Crowd simulation

Summerschool Utrecht: Multidisciplinary Game Research

Dr. Roland Geraerts
23 August 2017
Societal relevance of crowd simulation

The number of environments with big crowds are growing

- In how much time can a train station be evacuated?
- Where and how can potential dangerous situations appear?
- How can a city accommodate 0.5M people during an event?
- How can we populate a game world with a believable crowd?

Love Parade 2010
21 deaths
510 injuries
A computational model of human navigation

Challenge: Unify *dispersed models* for realistic, individual, small group, and collective human movements in *interactive, heterogeneous* environments.

- **Dispersed models**
 - Agent-based: individuals, but problems with high densities
 - Flow-based: no individuals, but good for high densities

- **Realistic movements**
 - Comprise collaboration, smooth and energy-efficient movement, collision avoidance, and dealing with unrealistic congestions.

- **Interactive environment**
 - Geometry can change dynamically, and the crowd reacts to it.

- **Heterogeneous environment**
 - People need to take logical, distinct, and realistic paths over heterogeneous terrains in the environment.
Are we there yet?
Some results

- Optimizing pedestrian streams in the Tour de France
- Studying optimal light situations in smoky environments
- Evacuation studies in metro stations of the North/Southline
How can we simulate a crowd?
Crowd simulation framework

- Representation environment
 - Level 5
 - Plans actions
 - Level 4
 - Creates indicative routes
 - Level 3
 - Traverses the routes
 - Yields speed/direction pairs
 - Level 2
 - Adapts routes
 - E.g. to avoid collisions
 - Level 1
 - Moves the characters

Diagram:
- Representation of the environment
 - Level 5: High-level planning
 - Start/goal positions
 - Level 4: Global route
 - Indicative route
 - Level 3: Route following
 - Preferred velocity
 - Level 2: Local movement
 - Velocity
 - Level 1: Animation
Crowd simulation framework

- **Representation environment**
 - Level 5
 - Plans actions
 - Level 4
 - Creates indicative routes
 - Level 3
 - Traverses the routes
 - Yields speed/direction pairs
 - Level 2
 - Adapts routes
 - E.g. to avoid collisions
 - Level 1
 - Moves the characters

Diagram:
- Representation of the environment
- Level 5: High-level planning
 - start/goal positions
- Level 4: Global route
 - indicative route
- Level 3: Route following
 - preferred velocity
- Level 2: Local movement
 - velocity
- Level 1: Animation
Representation of the traversable environment

Requirements

- Path existence
- 100% coverage of the navigable space
- All cycles
- Fast computation and small storage
- Fast query time during simulation
- Flexible: surfaces instead of graphs
Representing 2D environments

What is the best representation for the walkable space of an environment?
- Inspiration from fungus cultures...

Voronoi diagram
Representing 2D environments

What is the best representation for the walkable space of an environment?

...leads to an efficient data structure: a navigation mesh
Representing 2D environments

- Can be huge
 - E.g. 1 km2
- Fast to compute
What about 3D environments?

- 3D Voronoi diagram?
 - No – create a multi-layered Voronoi diagram

What about 3D environments?
What about 3D environments?

1. Remove steep polygons
What about 3D environments?

6. For each 2D layer, create a 2D navigation mesh
7. Stitch them together into a multi-layered navigation mesh
Representation of the traversable environment

- Can be *really* huge
- E.g. many km2

Representation of the traversable environment

- Multi-layered navigation mesh
 - Allows fast extraction of global routes and final paths
 - Nice mathematical properties
 - Fast to compute: \(O(n \log n \log k) \), with \(k \) connections
 - Small data structure: \(O(n) \)
 - Nearest obstacle computation: \(O(1) \)
 - 2D algorithms usually work in multi-layered environments
Representation of the traversable environment

- Handles dynamic changes

Van Toll et al, 2012: A Navigation Mesh for Dynamic Environments
Path planning errors in *games*

Pathfinding challenges with large groups
Crowd simulation

Given this representation, how can we simulate a crowd?
Crowd simulation framework

- Representation environment
 - Level 5
 - Plans actions
 - Level 4
 - Creates indicative routes
 - Level 3
 - Traverses the routes
 - Yields speed/direction pairs
 - Level 2
 - Adapts routes
 - E.g. to avoid collisions
 - Level 1
 - Moves the characters
Action planning

- Splits up a task into geometric queries

 - Example: dynamic updates of the crowd

Standard behavior: pedestrians take the same gate

Improved behavior: pedestrians choose between different gates
Action planning

- Splits up a task into geometric queries
- Example: Dynamic updates of the crowd

Crowd simulation framework

- Representation environment
 - Level 5
 - Plans actions
 - Level 4
 - Creates indicative routes
 - Level 3
 - Traverses the routes
 - Yields speed/direction pairs
 - Level 2
 - Adapts routes
 - E.g. to avoid collisions
 - Level 1
 - Moves the characters
Indicative Routes

- A path planning algorithm should NOT compute a path
 - A one-dimensional path limits the character’s freedom
 - Humans don’t do that either

- It should produce
 - An Indicative/Preferred Route
 - Guides character to goal
Computing Indicative Routes

- Shortest path with clearance to obstacles

Jaklin et al, 2014: Computing High-Quality Paths in Weighted Regions
Crowd simulation framework

- Representation environment
- Level 5
 - Plans actions
- Level 4
 - Creates indicative routes
- Level 3
 - Traverses the routes
 - Yields speed/direction pairs
- Level 2
 - Adapts routes
 - E.g. to avoid collisions
- Level 1
 - Moves the characters

Diagram:

Representation of the environment

- Level 5
 - High-level planning
 - start/goal positions
- Level 4
 - Global route
 - indicative route
- Level 3
 - Route following
 - preferred velocity
- Level 2
 - Local movement
 - velocity
- Level 1
 - Animation
Traversing the routes

- Modified Indicative Routes And Navigation (MIRAN)
- Supports
 - heterogeneous terrains
 - separate character profiles
 - customized smoothing

Jaklin et al, 2013: Real-Time Path Planning in Heterogeneous Environments
Crowd simulation framework

- Representation environment
- Level 5
 - Plans actions
- Level 4
 - Creates indicative routes
- Level 3
 - Traverses the routes
 - Yields speed/direction pairs
- Level 2
 - Adapts routes
 - E.g. to avoid collisions
- Level 1
 - Moves the characters

<table>
<thead>
<tr>
<th>Level 5</th>
<th>High-level planning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>start/goal positions</td>
</tr>
<tr>
<td>Level 4</td>
<td>Global route</td>
</tr>
<tr>
<td></td>
<td>indicative route</td>
</tr>
<tr>
<td>Level 3</td>
<td>Route following</td>
</tr>
<tr>
<td></td>
<td>preferred velocity</td>
</tr>
<tr>
<td>Level 2</td>
<td>Local movement</td>
</tr>
<tr>
<td></td>
<td>velocity</td>
</tr>
<tr>
<td>Level 1</td>
<td>Animation</td>
</tr>
</tbody>
</table>

Representation of the environment
What is realistic collision-avoidance behavior?

Smack the pony s01x02
What is realistic collision-avoidance behavior?

Crowd prank in Japan
Adapting the routes: Collision avoidance

Our model is derived from experiments in the MOCAP lab

PhD students: Wouter van Toll and Norman Jaklin
Adapting the routes: Collision avoidance

Our model slightly adjusts the people’s movements
Adapting the routes: Social groups

- The group members stay close and visible to each other

Kremyzas et al, 2016: Towards Social Behavior in Virtual-Agent Navigation
Adapting the routes: Moving through a dense crowd

People can make room for a passing individual

Stüvel et al, 2017: Torso crowds
Adapting the routes: Unification of individual and collective movements

Our stream-based model allows local coordination, based on a character’s *incentive*

- Deviation from the local flow
- Local density

- Internal motivation
- Spent time to reach goal

So what *is* realistic collision avoidance?
Crowd simulation framework

- Representation environment
 - Level 5
 - Plans actions
 - Level 4
 - Creates indicative routes
 - Level 3
 - Traverses the routes
 - Yields speed/direction pairs
 - Level 2
 - Adapts routes
 - E.g. to avoid collisions
 - Level 1
 - Moves the characters

Representation of the environment

- Level 5: High-level planning
 - start/goal positions
- Level 4: Global route
 - indicative route
- Level 3: Route following
 - preferred velocity
- Level 2: Local movement
 - velocity
- Level 1: Animation
Crowd management

Collect much information, study many scenario’s...
Crowd safety

...measure, and act.
But what should we measure?
It’s time for an experiment!
List of contributors

- **Staff**
 - Roland Geraerts
 - Marjan van den Akker
 - Han Hoogeveen
 - Frank van der Stappen
 - Mark Overmars
 - Marc van Kreveld

- **PhD students**
 - Arthur van Goethem
 - Norman Jaklin
 - Ioannis Karamouzas
 - Wouter van Toll
 - Arne Hillebrand

- **MSc students**
 - Angelos Kremyzas
 - Mihai Polak
 - Jordi Vermeulen
 - Martijn Koenis
 - Marijn van der Zwan

- **Scientific programmers**
 - Angelos Kremyzas
 - Mihai Polak
 - Wouter van Toll

- **Companies**
 - Movares, GreenDino
 - InControl, Evaqaid, ...
Contact

- We welcome people to collaborate and participate!

Roland Geraerts
R.J.Geraerts@uu.nl
uu.nl/staff/RJGeraerts
uCrowds.com