A NOTE ON EXCISION FOR K2

Wilberd van der Kallen

Summary. We consider Ruth Charney's excision theorem ([C])

for the special case of KQ. We describe a different proof for
this special case. It follows from this proof that if one re-
quires excision only on the K, level, one may weaken the condi-
tion somewhat. (Recall from [S] that the same holds if one re-
quires excision only on the K, level). We also give a counter-
example to a stronger statement: We give an example of an ideal

J with J::J2 for which excision fails.

1.1. Let J be an associative ring without unit and let m be a
positive integer. Following Charney we say that J is an m-excision

ideal for K, if the following holds: For any associative ring

2
with unit A that contains J as a (2~sided) ideal, the map

1 1
KZ(ZGBJ,J) ®Z [ﬁl > K2(A,J) ®%Z [;ﬁ]

(1)

is an isomorphism.

1.2. Recall that J®J is the quotient of J®J by the subgroup
J /4

generated by the elements xy®z- x®yz with x,y z € J. Multipli-
cation in J defines a map

1 1

HW:JRIB®Z [=] » JBZ [=]
m m
J

Theorem. (cf.[C]). If u is a bijection then J is an m-excision
ideal for K, .

1.3. Proof. Assume the hypothesis of the theorem. lLet J be an ideal
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in A. We view KQ(A,J) as the kernel of St(A,J) » GL(J) where

() ()

St(A,J) is the group St(A ,J A ) of the appendix to [V].

It follows from [G - W] that
K (Z&J,0) ®Z [L] » K (A,J) ®FZ [L]
2 ? m 24 m

is surjective. Remains to show that the kernel of
KQ(ZZQJ,J) > KQ(A,J) is m-torsion. Fix an element a of this ker-

nel. Put
Y S 2
J,=1) €J|{m7] €37}

so that J is the union of the increasing sequence of ideals Jg-
Choose s so that o comes from KQ(ZKQJS,JS) and has trivial image
in St(A,J ). Define St(Z®J) to be the quotient of St(Z®J) by

the m-torsion subgroup of K, (Z®J). The theorem follows from:

1.4. Lemma. There is a set theoretical map T : St(A,JS) + ST(Z BJ)
such that the composite with KQ(ZKPJS,JS) > St(A,JS) equals m®

times the natural map K, (Z&J,J ) - St(Z®JI).

Proof of Lemma. Let F be the free group on G(F), where G(F) is the
() (M))’

generating set used in the definition of St(A ,JS,A and let
R = ker(F ~» St(A,JS)). For each x € G(F), the m®~th power of its
matrix image lies in the image E(ZPDJ) of St(Z®J). Replacing m
by mn° we may and shall further assume s = i. Given n distinct ele-
ments Xg,...,X in G(F), choose an integer N such that the matrix
images mat(xi) all lie in GLN(J) C GL(J). Choose Vs € St(Z®J)

with matrix image

mat(xi) O O

O 1 O

iN
C O mat(xj)-
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and define a homomorphism <X, ,...,x > = St(Z®J) sending X5
TO vy Restrict this homomorphism to the commutator subgroup

of <x .,xn:>. This restriction ¢ is characterised by the pro-

ERE
perty:

Let x,x' € <x X >, Y,y € St(Z#%J),M € N, such that the

ERE

matrix image of y is

S mat(x) O

Mmi\ o P
Tor some P € GLM(J) and the matrix image of y' is

N I mat(x') O
M o 1,

C O Q

for some Q € GL(J). Then wt[x,x'])zﬁ[y,y']-

(Compare the construction of Milnor's pairing in [M] §8 and use
that we have factored out m-torsion in Kz(ZKBJ), including the
Steinberg symbols {mat(xi),mat(xi)}.)

Using this characterisation we extend © to all of {F,F] by
varying {xl,...,xn}. Let H‘be the free subgroup of I generated

by m-th powers of elements of G(F). For each X(v,j,w) in G(P),

choose p,;, q; € J so that Z p;q; = mj (recall s=1) and put
i

WX (v,3,w)™ = IX(vp;,1,q;w) € ST(Z®J).
i

This defines a homomorphism ¢ : H »~ St(Z®J). It agrees with ¢ on
HN[F,F]=[H,H]. We extend ¢ to H[F,F] by putting ¢(xy) = p(x)o(y)
for x € H, y € [F,Fl. Define 17:F » St(Z®J) by 1(x) = @(Xm).

One shows that 1(x r y) = t(xy) 7(r) for x,y € F, r € R.

Thus if 1 annihilates R, 1 factors through St(A,JS) and the lemma
easily follows. To show that T annihilates R indeed, one treats

each of the defining relations listed in the appendix to [V]. To
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deal with the third, for instance, recall the hypothesis of the

theorem and use that for X(v,j,w) € G(F) there is a homomorphism
J@J » St(Z®J)
J
sending p®q to X(vp,l,quw).

T
2. The counterexample. It is commutative. Put R =7 [Tr,e}/(T2 ,52

).

Fmbed R_ into R by sending T_ to 2 € to €. Let R=1im R_,
r T r+ r

>
r

r+1 12
s . _ . _ 42
J = 1lim Jr’ with Jr-TrRr. Clearly J=4d sg that

-
r

J®J » J is surjective. Nevertheless KQ(ZGQJ,J) > KQ(R,J) is not
J

injective: Consider a-= <T;» €T1:><19T -T1> € KQ(ZGBJ,J). Its

1)
image in KQ(R,J) vanishes, by an easy computation. But suppose o

vanishes. Then <T,,T > <IET1,- T1>> must vanish in KZ(ZKBJF) for

1
some r. However, recall that we have a Chern class KQGZQJf)*Q%zaJ
r

sending <a,b>to i(iiab)_ldaf~db. (The reader may choose conven-
tions and then determine the correct signs). Straightforward com-

putation shows that the image in QZZUGJ of our element is non-zero
r

(This image is not even torsion).

(1) Charney has now replaced Z[%] by an arbitrary subring of @ .

Our theorem generalizes similarly.
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