A NOTE ON EXCISION FOR K_2
Wilberd van der Kallen

Summary. We consider Ruth Charney's excision theorem ([C]) for the special case of K_2. We describe a different proof for this special case. It follows from this proof that if one requires excision only on the K_2 level, one may weaken the condition somewhat. (Recall from [S] that the same holds if one requires excision only on the K_1 level). We also give a counterexample to a stronger statement: We give an example of an ideal J with $J = J^2$ for which excision fails.

1.1. Let J be an associative ring without unit and let m be a positive integer. Following Charney we say that J is an m-excision ideal for K_2 if the following holds: For any associative ring with unit A that contains J as a (2-sided) ideal, the map

$$K_2(\mathbb{Z} \otimes J, J) \otimes \mathbb{Z} \left[\frac{1}{m} \right] \rightarrow K_2(A, J) \otimes \mathbb{Z} \left[\frac{1}{m} \right]$$

is an isomorphism. (1)

1.2. Recall that $J \otimes J$ is the quotient of $J \otimes J$ by the subgroup generated by the elements $xy \otimes z - x \otimes yz$ with $x, y, z \in J$. Multiplication in J defines a map

$$\mu : J \otimes J \otimes \mathbb{Z} \left[\frac{1}{m} \right] \rightarrow J \otimes \mathbb{Z} \left[\frac{1}{m} \right]$$

Theorem. (cf. [C]). If μ is a bijection then J is an m-excision ideal for K_2.

1.3. Proof. Assume the hypothesis of the theorem. Let J be an ideal
in A. We view $K_2(A,J)$ as the kernel of $\text{St}(A,J) \to \text{GL}(J)$ where $\text{St}(A,J)$ is the group $\text{St}(A^{(\infty)}, J, A^{(\infty)})$ of the appendix to [V]. It follows from [G-W] that

$$K_2(\mathbb{Z} \oplus J, J) \otimes \mathbb{Z} \left[\frac{1}{m}\right] \to K_2(A,J) \otimes \mathbb{Z} \left[\frac{1}{m}\right]$$

is surjective. Remains to show that the kernel of $K_2(\mathbb{Z} \oplus J, J) + K_2(A,J)$ is m-torsion. Fix an element α of this kernel. Put

$$J_s = \{ j \in J \mid m^s j \in J^2 \}$$

so that J is the union of the increasing sequence of ideals J_s.

Choose s so that α comes from $K_2(\mathbb{Z} \oplus J_s, J_s)$ and has trivial image in $\text{St}(A,J_s)$. Define $\overline{\text{St}}(\mathbb{Z} \oplus J)$ to be the quotient of $\text{St}(\mathbb{Z} \oplus J)$ by the m-torsion subgroup of $K_2(\mathbb{Z} \oplus J)$. The theorem follows from:

1.4. Lemma. There is a set theoretical map $\iota: \text{St}(A,J_s) \to \overline{\text{St}}(\mathbb{Z} \oplus J)$ such that the composite with $K_2(\mathbb{Z} \oplus J_s, J_s) \to \text{St}(A,J_s)$ equals m^s times the natural map $K_2(\mathbb{Z} \oplus J_s, J_s) \to \overline{\text{St}}(\mathbb{Z} \oplus J)$.

Proof of Lemma. Let F be the free group on $G(F)$, where $G(F)$ is the generating set used in the definition of $\text{St}(A^{(\infty)}, J_s, A^{(\infty)})$, and let $R = \ker(F + \text{St}(A,J_s))$. For each $x \in G(F)$, the m^s-th power of its matrix image lies in the image $E(\mathbb{Z} \oplus J)$ of $\text{St}(\mathbb{Z} \oplus J)$. Replacing m by m^s we may and shall further assume $s = 1$. Given n distinct elements x_1, \ldots, x_n in $G(F)$, choose an integer N such that the matrix images $\text{mat}(x_i)$ all lie in $\text{GL}_N(J) \subseteq \text{GL}(J)$. Choose $y_i \in \overline{\text{St}}(\mathbb{Z} \oplus J)$ with matrix image

$$\begin{pmatrix} \text{mat}(x_1) & 0 & 0 \\ 0 & 1_{IN} & 0 \\ 0 & 0 & \text{mat}(x_1)^{-1} \end{pmatrix}$$
and define a homomorphism \(<x_1, \ldots, x_n> \rightarrow \overline{\text{St}}(\mathbb{Z} \oplus J) \) sending \(x_i \) to \(y_i \). Restrict this homomorphism to the commutator subgroup of \(<x_1, \ldots, x_n> \). This restriction \(\phi \) is characterised by the property:

Let \(x, x' \in <x_1, \ldots, x_n> \), \(y, y' \in \overline{\text{St}}(\mathbb{Z} \oplus J), M \in \mathbb{N} \), such that the matrix image of \(y \) is

\[
\begin{pmatrix}
\text{mat}(x) & 0 \\
0 & P \\
\end{pmatrix}
\]

For some \(P \in \text{GL}_M(J) \) and the matrix image of \(y' \) is

\[
\begin{pmatrix}
\text{mat}(x') & 0 & 0 \\
0 & 1_M & 0 \\
0 & 0 & Q \\
\end{pmatrix}
\]

for some \(Q \in \text{GL}(J) \). Then \(\phi([x, x']) = [y, y'] \).

(Compare the construction of Milnor's pairing in [M] §8 and use that we have factored out m-torsion in \(K_2(\mathbb{Z} \oplus J) \), including the Steinberg symbols \(\{\text{mat}(x_i), \text{mat}(x_i)\} \).

Using this characterisation we extend \(\phi \) to all of \([F, F] \) by varying \(\{x_1, \ldots, x_n\} \). Let \(H \) be the free subgroup of \(F \) generated by \(m \)-th powers of elements of \(G(F) \). For each \(X(v, j, w) \) in \(G(F) \), choose \(p_i, q_i \in J \) so that \(\sum_i p_i q_i = mj \) (recall \(s = 1 \)) and put

\[
\psi(X(v, j, w)^m) = \prod_{i} (vp_i, 1, q_i w) \in \overline{\text{St}}(\mathbb{Z} \oplus J).
\]

This defines a homomorphism \(\psi : H \rightarrow \overline{\text{St}}(\mathbb{Z} \oplus J) \). It agrees with \(\phi \) on \(H \cap [F, F] = [H, H] \). We extend \(\phi \) to \(H[F, F] \) by putting \(\phi(xy) = \psi(x)\phi(y) \) for \(x \in H, y \in [F, F] \). Define \(\tau : F \rightarrow \overline{\text{St}}(\mathbb{Z} \oplus J) \) by \(\tau(x) = \phi(x^m) \).

One shows that \(\tau(x \circ y) = \tau(xy) \tau(r) \) for \(x, y \in F, r \in R \).

Thus if \(\tau \) annihilates \(R \), \(\tau \) factors through \(\text{St}(A, J_s) \) and the lemma easily follows. To show that \(\tau \) annihilates \(R \) indeed, one treats each of the defining relations listed in the appendix to [V]. To
deal with the third, for instance, recall the hypothesis of the theorem and use that for \(X(v,j,w) \in G(F) \) there is a homomorphism

\[
J \otimes J \to \text{St}(\mathbb{Z} \otimes J)
\]

sending \(p \otimes q \) to \(X(vp,1,qw) \).

2. The counterexample. It is commutative. Put \(R_r = \mathbb{Z}[T_r, \xi]/(T_r^2, \xi^2) \). Embed \(R_r \) into \(R_{r+1} \) by sending \(T_r \) to \(T_{r+1}^2 \), \(\xi \) to \(\xi \). Let \(R = \lim_{\to r} R_r \), \(J = \lim_{\to r} J_r \), with \(J_r = T_r R_r \). Clearly \(J = J^2 \) so that \(J \otimes J \to J \) is surjective. Nevertheless \(K_2(\mathbb{Z} \otimes J, J) \to K_2(R, J) \) is not injective: Consider \(a = \langle T_1, \xi T_1 \rangle \langle \xi T_1, -T_1 \rangle \in K_2(\mathbb{Z} \otimes J, J) \). Its image in \(K_2(R, J) \) vanishes, by an easy computation. But suppose \(a \) vanishes. Then \(\langle T_1, T_1 \xi \rangle \langle \xi T_1, -T_1 \rangle \) must vanish in \(K_2(\mathbb{Z} \otimes J_r) \) for some \(r \). However, recall that we have a Chern class \(K_2(\mathbb{Z} \otimes J_r) \to \Omega^2 \mathbb{Z} \otimes J_r \) sending \(\langle a, b \rangle \) to \(\pm(1+ab)^{-1}da \wedge db \). (The reader may choose conventions and then determine the correct signs). Straightforward computation shows that the image in \(\Omega^2 \mathbb{Z} \otimes J_r \) of our element is non-zero (This image is not even torsion).

(1) Charney has now replaced \(\mathbb{Z}[\frac{1}{m}] \) by an arbitrary subring of \(\mathbb{Q} \). Our theorem generalizes similarly.
References

