A NOTE ON EXCISION FOR K_2 Wilberd van der Kallen

<u>Summary</u>. We consider Ruth Charney's excision theorem ([C]) for the special case of K_2 . We describe a different proof for this special case. It follows from this proof that if one requires excision only on the K_2 level, one may weaken the condition somewhat. (Recall from [S] that the same holds if one requires excision only on the K_1 level). We also give a counterexample to a stronger statement: We give an example of an ideal J with $J = J^2$ for which excision fails.

1.1. Let J be an associative ring without unit and let m be a positive integer. Following Charney we say that J is an m-excision ideal for K_2 if the following holds: For any associative ring with unit A that contains J as a (2-sided) ideal, the map

$$K_2(\mathbb{Z} \oplus J, J) \otimes \mathbb{Z} \left[\frac{1}{m}\right] \rightarrow K_2(A, J) \otimes \mathbb{Z} \left[\frac{1}{m}\right]$$

is an isomorphism. (1)

1.2. Recall that J \otimes J is the quotient of J \otimes J by the subgroup Z generated by the elements $xy \otimes z - x \otimes yz$ with $x,y z \in J$. Multiplication in J defines a map

$$\mu: \operatorname{J} \underset{J}{\otimes} \operatorname{J} \otimes \operatorname{\mathbb{Z}} \ [\frac{1}{m}] \ \rightarrow \ \operatorname{J} \otimes \operatorname{\mathbb{Z}} \ [\frac{1}{m}]$$

Theorem. (cf.[C]). If μ is a bijection then J is an m-excision ideal for K_2 .

1.3. Proof. Assume the hypothesis of the theorem. Let J be an ideal

in A. We view $K_2(A,J)$ as the kernel of $St(A,J) \to GL(J)$ where St(A,J) is the group $St(A^{(\infty)},J,A^{(\infty)})$ of the appendix to [V]. It follows from [G-W] that

$$\mathsf{K}_{2}(\mathbb{Z}\boldsymbol{\oplus}\mathsf{J},\mathsf{J})\otimes\mathbb{Z}\,\left[\frac{1}{\mathsf{m}}\right]\to\,\mathsf{K}_{2}(\mathsf{A},\mathsf{J})\otimes\mathbb{Z}\,\left[\frac{1}{\mathsf{m}}\right]$$

is surjective. Remains to show that the kernel of $K_2(\mathbb{Z} \oplus J,J) \to K_2(A,J) \text{ is m-torsion. Fix an element } \alpha \text{ of this kernel. Put}$

$$J_{s} = \{j \in J \mid m^{s}j \in J^{2}\}$$

so that J is the union of the increasing sequence of ideals J_s . Choose s so that α comes from $K_2(\mathbb{Z}\oplus J_s,J_s)$ and has trivial image in $St(A,J_s)$. Define $\overline{St}(\mathbb{Z}\oplus J)$ to be the quotient of $St(\mathbb{Z}\oplus J)$ by the m-torsion subgroup of $K_2(\mathbb{Z}\oplus J)$. The theorem follows from:

1.4. <u>Lemma</u>. There is a set theoretical map $\tau: St(A,J_s) \to \overline{St}(\mathbb{Z} \oplus J)$ such that the composite with $K_2(\mathbb{Z} \oplus J_s,J_s) \to St(A,J_s)$ equals m^s times the natural map $K_2(\mathbb{Z} \oplus J_s,J_s) \to \overline{St}(\mathbb{Z} \oplus J)$.

<u>Proof of Lemma</u>. Let F be the free group on G(F), where G(F) is the generating set used in the definition of $St(A^{(\omega)},J_s,A^{(\omega)})$, and let $R = \ker(F + St(A,J_s))$. For each $x \in G(F)$, the m^S -th power of its matrix image lies in the image $E(\mathbb{Z}\oplus J)$ of $St(\mathbb{Z}\oplus J)$. Replacing m by m^S we may and shall further assume s = 1. Given a distinct elements x_1,\ldots,x_n in G(F), choose an integer N such that the matrix images $mat(x_i)$ all lie in $GL_N(J) \subseteq GL(J)$. Choose $y_i \in \overline{St}(\mathbb{Z}\oplus J)$ with matrix image

$$\begin{pmatrix} \text{mat}(x_{i}) & O & O \\ O & 1_{iN} & O \\ C & O & \text{mat}(x_{i})^{-1} \end{pmatrix}$$

and define a homomorphism $< x_1, \dots, x_n > \rightarrow \overline{\text{St}}(\mathbb{Z}\oplus J)$ sending x_i to y_i . Restrict this homomorphism to the commutator subgroup of $< x_1, \dots, x_n >$. This restriction ϕ is characterised by the property:

Let $x,x' \in \langle x_1, \dots, x_n \rangle$, $y,y' \in \overline{St}(\mathbb{Z} \oplus J), M \in \mathbb{N}$, such that the matrix image of y is

for some $P \in GL_{M}(J)$ and the matrix image of y' is

for some $Q \in GL(J)$. Then $\phi([x,x']) = [y,y']$.

(Compare the construction of Milnor's pairing in [M] §8 and use that we have factored out m-torsion in $K_2(\mathbb{Z}\Phi J)$, including the Steinberg symbols $\{mat(x_i), mat(x_i)\}$.)

Using this characterisation we extend φ to all of [F,F] by varying $\{x_1,\ldots,x_n\}$. Let H be the free subgroup of F generated by m-th powers of elements of G(F). For each X(v,j,w) in G(F), choose p_i , $q_i \in J$ so that $\sum_i p_i q_i = mj$ (recall s = 1) and put

$$\psi(X(v,j,w)^m) = \Pi X(vp_i,1,q_iw) \in \overline{St}(\mathbb{Z} \oplus J).$$

This defines a homomorphism $\psi: H \to \overline{\operatorname{St}}(\mathbb{Z} \oplus J)$. It agrees with ϕ on $H \cap [F,F] = [H,H]$. We extend ϕ to H[F,F] by putting $\phi(xy) = \psi(x)\phi(y)$ for $x \in H$, $y \in [F,F]$. Define $\tau: F \to \overline{\operatorname{St}}(\mathbb{Z} \oplus J)$ by $\tau(x) = \phi(x^m)$. One shows that $\tau(x r y) = \tau(xy)$ $\tau(r)$ for $x,y \in F$, $r \in R$. Thus if τ annihilates R, τ factors through $\operatorname{St}(A,J_S)$ and the lemma easily follows. To show that τ annihilates R indeed, one treats each of the defining relations listed in the appendix to [V]. To

deal with the third, for instance, recall the hypothesis of the theorem and use that for $X(v,j,w) \in G(F)$ there is a homomorphism

$$J \otimes J \rightarrow St(\mathbb{Z} \oplus J)$$

sending $p \otimes q$ to X(vp,1,qw).

- 2. The counterexample. It is commutative. Put $R_r = \mathbb{Z}[T_r, \varepsilon]/(T^2^r, \varepsilon^2)$. Embed R_r into R_{r+1} by sending T_r to T_{r+1}^2 , ε to ε . Let $R = \lim_{r \to r} R_r$, $f_r = \lim_{r \to r} J_r$, with $f_r = \int_{r}^{R_r} R_r$. Clearly $f_r = \int_{r}^{R_r} R_r$. Clearly $f_r = \int_{r}^{R_r} R_r$.
- J&J → J is surjective. Nevertheless $K_2(\mathbb{Z}\oplus J,J) \to K_2(\mathbb{R},J)$ is not J injective: Consider $\alpha = \langle T_1, \, \epsilon \, T_1 \rangle \langle \epsilon T_1, \, -T_1 \rangle \in K_2(\mathbb{Z}\oplus J,J)$. Its image in $K_2(\mathbb{R},J)$ vanishes, by an easy computation. But suppose α vanishes. Then $\langle T_1, T_1 \epsilon \rangle \langle \epsilon T_1, \, -T_1 \rangle$ must vanish in $K_2(\mathbb{Z}\oplus J_r)$ for some r. However, recall that we have a Chern class $K_2(\mathbb{Z}\oplus J_r) \to \Omega^2_{\mathbb{Z}\oplus J_r}$ sending $\langle a,b \rangle$ to $\pm (1\pm ab)^{-1} da \wedge db$. (The reader may choose conventions and then determine the correct signs). Straightforward computation shows that the image in $\Omega^2_{\mathbb{Z}\oplus J_r}$ of our element is non-zero (This image is not even torsion).
- (1) Charney has now replaced $\mathbf{Z}\left[\frac{1}{m}\right]$ by an arbitrary subring of \mathbf{Q} . Our theorem generalizes similarly.

References

- [C] R.M. Charney, A note on excision in K-theory.

 These proceedings.
- [G-W] S.G. Geller and C.A. Weibel, $K_1(A,B,I)$. To appear in J. reine angew. Math.
- [M] J. Milnor, Introduction to Algebraic K-theory, Annals of Math. Studies, Vol. 72. Princeton: University Press 1971
- [S] R.G. Swan, Excision in Algebraic K-theory, J. Pure and Appl. Algebra 1 (1971), 221-252.
- [V] T. Vorst, Localization of the K-theory of polynomial extensions, Math. Ann. 244, 33-53 (1979).

