated these biases by including a
second tagger who randomly tagged 20% of the issues in the sample.

For some open source projects, we could not ascertain whether the analyzed
issues are part of a sprint or product backlog, due to the absence of such details
in the datasets. We employed filtering mechanisms to only retain projects whose
issue tracking systems are likely to be used to support sprint backlogs or to serve
as a product backlog; however, we cannot be certain.

Furthermore, we have excluded issues labeled as “bug”. Although it is pos-
sible that bug issues exist that contain requirements information, based on an
initial exploration phase, we have determined that this situation is improbable.

For the proprietary projects, we examine projects from one company. Select-
ing only projects from one specific source could lead to a number of threats. We
reduced this vulnerability by using projects from different teams and including a
wide variety of OSS projects from different companies, but we reckon that future
work needs to use data from multiple companies.

Requirements Information in Backlog Items: Content Analysis 13

5 Related work

Lüders and colleagues conducted research on the visualization and automated
categorization [17] of links between issues. Our approaches are complementary.
While they are concerned with the relationships (including dependencies and
hierarchies) between requirements and other issue types, we offer an in-depth
analysis of the contents of the issues.

Rath et al. [22] explored the effectiveness of automated traceability by as-
sessing the ability of machine learning in recovering trace links between code
commits and JIRA issues. Similar studies have been conducted, in the context
of model-driven engineering, by van Oosten et al. [19]. Although these studies
also analyzed issues in JIRA repositories, their focus is on repairing trace links,
while we examine the requirements information in the issues.

Interview studies have been often employed to learn about the practices of
documenting requirements in agile development. For example, Behutiye et al. [2]
conducted fifteen interviews with practitioners from four companies using ag-
ile software development and they studied how quality requirements are docu-
mented. Their findings showed that in certain cases issues and epics are used to
represent quality requirements, but also that prototypes and face-to-face com-
munication are very important. A similar analysis was conducted by Alsaqaf et
al. [1] in the context of large-scale, distributed settings. Their exploratory study
reveals fifteen challenges, several of which are related to the minimal documen-
tation principle in agile development. The study by Franch and colleagues [6]
on requirements specification shows that, in agile contexts, project management
tools are commonly used to document requirements. These studies are based
on interviewing practitioners, while we focus on obtaining insights through the
content analysis of backlog items.

Some research groups have collected and shared collections of issues extracted
from publicly available repositories. The two largest and renowned datasets are
the TAWOS dataset by Tawosi et al. [26] and the ‘alternative’ one by Mont-
gomery and colleagues [18]. We make use of six projects from Montgomery’s
dataset and one from TAWOS, and we contrast these with seven proprietary
projects.

Some studies applied content analysis to backlog items. For instance, Soliman
et al. [25] investigated where architectural knowledge is located in JIRA issues,
Ortu and colleagues [20] have studied the emotions that are included in the
issues, and Montgomery [18] linked issues to software life-cycle activities. We
conduct a more in-depth analysis of requirements within backlog items.

Content analysis has been used extensively in software engineering for the
analysis of communication within instant messaging systems as well as chat
rooms. For example, Parra et al. [21] compare the contents present in Slack and
Gitter in terms of Bin’s categorization [15]: do the messages fulfill a developer’s
personal needs, team-wide purposes, or community support? Silva et al. [24]
conducted thematic on a large number of Slack and Gitter chatrooms to identify
what developers talk about. In this paper, we also apply content analysis but
we focus on backlog items rather than messaging systems.

14 A.T. van Can and F. Dalpiaz

6 Discussion

We address each research question on the basis of the findings reported in Sect. 4.
While doing so, we highlight remarkable results and provide additional likely
explanations for certain phenomena.

RQ1: To what extent do the backlog item labels chosen by practitioners reflect
the requirements expressed in the items? The hypothesis H1 formulated for this
research question tested whether the percentage of requirements in requirements-
labeled items is higher than in task-related items. The test results reported in
Sect. 4.1 confirm the hypothesis, indicating it is more likely to find requirements
in items labeled as such than in items labeled as tasks. This result provides
empirical evidence in support of a straightforward conjecture. The average per-
centages shown in Table 3 are, instead, more surprising. On average, over 20%
of the items labeled as tasks do in fact contain requirements. In addition, on
average, more than 30% of the items labeled as requirements contain no re-
quirements at all. These results show that practitioners do inconsistently label
the items; therefore, in order to locate requirements within backlog items, it is
not sufficient to simply display the issues that are labeled as requirement (here:
epics, features, user stories, and suggestions).

RQ2: What categories of requirements information are more commonly used?
Fig. 2 visualizes the occurrence of different types of requirements with specific
granularity levels in backlog items. The figure shows a high fluctuation between
certain categories, especially for low and medium-level user-oriented functional
requirements and medium-level non-functional requirements. This reflects the
different usage patterns of teams managing their product or sprint backlogs. For
example, the combination low-level functional requirements (‘low user’ in Fig. 2)
for proprietary projects shows high variability; this happens because some teams
include acceptance criteria in the same issue where a user story is written, while
others do not specify them, or store them in a different environment.

RQ3: How often does a single backlog item include multiple requirements? For
each project, Table 4 shows how many of the items containing at least one re-
quirement also contain multiple requirements. In general, the results show that
many of these backlog items contain multiple requirements, making them no
longer uniquely identifiable. In addition, Table 5 indicates which different cate-
gories of requirements often occur together, revealing that low-level requirements
most often occur in combination with medium-level requirements. This is a gen-
eralization of the refinement pattern where a user story is refined into acceptance
criteria. In addition, the results show that non-functional requirements often co-
occur with functional requirements. This could be interpreted in terms of the
refinement of non-functional requirements into functional requirements that are
closer to system design [8]. More frequently and surprisingly, however, we found
functional requirements that also specified a non-functional aspect of the system.
An example from the Cost Management project is ‘As a user, I want to quickly

Requirements Information in Backlog Items: Content Analysis 15

filter my tags based on tag key or value, [. . .]’, which points to the functionality
of a filtering option and also to the quality of performing it quickly.

RQ4: To what extent are requirements complemented by a motivation for their
existence? We found that more than half of the backlog items that contain at
least one requirement did not include any justifications for those requirements.
These results show the lack of recognition of the importance [28] and recom-
mendations [10] for expressing the ‘why’ behind requirements. This may be due
to agile software development practices, where requirements are formulated in
a concise manner, as they are intended to support and foster the conversation
within the team [12], rather than acting as a precise and complete specification.
In addition, this table considers the presence of justifications for all categories
of requirements, while justifications are not equally essential for all categories,
particularly when we look at low-level requirements. Nevertheless, the project
Service, for example, contains no low-level requirements and still only includes
justifications for roughly 40% of the required items.

RQ5: Can we identify differences w.r.t. RQ1–RQ4 when comparing proprietary
projects and open-source projects? For each of the research questions above, we
distinguish the open source projects from the proprietary projects. One of the
most notable discrepancies between the open source projects and the proprietary
dataset is the difference in labeling the backlog items, with the open source
projects showing more inconsistencies (see Table 3). This lack of consistency in
open source projects may be due to the low level of oversight or the varying
experience level of contributors. In contrast, industrial projects in our sample
show large variations between teams in their structuring of the project backlog
(e.g., what type of requirements they include), and more often document multiple
requirements within a single backlog item (Table 4).

7 Conclusion and future work

We performed content analysis on collections of backlog items to better under-
stand the occurrence of requirements-related information in backlogs. For this
purpose, we collected, tagged, and analyzed fourteen samples of open-source and
proprietary projects, summing up to a total of 1,636 items.

Our results show that backlog item labeling is applied inconsistently and in
a misleading manner by practitioners. In addition, teams may use one backlog
item to document multiple requirements, making requirements within backlogs
not uniquely identifiable. Both aspects pose challenges for those who need to
retrieve requirements information. Furthermore, the most common are medium-
and low-level user-oriented requirements, which also occur together in one item
and mirror the refinement pattern of user stories in acceptance criteria.

In general, we find that item labels chosen by practitioners do not fully
represent the content of requirements, especially when a backlog item contains
multiple requirements, possibly of different types. Our most immediate future

16 A.T. van Can and F. Dalpiaz

work aims to build a prototype tool to help practitioners automatically extract
and classify requirements from collections of backlogs items.

Although backlog items contain a significant amount of requirements, they
may not represent all the requirements. Especially in agile development, scenar-
ios may arise where developers discover the need for a new feature during system
development without specifying the implementation in the backlogs. Therefore,
future work could focus on examining the completeness of sprint and product
backlogs as a requirements specification artifact, or whether other documents
(e.g., user journeys and vision documents, as indicated by our industrial partner
Mendix) should be considered to obtain a fuller picture.

Acknowledgements This research is partially funded by the Dutch Research
Council (NWO) through the Open Technology Programme 2021-II TTW, project
AUTOLINK (19521). We would like to thank Mendix, and especially Toine Hurk-
mans, for providing us with the proprietary datasets used in this study.

References

1. Alsaqaf, W., Daneva, M., Wieringa, R.: Quality requirements challenges in the con-
text of large-scale distributed agile: An empirical study. Information and Software
Technology 110, 39–55 (2019)

2. Behutiye, W., Seppänen, P., Rodŕıguez, P., Oivo, M.: Documentation of quality
requirements in agile software development. In: Proc. of EASE. pp. 250–259 (2020)

3. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: Automated classification of non-
functional requirements. Requirements engineering 12, 103–120 (2007)

4. Cohn, M.: User stories applied: For agile software development. Addison-Wesley
Professional (2004)

5. Cysneiros, L.M., do Prado Leite, J.C.S., de Melo Sabat Neto, J.: A framework
for integrating non-functional requirements into conceptual models. Requirements
Engineering 6, 97–115 (2001)

6. Franch, X., Palomares, C., Quer, C., Chatzipetrou, P., Gorschek, T.: The state-of-
practice in requirements specification: an extended interview study at 12 compa-
nies. Requirements Engineering pp. 1–33 (2023)

7. Glinz, M.: A glossary of requirements engineering terminology. Standard Glossary
of the Certified Professional for Requirements Engineering (CPRE) Studies and
Exam, Version 2.0.1 (2022)

8. Gross, D., Yu, E.: From non-functional requirements to design through patterns.
Requirements Engineering 6, 18–36 (2001)

9. Hess, A., Diebold, P., Seyff, N.: Understanding information needs of agile teams to
improve requirements communication. Journal of Industrial Information Integra-
tion 14, 3–15 (2019)

10. IEEE: Systems and software engineering – life cycle processes –requirements engi-
neering. ISO/IEC/IEEE 29148:2018(E) (2018)

11. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic
literature review on agile requirements engineering practices and challenges. Com-
puters in Human Behavior 51, 915–929 (2015)

12. Jeffries, R.E., Anderson, A., Hendrickson, C.: Extreme Programming Installed.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2000)

Requirements Information in Backlog Items: Content Analysis 17

13. Kassab, M.: The changing landscape of requirements engineering practices over
the past decade. In: Proc. of EmpiRE. pp. 1–8. IEEE (2015)

14. Krippendorff, K.: Content analysis: An introduction to its methodology. Sage pub-
lications (2018)

15. Lin, B., Zagalsky, A., Storey, M.A., Serebrenik, A.: Why developers are slacking
off: Understanding how software teams use slack. In: Proc. of CSCW companion.
p. 333–336 (2016)

16. Lucassen, G., Dalpiaz, F., van der Werf, J.M., Brinkkemper, S.: The use and ef-
fectiveness of user stories in practice. In: Proc. of REFSQ. LNCS, vol. 9619, pp.
205–222 (2016)

17. Lüders, C.M., Pietz, T., Maalej, W.: On understanding and predicting issue links.
Requirements Engineering pp. 1–25 (2023)

18. Montgomery, L., Lüders, C., Maalej, W.: An alternative issue tracking dataset of
public jira repositories. In: Proc. of MSR. pp. 73–77 (2022)

19. van Oosten, W., Rasiman, R., Dalpiaz, F., Hurkmans, T.: On the effectiveness of
automated tracing from model changes to project issues. Information and Software
Technology 160, 107226 (2023)

20. Ortu, M., Murgia, A., Destefanis, G., Tourani, P., Tonelli, R., Marchesi, M., Adams,
B.: The emotional side of software developers in JIRA. In: Proc. of MSR. pp. 480–
483 (2016)

21. Parra, E., Alahmadi, M., Ellis, A., Haiduc, S.: A comparative study and analysis
of developer communications on Slack and Gitter. Empirical Software Engineering
27(2), 1–33 (2022)

22. Rath, M., Rendall, J., Guo, J.L., Cleland-Huang, J., Mäder, P.: Traceability in
the wild: automatically augmenting incomplete trace links. In: Proc. of ICSE. pp.
834–845 (2018)

23. Sedano, T., Ralph, P., Péraire, C.: The product backlog. In: Proc. of ICSE. pp.
200–211. IEEE (2019)

24. Silva, C.C., Galster, M., Gilson, F.: A qualitative analysis of themes in instant
messaging communication of software developers. Journal of Systems and Software
192, 1–15 (2022)

25. Soliman, M., Galster, M., Avgeriou, P.: An exploratory study on architectural
knowledge in issue tracking systems. In: Proc. of ECSA. pp. 117–133. Springer
(2021)

26. Tawosi, V., Al-Subaihin, A., Moussa, R., Sarro, F.: A versatile dataset of agile
open source software projects. In: Proc. of MSR. pp. 707–711 (2022)

27. White, M.D., Marsh, E.E.: Content analysis: A flexible methodology. Library
trends 55(1), 22–45 (2006)

28. Yu, E.S., Mylopoulos, J.: Understanding “why” in software process modelling,
analysis, and design. In: Proc. of ICSE. pp. 159–168. IEEE (1994)

