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Generators and Relations in Algebraic Ä-Theory 

Wilberd van der Kalten 

Despite the transformation of algebraic AT-theory by the introduction of higher 
algebraic /C-theory, it still makes sense to look at matrices in order to get a better 
understanding of K^ and K2. I will discuss a sample of results in which this classical 
approach plays a role. If anything, this sample should give a fair idea of my own 
interests. For a more balanced overview of algebraic /^-theory and some 
motivating background I may refer to the proceedings of the two previous Inter
national Congresses. (See the talks of Quillen, Bass and Gersten at Vancouver and 
the talks of Swan, Tate, Karoubi at Nice.) 

The approach I have in mind can be illustrated with the Bass-Milnor-Serre 
solution of the congruence subgroup problem for SL„. This is the problem to 
decide if each subgroup of finite index in SL„(6?) contains a subgroup SL„(0, /) = 
ker (SLn(0)-+SLn(ß/I)) for some ideal / of 0 when 0 is, say, the ring of integers 
in a number field. To answer this question (for n^3) they had to compute the 
relative X-group SK1(fi9I) for every ideal / of 6. (Definitions of Kx and K2 

groups will be recalled below.) The computation of SK1((99I) involved several 
steps. First a stability theorem was proved stating that the stabilization maps 
SKi(r9(99I)-+SK1(ß)9I) are surjective for r^2 and injective for r^3. Next the 
prestabilization problem was solved, i.e. generators were given for the kernel R of 
SK± (2, 0,1) + SKi (3, 0, /) . By choosing generators and relations for SK± (2, 0,1)/R9 

which is thus isomorphic to SKX{G)9I)9 a presentation for SK1{69I) was then 
obtained, the presentation by Mennicke symbols and their "universal" relations. 
Test maps were found (with values in the group of roots of unity in Q)9 yielding 
lower bounds for SKt{(991). Finally, the arithmetic of the ring was further exploited 
to compute SK1(&9I) exactly. Thus, finding the presentation for SK^&.I) was 
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an important step, but it was by no means the final step. I will ignore this observation 
and mainly look at stability for Kx and K2 and presentations for K2. I should 
remark that if stability sets in later than in the situation above, one tends to get less 
concrete information, when trying the same approach. 

1. Basic notions. Let A be a ring (always associative with unit). We embed the 
group GLn(A) into GLn+r(A) by means of the stabilization map M •-•(J* J), 
where 1 is the identity in GLr{A). The direct limit or union of the GLn(A) we 
call GL(A) or GL^^) , the stable general linear group. For a£A9 zVy, the 
elementary matrix ei}(d) has ones on the diagonal, a at the intersection of the ith 
row and the jth column, and zeroes elsewhere. The subgroup of GLn(A) generated 
by the elementary matrices is called En(A)9 the elementary subgroup. We again 
have stabilization maps En(A)-+En+r(A) and we put E(A)=E„(A)=1in\„ EJA). 
It turns out that E(A) = [GL(A)9 GL (A)] and we put K1(A) = GL(A)/E(A)9 

which is thus abelian. A transvection in GLn(A) is a linear transformation of the 
form \+vaw where l=id, v is a column of length n9 a£A9 w is a row of length 
n with wv=09 and w is unimodular (i.e. there is a column y with wy=l£A). 
Let T„(A) denote the subgroup of GLW(,4) generated by transvections. More 
generally, if / is a two-sided ideal in A9 let En(A91) be the smallest normal sub
group of En(A) containing the elementary matrices etJ(t) with t£I9 and let 
Tn(A9I) be the group generated by the transvections l+vaw with a£l. (So Tn(A, I) 
contains En(A9I).) If ws>3, then EH(A9I) is generated by the ^•ï(fl)eÏJ(0^j,(— a) 
with t£l9 a£A9 and, as always, zVj (cf. [3, Appendix 1]). If, moreover, A is 
almost commutative (i.e. finitely generated as a module over its center), Suslin 
has shown by a localization technique that En(A9I) = Tn(A9I)9 so that En(A9I) 
is a normal subgroup of GLn(^). (This usually fails for n=29 even if A=I.) 
We put K±(n9 A) = GLn(A)/En(A). This pointed set is thus often a group, though 
not always abelian. (I have been told that it is not abelian for « = 15 when A is 
the ring of continuous real valued functions on the product of two 7-spheres.) 
The stabilization maps for the GLm and Em induce stabilization maps Kx(n9 A)^ 
Kx(n+r9A). Note that such a map is injective if and only if GLn(A)nEn+r(A) = 
En(A). Similarly we have K1(n9A9I) = GLn(A9I)/En(A9I)9 where GLn(A9I) = 
kev(GLn(A)-+GLn(A/Ij)9 and we write KX{A9I) for K^A.I). If A is 
commutative, the group SK1(n9A9I) is the analogue of K^{n9A9I) with GL„ 
replaced by SL}I. 

While K± measures when matrices differ by a product of elementary matrices, 
K2 measures those relations between elementary matrices which depend on the ring. 
(And KQ measures relations between relations, cf. [3], as is illustrated nicely by K. 
Igusa's recent concrete description of an element of order 16 in K3(Z). So the 
approach with generators and relations even seems to penetrate K3 a little.) For 
«s>3 the Steinberg group St„(^l) is defined by the following presentation. Take 
a generator xu(a) for each ey(fl) in i?BC4). Take as defining relations the following 
universal relations between elementary matrices (the Steinberg relations) 



Generators and Relations in Algebraic ^-Theory 307 

xij(a)xij(b)=xiJ(a+b); [x^a), xjk(b)]=xik(ab); [x^a), xkI(b)] = l when j^k9 iV/. 
There is an obvious map from St„(/4) onto E„(A) and its kernel is called K2(n9 A). 
(For n=2 one more type of relation must be added to the list.) As usual we have 
stabilization maps and we write St(A) = St00(A)9 K2(A)=K2(<x>9A) for the respective 
limits. Then K2(A) is the center of St(v4) and St (A) -+• E(A) is a universal central 
extension so that K2(A)=H2(E(A)). (If G is a group H2(G) stands for H2{G9Z) 
with trivial action on the coefficients.) One can define an analogue, St*(A)9 of 
St„(A) by taking a generator for each transvection in GLn(A) and taking defining 
relations which mimic certain universal relations between transvections. This has 
the advantage that ker (St*(A)-+T„(A)) is automatically central in St*(y4). More
over, if A is almost commutative and n ̂  4 it can be shown that the isomorphism 
E„(A)-+T„(A) induces an isomorphism St„(A)-+St*(A). So then K2(n9A) is also 
central. But I don't know if it is central for n = 39 even for a polynomial ring in two 
variables over F2. For n = 2 counterexamples are known. 

If / is a two-sided ideal in A9 the double D is defined as the subring of AXA 
consisting of the (a9b) with a—bÇ.1. The relative Steinberg group St(A9I) is 
obtained as follows. (See Keune and Loday, References [4]-|5J.) The projection 
onto the first factor, D-+A9 induces a homomorphism St (D)-+ St (A). Take its 
kernel. It contains commutators [x12((t9 0)), x21((09 u))~] for t9u£l. Divide by the 
(central) subgroup generated by them. The result is St (A91). (One can also define 
St {A91) in St*-style, without passing to the double.) Put K2(A9 7) = ker (St (A91)-+-
E(D)). Recall that in higher algebraic AT-theory there is a long exact sequence 
... K3(A/I)^K2(A9I)+K2(A)+K2(A/I)-+K1(A9I) ...9 which is the long exact 
homotopy sequence of the map BGL+(A)-+BGL+(A/I). The above definitions 
are compatible with this. 

2. Stability theorems. Conjecturally such theorems exist in a wider context but 
here we look only at K2(n9 A) and Kx{jt9 A, I). (Special case A=I.) So we ignore 
K0. For special rings there are special results such as Dunwoody's theorem that, 
when A is euclidean, K2(2, A)-+K2(r9 A) is surjective for any rs>3. We now 
discuss the general results. The basic tool to prove them is Bass's stable range 
condition SRW. We say that A satisfies SRH if, for any unimodular row 
a=(al9 ..., a„) of length n over A9 there are tl9 ...9t„_1 G A such that 
(a1-]-antl9 ...9a„-1+ant„^1) is unimodular. Let me say that A satisfies SR* 
(fe-fold SR„) if, given unimodular rows a(1), ...,a(fc), each of length n9 there are 
tl9 ....tn-^A which do the job for all k of them simultaneously. (There also 
exist stable range conditions for ideals. We ignore them here.) Recall that, for 
a right ideal / of A9 a unimodular row (al9 ...,fl„) is called J-unimodular if 
a1 — \Ç.J9ai€J for />1 . Two such rows are J-equivalent if one can be obtained 
from the other by a finite sequence of steps in which ai is replaced by a^a^t 
with 7V/ and t£A if j>l9t£J if 7 = 1. For n^ 2 consider the following conditions: 

(A„) A is finitely generated as a module over a central subring R9 and this R has 
a noetherian maximal spectrum of dimension ^n—2. 
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(B„) A satisfies SRH. 
(C;I) A satisfies SR*, 
(DJ For any right ideal J of A9 all/-unimodular rows of length n are /-equi

valent. 
(D^) Same with principal right ideals J=aA. 
(EH) For all two-sided ideals / of A, K^r, A9I)-^K1(A91) is surjective for 

r^n—l and injective for r^n. 
(F„) K2(r9 A)-+K2(A) is surjective for r^n and injective for r^n + l. 
Obviously, (D„)=>(D,',) and (CJ^B, , ) . 

THEOREM (BASS, VASERSTEIN, DENNIS, SUSLIN, TULENBAYEV, VAN DER KALLEN). 

For n^29 (A„)^(BW)^[(CW+1)&(D„)]^E„ and [(Cw+1)&(D0]=>(FH). 
For n^\ (A„)=KQ). 

So under the quite natural condition (A„) we have the stability results (E„), (F„) and 
I have indicated possible technical intermediate results. Using [(C/1+1)&(D^)]=>(F„), 
which is new, and the work of Bass, Milnor, Serre and Vaserstein on the 
congruence subgroup problem for SL2, I can now show the following. Let A be 
a subring of the algebraic closure of Q. Then if A is not contained in the ring 
of integers of its field of fractions or if this field is not totally imaginary, K2 (2, A) -*• 
K2(A) is surjective and K2(39 A)^K2(A) is an isomorphism. This should be 
contrasted with a result of Dennis and Stein saying that K2(29A)^K2(A) is not 
surjective when A is the ring of integers in Q{fd) where d is a squarefree rational 
integer, rf< —11, d congruent to —1 mod 8 or to —3 mod 9. Let me finish this 
section by mentioning that Vaserstein has solved the pre-stabilization problem for 
K± when A sa tisfies condition (A„) of the theorem and A /Rad (A) has no zero di visors 
(Rad = Jacobson radical). That is, he gave generators for ker (K^n — 1, A, / ) - * 
KX(A,I)). 

3. Presentations for K2. Presentations for K2 have been obtained in two cases 
where stability is very strong, namely for commutative local rings and for relative 
K2 of a radical ideal in a commutative ring. 

(More precise results will follow.) 
For a division ring D stability is also very strong but we do not know in general 

how to get explicit generators for K2{D). However, the pre-stabilization problem 
has been solved quite satisfactorily by Rehmann. He describes K2(D) as the kernel 
of a map UD-+[D*9 D*]. Here UD may be viewed as St^D^R where St^D) 
is some sort of rank 0 Steinberg group and R stands for ker (S^ (Z>) -^St (D)). 

Let us restrict ourselves from now on to commutative rings. If R is semilocal 
we know by the above that K2(29 R)-+K2(R) is surjective. In fact K2(R) is generated 
by the Dennis-Stein symbols (a, b)12. Here 

<fl, b)12 = A:2i(-fc(l+flb)~1)^i2(^)x21(b)^12(-a(l-r-ab)~1)(fe12(l-r-ab))-:L 

is defined for a9b£R when l+ab£R* = GL1(R). One has (ab9 1 >12 = 1, which 
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might be used as a definition of A12(l+fl6). Anyway, recall that hu(t) is defined 
when t£R*9 and that its image in E(R) is a diagonal matrix. If t9u£R*9 the 
Steinberg symbol {/, u}12 is defined by h12(t)h12(u)={t9 u}12h12(fu). (If both 
1-ftffi and b are units, then (a9 b)12={l+ab9 b}12.) Let US(R) denote the 
group of universal Steinberg symbols, which has a generator {t9 u} for each pair 
t9u£R* and which has as defining relations (as an abelian group) {t9uv}= 
{/, u}{t9 v}; {tu9v}={t9v}{u9v}; {x9 1— x}=l . (As the relations have to make 
sense, one needs that x and 1 —x are units.) 

THEOREM (MATSUMOTO). For a (commutative) field F9 {t9 u} »->{/, u}12 defines 
an isomorphism US(F)-+K2(F). 

I have shown that this result also holds for a ring satisfying SR2, e.g. a local 
ring whose residue field contains at least 6 elements. But if one is not working 
with fields it is often better to use Dennis-Stein symbols. 

Following Maazen and Stienstra let us define the group D(R) as follows. Take 
a generator (a9 b) for each pair a9b£R with l+ab€R*. Take defining relations 
(as an abelian group) 

(Dl) (a9b)(-b, -*> = 1. 

(D2) (a9 b)(a9 c) = (a9 b + c + abc). 

(D3) (a9 be) = (ab9 c)(ac9 b). 

(Stienstra now tells me I should use a different sign convention with (a9 b) replaced 
by (—a9b).) For any commutative ring we have homomorphisms US(R)-+ 
D(R)-+K2(R) sending {t9 u} to <(f- l )w-\ u) and (a9 b) to (a, b)12. 

THEOREM. If R is a commutative local ring, D(R)-+K2(R) is an isomorphism. 

The full proof of this theorem depends on work of Maazen-Stienstra, Dennis-Stein 
and myself. (Dennis and Stein in turn use the work of Matsumoto.) I have proved 
the same result for a commutative ring satisfying SR2. 

Now consider an ideal / with 7çRad(jR). (R is still commutative.) The group 
D{R9I) is then defined just as D(R), with the following modifications. Take 
generators (a9 b) only if a or b is in /. Take relation (D3) only if a or b or c 
is in /. (And, as before, only consider relations that make sense.) 

THEOREM. D(R9I)-+K2(R9I) is an isomorphism. 

Here one sends (a9b) to {{a9 d)9 (0, b))12 or to ((09a)9(b9b))12. (When both 
make sense they are equal.) If R-+R/I splits, the theorem is due to Maazen and 
Stienstra. The present form was noted by Keune. 

4. An example. Let J? be a 1-dimensional commutative ring, finitely generated 
over a finite field. Let A=R[T]. We ask when GL4(/4) is finitely presented. 
Solution: Let cpn denote substitution of T" for T. Let / > 0 . Put V„=Ki((p„). 
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As cpn makes A into a free module of rank n over itself, we also have a transfer 
mapF„: K^Äj^K^A), such that ^ „ ^ « ( i d ) . Further, if aÇ.NKi{R) = 
ker (£j 04)-^(2?)), there is a natural number M such that jF„(a)=0 for 
n^*M. (This is clear in BQ(Nil) context.) From these properties of Fn9 Vn it 
follows (cf. Farrell) that NK^R) is either zero or not finitely generated. By Vaserstein 
A satisfies SR3, so that Kt(49 A)c*Ki(A) for i = l, 2. 

Now suppose R is regular. Then Ki(A)^Ki(R) is finitely generated by Quillen, 
so KX(49A) and K2(49A) are finitely generated. It follows, cf. Soulé and Rehmann, 
that GL4G4) is finitely presented. (For smaller matrices such an argument would 
fail. Behr has shown that SL3(FJT]) is not finitely presented, despite the fact 
that SK1(39Fq[T])=K2(39Fq[T])=0. Now if q=2 note that SL3(FJT]) = 
GL3(F„m).) 

Conversely, suppose GL±(A) is finitely presented. Then Kx(49 A) is finitely 
generated, so NK±(R) is finitely generated and thus NK1(R)=Q. By Dennis there 
is a "noncanonical" homomorphism p: H2{GL^{Aj)^K2{A) whose composition 
with H2{E±(A))-*H2{GLM)) is the usual map H2{E^A))-^K2{A). So p is 
surjective. Now H2 of a finitely presented group is finitely generated so NK2(R) 
must also be zero. By Vorst this can only happen if R is regular. 
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