Injective Stability for X,

Wilberd van der Kallen

$i1. Introduction

1.1 We want to prove the following Theorem and some non-commutative

variations on it.

Theorem 1 Let R be a commutative ring with noetherian maximal
spectrum of dimension d, 4 < ». Let n > d + 2. Then the natural
map Ke(n,R) - K2(R) i8 surjective and the natural map

K2(n + 1,R) = K2(R) is an isomorphism.

1.2 The proof of Theorem 1 is given in §82,3,4,5. (In §5 we deal
with a special case). In §6 we extend the Theorem tc some non-commu-
tative rings. In §7 we give some examples of non-stability for K2,
based on homotopy theory of real orthogonal groups. In §8 we recall
the connection with second homology groups of E(n,R) and with

Quillen's non-stable K-groups.

1.3 The statement on surjectivity in Theorem 1 has been proved by
Keith Dennis and also by L. N. Vaserstein. (See [ 5], [22], [28]).
We refer to it as "surjective stability for KE"' In particular, this
surjective stability implies that K2(n + 1,R) ~» K2(R) is surjective.
(Usen+1>d+3>d+ 2). So what we still have to prove 1s that
it is an injective map. ("injective stability"). We will show that
St(n + 1,R) =» St(n + 2,R) is injective. This implies that

Ke(n + 1,R) ~» K2(n + 2,R) is injective, and, substituting n + k for
n, one sees that K2(n + k + 1,R) -+ K2(n + k + 2,R) is injective for

k > 0. Taking the 1imit gives the required result.
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We will also need "injective stability for Kl", i.e. the fact
that Kl(n,R) - Kl(n + 1,R) is injective for n > d + 2. This result is
due to Bass and Vaserstein and also follows fr9m the same arguments as
surjective stability for K2. Actually thése earlier results are wvalid
in the more genersal case of a ring satisfying Bass's stable range con-
dition SRn' (The ring R 1is the Theorem satisfies SRn by a well
known result of Bass). For our Theorem we will need more than SRn
however. In the case n = 2 we wlll use that we are dealing with
semi-local rings (d = O). When n > 3 we ﬁill use that the ring
satisfies a very technical variation on the condition SRn. We will
prove our variation on the statement that R satisfies SRn
esgentially by repeating the Elsenbud-Evans proof, following Swan.
(see [ 91, [25 1).

Once we have shown (in $2) that R éatisfies the technical con-
dition we start our construction of a map p from St{(n + 2,R) into
a structure called left. The injective stability will follow from
the fact that the composition of ¢ with the homomorphism
St(n + 1,R) » St(n + 2,R) 1is injective. The global features of the
construction of p and left are based on'Matsumoto's proof for his
presentation of the K, of a field. {see [(19], [20]). We modify
Matsumoto's approach by the introduction of a chunk, in analogy with
the construction of a group scheme from a group chunk, cf [2 ]. (T
have used the same idea before, in presenting the K, of a "3.fold
stable" ring, ef [16], [15]). -

1.4 As I have mentioned before, I rely on earlier stability results.
The proofs given by Keith Dennis for these results inspired some of
the arguments in the present proof. What is more, I use the defi-
nition of the chunk which he suggested to me when we both attended
Queen's Conference on Commutative Algebra in July 1975. I would like

to thank him for the very instructive discussions we had there. I
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am also indebted to E. Friedlander, D. Kahn and M. Barratt for telling
me the basic facts of homotopy theory of orthogonal groups which I

use in §7. And I thank Vieki Dévis for typing the manuscript. I
enjoyed the hospitality of Northwestern University during the time

this research was done.

1.5 Let us now discuss in more detall the construction of p and
left. First one defines a chunk C which is intended as a model for
a plece of St(n + 2,R). The building block for constructing C is
St(n + 1,R), which is considered to be "known". (In the case of
3-fold stable rings the building block was R*, the group of units of
R. That made it possible to find a presentation for K2(R). But in
the present situation (i.e. for d > 0) the 0ld chunk is too small and
we don't get a presentation for K2(R).) The chunk allows a natural
map #: C - St(n + 2,R) which is hoped to be injective. (If 7 is
injective then C can be considered as a good model for 7(C). The
problem of injective stability is actually equivalent to injectivity
of 7). The purpose of using C 1s to avoid the "unknown" set 7(C)
which lies inside the "unknown'" group St{(n + 2,R). Instead we now
have the "known" set C constructed from the "known" group

St(n + 1,R). In St(n + 2,R) one has for each element x a left
multiplication Lx: y ™ xy. We can restrict its domain and codomain
to 7(C) and obtain a partially defined map 7(C) » w(C) which has
domain w(C) N (x'lv(c)). One now looks for its counterpart in the
chunk, i.e. one looks for a partially defined map £{x) from C to C
with oL (x) = L °m. For some x the choice of £(x) will be ob-
vious, but not for all x. In any case, it 1s clear that one wants
£ (x) to be defined on the full set 7 X(w(C) N x~*7(C)). Otherwise
it gives incomplete information. Suppose one has a formula for £(x)
which gives values on a domain that is too small. One way to enlarge

the domain of £ (x) is to use the counterparts H(y) of right multi-
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plications Ry: z » zy. If the model is going to be correct then L£{x)
and R (y) will commute, because L, and Ry'do. That gives conditions
for the values of L {x) at points where one doesn't yet have a formula.
In order to define the extension of £ (x) by means of these condi-
tions, one has to find out whether the conditions are consistent with
each other. That leads to the problem: Does £ (x) commute with

R (y) as far as the maps are defined? (That problem arises each time
one introduces a new £ (x) or R(y)). We define left as the set of
maps & which have domains of the proper size, satisfy wed = L °T
for some x, and commute with a selection from the maps R (y).
Ancther way to enlarge the domain of a map £ (x) is to use the fact
that one wants £ (p)£ (a) to coincide with £(pq) at points where

the composite map £ (p) £ (q) is defined. This leads to the problem:
Do the £ (x) combine in the expected way? Some of the answers will
also be needed in the construetion of p.

r £, £ are elements of left then Lo f denotes their com-
position as partially defined maps. We cén show that there exists
exactly one element f * f of left which extends L o £ . So left
i1s now a set with composition +*. This composition is associative.
One expects left to be a group, isomorphic to St(n + 2,R). Anyway,
the units of left form a group Uleft with * as composition. We
loock at those elements of Uleft which corfespond to generators of
St{n + é,R). They satisfy a set of defining relations for
St{n + 2,R). This yields a homomorphism p: St(n + 2,R) = Uleft.
Because St(n + 1,R) has been built into the chunk it 1s easy to
check that the composition of p with St{n + 1,R) = St(n + 2,R) is
injective. End of sketch. '
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1.6 Professor A. Suslin recently informed me that he obtained, in
collaboration with M. Tulenbayev, a result similar to the main re-

sults of this paper. I quote from his letter:

"Let A be an associative ring. Then under n > s.r. A + 2 the
canonical map St(n,A) » St(n + 1,A) is inJective and consequently

K2,n(A) + K,(A) 1is an isomorphism.”

I presume that s.r. is the same as s.rk. in [27], but at this time

no further information 1s avalliable.
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§2. Multiple Stable Range Conditions.

2.1 Rings are associative and have a unit. TLet R be a ring. Re-

m
call that (bl,...,bm)eRm is called unimodular if 3 Rb, = R. If R
T i=1

is commutative then we may also say that (bl,...,bm) is unimodular

m
if = biR = R. We say that R satisfies SRn if the following holds:
i=1

Given a unimodular sequence (or column) (bl,...,bn) there are

rl,...,rn_leR such that (bl + rlbn,...,b + rn-lbn) is unimodular.

One reason to recall this definition is that the literature is not

n-1

unsnimous: One also finds the notation SRn-l for what we call SRn.

2.2 Definition Let c¢,u,n,p be natural numbers with
e>u>n-1,p>1. We say that R satisfies SR-(c,u) if the
following holds: Let Al,...,Ap be matrices of size (n-1) x ¢. TFor
each 1, let Ui be the submatrix of Ai consisting of the last u
columns. Assume that for each 1 the matrix Ui can be completed,
by adding rows, to a product of u %X u elementary matrices. Then

there 1s a column AeRc"l

such that Ai(i) is a unimodular column for
each 1. 8o the property SRg(c,u) gives, for each set of matrices
Al"“’Ap’ which satisfy the condition on the Ui’ a columm A which

behaves well with respect to Al""’Ap simultaneously.

Comment If ¢ >u>n-~1 then SRi(c,u) 1s automatic. One can show
by an argument of Vasersteln that SRn impiies SRi(c,u) for any ¢,u
with ¢ = u > n - 1. This explains why we use the subscript n,

given the convention in 2.1. (See also 3.37).

2.3 Notation We say that R satisfies §§n if 1t satisfies SR,

i
SRg(n + 2, n+ 1), SRn+1(

Eﬁn is Just shorthand for a list of conditlons which we happen to

n+2, n+1), SB,,(n+2, n+2). So

need. It is not clear what the hierarchy 1s for the conditions in
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the 1ist. Tt may be that SRi(n +2, n+ 1) actually implies SR .

2.4 THEOREM 2 TLet R be a comnmutative ring with noetherisn maximal
spectrum of dimension d, d < ». Then R satisfies Eﬁn for

n > max(3,d + 2).

Comments Theorem 2 is certainly not the strongest result one can ob-
tain along these lines. See for instance Theorem 3 below (in 2.11)
and remark 2.12. One should also prove a non-commutative version of

Theorem 2. This 1s done in Section 6.

2.5 The proof of Theorem 2 is given in the remainder of Section 2.
(The idea is to copy &3 of [25], with minor adaptations). Instead of
working with the maximal spectrum it is more convenient to work with
the so-called j-spec. Its points are the prime ideals which are
intersections of maximal ideals, and the topology on j-spec is
("nduced from) the Zariski topology. As the points of j-spec corre-
spond to the irreducible closed subsets of the maximal spectrum, it is
clear that j-spee has the same dimension as the maximal spectrum.

Fix R as in Theorem 2. It is well known that R satisfies SRn S0
we need not prove that. As an 1llustration we will prove

SRg(n + 2, n+ 1). Then we will indicate how to get

SR3 (n+ 2, n+2), SRﬁ+1(n + 2, n+ 1) and, more generally, how to

n+2
prove Theorem 3 below.

2.6 Letm>1, s> 1, yej-spec. Let (al,...,am), (bl,...,bm),
(egs---,c,) be sequences of elements of R®. (So ayeR® ete.) The

letters a,b,c represent Al,Ag,A2 respectively, where A, is as in 2.2.
- 1

Definitions Let V(y) be the irreducible subset of J-spec corre-

sponding to y. So V(y) = closure of {y], and y is the generic
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point of V(y). We put d(y), the "depth" of y, equal to the dimen-
sion of V(y). Let k(y) be the quotient field of R/y. There is a
natural map RS - k(y)S whiech we denote by £ » T. We say that the
system (al,...,am), (bl,...,bm), (cl,...,cm) is y-basic if (A) or
(B) holds, where

(A): The field k(y) has two or three elements and there are Ky ek(y)

such that the three vectors aq + Mols + e+ M8
Ei + u25é + .. mﬁﬁ, c + u2c2 cae + uﬁEm are non-zero.

(B): The field k(y) contains at least four elements; the vectors
'51,...,Eﬁek(yf;form a system of rank > min(m,1 + d(y)) and the same
holds for Bi,...,Eh and for Ei,...,Eﬁ.

We say that (al,...,am),(bl,...,bm),(cl,...,cm) is basic if it is
y-basie for all yeJ-spec. We use this definition for any pair of

integers m,s withm > 1, s > 1. We call m the length.

2.7 Lemma Let (al,...,am), (bl,...,bm); (cl,...,cm) be basie,
m > 1. Then there are tl,...,t m-1 eR such that

(al + T 1% -0y T tm 1 m)’ (b + t1 m’ "’ ’bm—l m 1 m)’

(c + tiep, .. a,e 1 tm—lcm) is also basic, with length m - 1.
Proof We will first show that, at all but finitely many primes, the
new system is automatically y-basiec, regardless of the choice of the
ty- So suppose (a1 + tyag,-oesay 4+ tm_lam), (b + tyb, ..,

(cq + tyep,---) is not y-basic. If k(y) has less than four elements,
then V(y) is an irreducible component of the closed set

{z ej-spec £0_fez for all £eR}, because this set only contains
maximal ideals. So there are only finitely many y such that k(y)
has less than four elements. We may therefore assume that k(y) has

at least four elements. Without loss of generality (3 times finite

is finite) we may assume that the rank of Ei + f}am,...,im_l + Em—l m
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is strictly smaller than min(m - 1,1 + d(y)). (Note that m - 1 is
the new length). As we also knoﬁ that the rank of Ei,...,Eﬁ is at
least min(m,1 + d(y)), the rank must have dropped when passing from
(al,...,am) to (a:L + tqas..esay g F tm-lam)‘ It cannot have dropped
by more than one, som > 1 + d(y) and the rank of Eﬁ,...,ﬁh is
1+ d(y). We therefore want to show that it occurs only for finitely
many y's that at the same time m-> 1+ d(y) and 1 + d(y) =
rank(Ei,...,Eﬁ). As 0 < d(y) < d it is sufficient to show this for
a fixed value of d(y), say d(y) = r - 1, relt. We claim that y is
a generic point of a component of the closed set
X = { xej-spec! the images of Byseces8y in k( x)s form a system of
rank < r). (From this claim it follows that there are only finitely
many possibilities for y). So suppose y is not such a generic
point. Then there is x < y with xeX. One gets d(x) > d(y), so
min(m,1 + d{x }) > r. But (al""’am)’ (bl"“’bm)’ (cl,...,cm) is
x -basic, so this is impossible. {Note that k({x) is infinite}.

We have proved now that it only can go wrong at finitely many
primes, say yl,...,yg We may assume that vy < yj implies j < 1i.
(otherwise renumber). Then there exist Ti€R with Ti¢yi but Tieyj

for j < i. (Well known). Writing t; = 2 Py T4 We discuss the
J

primes yl,...,yg one by one, starting with Yy and choosing Pis to

fit the needs of yj. In other words, we suppose P, . to be given for

dJ

Jj < g and we look for p.1q such that the result will be yq—basic.

(this doesn't depend on the Py with j > 4). So fixy = Vg Iir

k
(Vg

?é = 1, because ?g = 1. But then it is obvious from the definition

of y-basic that one can choose the °ij

at least four elements then we have m > 1 + d(yq) and we have

} has less than four elements, we may as well assume that

appropriately. If k(yq) has

i

rank(El,.w.,Eh) 1+ a(y) or rank(Ei,...,Bﬁ) =1+ d(y) or
rank(Ei,...,Eﬁ) = 1 + d(y). The worst case is that all three of the

ranks equal 1 + d(y). (If rank (El"“’ﬁﬁ) # 1 + d(y) then
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rank (D ,...,Bﬁ)_z 2 + d(y) and we don't have to look at the Bi). We
have to make sure that neither of the three ranks drops below 1 + d(y)
when passling to the new system. This is achieved as follows. First

one checks that we can e¢hoose the Pig? with induction on 1, such

a
that, for any cholice of those p's that are still to be considered,
rank(a, + T2 ,...,a; + tia) >2+ d(y) + 1 - m. (This is an
exercise in rank counting). One observes that at each step at most
one value of Eiq fails to give the inequaiity. Now k(yq) has at
least four elements, s0 R/yq has at least four elements. Therefore

we can avoid the failing values of Fiq for the a's, the b's, the ¢'s

simultaneously.

2.8 Corollary Let (aj,.-.,a ), (by,---,b), (eq,---,c,) be basic,

m > 1. Then there are tg:---:tm such that aq + t2a2 + -+ tmam’
b1 + t2b2 + -+ tmbm, cq + t2c2 + e+ tmbm is basie with
length 1.

Proof Apply Lemma 2.7 repeatedly.

2.9 We want to apply the Corollary to the columns of the matrices
Al’AE’AB occurring in the conditions SRg(n + 2,n+ 1) and

SRD,,(n + 2,n + 2). Let us do SR (n + 2,n + 1) first. So we have
matrices A),A,,A; of size (n - 1) x (n + 2) and the last n + 1
columns of Ai form a system of rank n -~ 1 for all yeJj-spec. Note
that n = 1 > 1+ d> 1+ d(y) for all yej-spec. Let 8ysevs8p.0 be
the columns of Al’ let bl""’bn+2 be the columns of A2 and let
Cys--3Cpin be the columns of AB' We want to show that this is a
basic system. If k(y) has at least four elements then the system is
y-basie. So consider y which has a smaller k(y). The questlon is

whether there are uiek(y) such that the vectors

8y * HgBy t et Mo oB ey By b e bl B ey C b e R a0
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are non-zero. What choices of the M4 are wrong for the first vector?

nt+l

They form a plane in k(y) , because rank(Eé,...,Eh+2) =n-1. So

to see whether we can get all three vectors non-zero, we just look

n+1

whether k(y) can be filled by three planes. It can't 1f n > 3,

even if the field has only two elements. So that is the reason we
have n > 3 in Theorem 2. We now apply the Corollary. It gives us

A = (t2,...,tm) such that a; + toas + o0 4+ tn+2an+2’

bl + t2b2 + -+ 1 b + e+ t 1s a basic system

2’ €1 mt+2%ni2
with length 1. This means that we get three vectors whieh have non-

n2

zero images in k(y)n'l for all yej-spec. In other words, we get

three unimodular vectors. So that proves SRi(n + 2,n + 1). The

3
Rn+

4
checking the property SR;+2(n + 2,n + 2) for small fields k(y).

proof of SR, ,(n + 2,n + 2) is similar: This time it boils down to
The wrong points in k(y)n+1 111 at most three lines that don't pass
through the origin or two lines and the origin. So not all points
of k(y)n+1 are wrong, even if n = 2. That proves SRg+2(n + 2,n + 2)
for R. And, as we didn't need the restriction n > 3 here, we see
that 832(4,4) holds for a commutative semi-local ring. This is

easy to prove anyway, but let us record it:

2.10 Proposition A commutative semi-local ring satisfies SRZ(A,A).

2.11 What the method of proof actually shows is the following:

THEOREM 3 Let R be a commutative ring with noetherian maximal
spectrum of dimension d < . Letec >u>n-1>d+ 1 and p > 1.

it SRg(c,u) holds for all residue fields of R then 1t holds for R.

Proof If k(y) has at most p elements then ?(p"l)! is zero or one
for Tek(y). So y will be a generic point of a component of

{ zej—spec!f(f(p'l)! - 1)ez for all feR). There are only finitely
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many such primes y. One treats them as the y's whose residue fields
have less than four elements in 2.6 throuéh 2.9. The remaining y's
are treated as the y's whose residue fields have at least four
elements in 2.6 through 2.9. And instéad of using three sequences

(al,...,am), (bl,...,bm), (cl""’cm) One now uses p sequences

of length m.

2.12 Remark One can refine the result, cf. Bass, as follows: Say
one has finitely many subspaces of the maximal spectrum (not j-speec)
with the full maximal spectrum as the union. Then 4 can be re-
placed by the maximum dimension of these subspaces. This is not al-
ways the same as the original d. (See pége 173, §2, Ch. IV in [4]).
One adapts the proof by defining for each of the subspaces the

analogues of Jj-spec and the depth function d(y).

2.13 For proving Theorem 2 we still have to show that

SRi+l(n + 2, n + 1) holds for fields, when n > 3. This follows from

the fact that one cannot £111 k(y)®'! with four lines.

2.14 Remark. Note that §R2 holds for a semi-local commutative ring

which doesn!'t have any residue field with 2 or 3 elements.
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§3. The Chunk
%.1 In Sections 3 and 4 we will prove

THEOREM 4 Let R satisfy SR, n > 2. Then the natural map
K2(n + 1,R) - Kg(n + 2,R) 1s an isomorphism.

Comment; We don't require R to be commutative. As surjective
stability is known even under SR (or SRn+1) we only have to prove
that the map is injective. In most of the proof we only use SRn,
SR2+2(n + 2, n+ 2). BSo most of the proof also works for commutative
semi-local rings. In Section 5 we take a closer look at the case of
commutative semi-local rings. There we will repair the proofs which
involve SRﬁ+1(n + 2, n+ 1) or SRz(n + 2, n+ 1), using properties of
commutative semi-local rings instead. We only need to repair proofs
for n = 2 because this is the case of Theorem 1 which is not covered
by Theorems 2 and 4. It turns out that our proofs in Section 5 are at
least as complicated as the proofs they are replacing. So in that
sense the higher dimensional case is easier! (Of course multiple
stable range conditions, if true, are much easier to prove in the

semi-local case).

3.2 In the proof of Theorem 4 we never use SRn directly, but only
some of its known consequences. If we take that into account we get

the followling version of Theorem 4:

THEOREM 4! TLet R be a ring, n an integer, n > 2. Assume that

(1),(11),(i11) are satisfied, where

(1) E(n,R) acts transitively on the set of unimodular columns of

length n and E(n+1,R) acts transitively on the set of unimodu-

lar columns of length n + 1.
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(1i) The natural map Kl(n,R) - Kl(n + 2,R) is injective.

: 4
(1i1) SR2(n+ 2,n+ 1), SK  ;(n+2,n+ 1), SR ,(n + 2,n + 2) hold
for R.

Then the natural map Kg(n + 1,R) = K2(n + 2,R) is injective.

Comment It is not elear whether Theorem 4' is actually sharper than
Theorem 4. We will not mention Theorem 4' after this, but just
prove Theorem 4. Note that (i),(1i) imply that the natural map
Kl(n,R) - Kl(n + 1,R) is an isomorphism, so that the map

Kl(n + 1,R) = Ki(n + 2,R) is also injective. (See [ #],Ch.V,(3.3)
(111)).

%,.%3 So let us assume that R satisfies éﬁn’ n > 2. (We will
indicate which arguments use more than SRn, SR2+2(n + 2, n+ 2)).
3.4 Notations Let I and J be sets. Then St(I x J,R), or just
St(I x J), is the group with generators xij(r), where ieI, jed,

i# j, reR, and defining relations

(1) xij(r)xij(s) = xij(r + s). (Here one assumes, of course, that
eI, jeJ, 1 # j, reR, seR).

(2) [xij(r)’xjk(s)] = xik(rs), if this makes sense, where [p,q]

stands for pg p'lq'l. (We need JjeI N J and i # k among other
things) .
(3) [xid(r),xkz(s)] =1 if 1,j,k, ¢ are distinet and the expression

makes sense.

I
]

if this makes sense.

(4) [J&J(r)sﬁk(s)] =

if this makes sense.

|
]

(5) ["lj(r)’xkj(s)] =

In the ecase that T = J = {1,...,m) we just write St(m,R) for
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St(T % J,R), as usual. We also write St(m) for it. If I cTI', J <& J,
there is an obvious map from St{I x J) into St(I' x J'). We will
abuse notations and denote both the generators of St(I x J) and the
generators of St(I' x J') by xij(r). This is a major abuse because
the natural map need not be injective. In fact, that is what this
paper is about. Instead of using different notations for an element
x of St(I x J) and its image in St(I' x J'), we will indicate in
what group the notation is to be interpreted. So if x,yeSt(I x J),
the statement "x = y in St(I' x J')" will mean that the images of x
and y in St(I' x J') are equal. We use this conventlon in order to
avoid complicated notations. Let us glve one more example to show
how the convention works: Consider x = x12(r) in st(2), y = x23(s)
in s5t({2,3) x {2,3)). Then [x,y] = %5(¥s) in St(3). Here x

stands for the image of xle(r) in St(3), y stands for the image of
x23(s), under a different map!, and X13(rs) is just a generator of
st(3) .

It will be convenient to have notations for certain subsets of
{1,2,...,n + 2}. (The convention which we just introduced forces us
to mention groups of type St(I x J) all the time). We use [k] for
the set {1,...,k} and stars for complements: (1)* = {2,3,...,n + 2},
{n + 2)* = [n+ 1] etcetera. Notice that the groups St({1} x [n + 2])
and St({1} x {1)*) are identical. We will use both notations.

If I,J € [n + 2] then there 1s a natural map mat from St(I x J)

into the elementary group E(n + 2,R) = E R). (ef.[20]). We call

n+2(
its image E(I x J). The image of St(m) is called E(m), for

m<n+ 2. (We never go beyond n + 2). We will say that

[x,y] = xiB(rS) in E(3), where x,y,xiB(rs) are as in the example
above. So we could as well write mat[x,y] = mat(xiB(rs)) or
[mat(x),mat(y)] = mat(xlj(rs)). (The map mat is a homomorphism and

E(3) is an honest subset of E(n + 2)).
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3.5 Consider St(I x J) when I N J = #. One easily sees that

RIxJ

(aij)ieI jeg ” xij(aij) provides an isomorphism from

i
leI, jeJd
onto St(I x J). The homomorphism mat: St(I x J) - E(I x J) 1is an

isomorphism in this case, because one can still read the a; 5 off from

the image in E(I x J). More generally, say K,L,M are disjoint subsets

i

of [n+ 2] and I =KU L, J= LU M. Then the map

St(X x J) » St(I x J) is injective, because mat: St(K x J) = E(nt+2)
is injective. So we may denote the image of St(X x J) in St(I x J)
by St(K x J) again. It is a normal subgroup. Similarly St(I x M)
can be identified with a normal subgroup of St(I x J). The action by
conjugation of St(I x J) on St(XK x J) can be studied inside E(m+2),
using the isomorphism mat: St(K x J) » E(X x J). (Same for action

on St(I x M)). Sending xij(r) to x, ;(r) for reR, ieL, jeJ and

1]
St(K x J) to 1 gives a homomorphism mp ¢ 8t(I x J) St(L x J) with
the natural map St(L x J) » St(I x J) as a cross section. One sees
that St(I x J) 1s the semi-direct product of St(L x J) and E(K x J),
with the aection coming from conjugation in E(n+2). Recall that a
semi-direct product H ¥ G is given by three data: A group G, a
group H and an action of G on H. Say’gh denotes the value re-
sulting from the action of geG on heH. Then H X G consists of pairs
(h,g) ,heH,geG, with multiplication (h,g)(hy,g;) = (h ®hj,g g)). We

can summarize the discussion as follows:

St(I x J)

I
1

St(K x J) 1 St(L x J) = E(K x J) % St(L x J)

H
1t

St(T x J) = St(I x M) x St(I x L) = E(I x M) ¥ St(I x1L).

3.6 Definitions Low = St([m+2] x {m2}*), Up = St([n+2] x {1}%)

and the mediator is Med = St([m2] x {1,m+2)*). The chunk C con-
sists of the orbits of Med in the set Low x Up under the action
shift which is defined as follows: shift (g)(X,Y) = (X t,gY) for

geMed, XeLow, YeUp, where we abuse notation, as promised. (From the
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context it follows that (Xg‘l,gY) must be an element of Low x Up, so
¢! must stand for the inverse of the image of g in Low and the
other g must stand for the image in Up). We denote the orbit of
(X,Y) by {X,Y). One can also say that (X,Y) is the equivalence class
for the relation: (X,Y) ~ (X',Y') if there is geMed such that

Xt = Xg'l in Low and Y' = gY in Up.

Digression (Thls piece will not be used).
The proofs have been written without pictures, but of course
they were not found that way. 1In order to understand what is going
on, one may want to pilecture the elements of the St(I x J) like
‘ matrices: Say n=3, son+ 2 = 5. Then one would picture an arbi-

trary element x of St([5] x {5}*) as

* % ¥ ¥ 0

* ¥ * * 6] 8

¥ ¥ X % 0 or A 0

* % % ¥ 0 . 0
b 1

¥ ¥ ¥ % 1 J .

with AeSt(4), per™ = st({5} x [5]).

Here we use the semi-direct product: St([5] x {(5}*) =
St({5} x [5]) x St(#). We can also write

0\ /[1]

1 0
1
0 1

0
0
oooo[%[ b 1]

X = A

In
we do not mean to say that A is a matrix. We mean
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to say that A lives on the indices on which it is pictured. (So
this is more than saying that the entries of mat(A) fit the picture).

Some of the rules for matrix multiplication are still valid. For

instance,
0\ 0 0
0 0 0
A 0 B 0 | = AB |0 | with ¢ = b + a mat(B).
0 0 0
) 1] b 1] \ c 1

(Notice that one multiplies block-wise).

The following division into blocks will play an important role

.| . . The big block in the middle corresponds to

A B st({1,5}* x {1,5)}*) whieh is isomorphiec to St(3).

corresponding to St(4), and

0
We have 0
0
0

Vo 0o 0 o]l

-

0O 0 O O\ corresponding to St({1}* x {1}*), which is iso-

morphic to St(4).

O O O O]

We will use elements of type

IO O O O

|[. They form Low.
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The elements [[1 form Up, and the
0
0
0
0
1 0 [1]o o o o\[[1] |o\
0 0 0 0 oO|1]0 O O
0 o |=1] o o 0 6/1]0 0 |form Med.
0 0 0 0 0o 0 010
0 1 o 0o o0 ol1fflof 1]
"Complementary" to Low one has the [1] 0 vy
1 Vs
% (V) = 1] | vs |
1 vy |
0 1/
1
1 0
and complementary to Up one has the xl(w) = w 1 s
1
Y

W o= (W2’W3’W4,W5) .
(We also write columns in the form (*,...,*), which is of course

more sultable for rows).

The x5(v), xl(w) will be very important. We will apply the multiple
stable range conditions to v,w. For instance, say one has some

freedom of choice for v in

[T ) 0 \o 1] —
110 0 0 10
1 v T 0 = T 0 1 z
1 ,- 0 1

0
0 1]/ \ 0o o o0 o[1] 0 0 0 o0][1] 0 1
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Then one may arrange that (22,23,24) is unimodular. (If one has full
freedom of choice then this 1s obvious. The conditions come in if

one wants to achlieve more with v at the same time).

The basie pattern thus is e . One sgees in it

the outlines of Up, Low, Med, and therefore also the places where
the co-ordinates of the "complementary" groups are situated, where
{X5(V)IV€RA} is the group complementary to Low, for instance. End

of dlgression.

3.7 Lemma Med » Low and Med » Up have the same kernel N.

Comment So we may identify Med/N with a subgroup of Low and also
with a subgroup of Up. Then we can say that (X,¥) ~ (X',¥') is
equivalent to: There is geMed/N with X' = Xg'l, Y' = gY¥Y. Now
there is less abuse of notabion. In particular, (X,Y) ~ (X',Y)

implies X = X'.

Proof of Lemma Let g be in one of the two kernels. Then

mat(g) = 1 in E([n + 2] x {1,n + 2}*). The group Med is a semi-
direct product of St{{i,n + 2} x {1,n + 2}*) and

st({1,n+ 2}* % {1,n + 2)*), and a similar decomposition holds for
E([n + 2] x {1,n + 2)}*). The restriction of mat to the normal sub-
group 1s an isomorphism, so g must be in the subgroup

St({1,n + 2}* x {1,n + 2}*). (Wwe will usé this argument often).
Say the image of g in Low is trivial. Then its image in St(n+1)

must be trivial, again because of the semi-direct product structure,
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this time of Low. We claim that its image in St({1}* x {1}*) must
also be trivial. One passes from st({1l,n + 2}* x {1,n + 2)%) to
St(n + 1) by adding an index 1, and one passes from

st({1,n + 2}* x {1,n + 2}*) to St({1)}* x {1}*) by adding an Index
n+ 2. But it can make no difference for g whether the new index
is called 1 or n + 2, whence the claim. As Up containsg

st({1)* x {1)*), the image of g in Up is trivial. The other part
of the proof is similar.

3.8 Notatlions We have a natural map m:C = St{(n + 2) given by
7 {X,Y) = XY. It is clear that 7 1s well-defined. We denote the
composition of 7 and mat simply by mat again. So now we also have

mat: C - E(n + 2) with mat {(X,¥Y) = mat(X)mat(Y).

3.9 Definitions For geLow we define L(g): Low x Up < Low x Up by
L{g) (X,Y) = (gX,¥). And we define £(g): C > C by

£ (g){X,Y) = {(gX,¥). So £ (g){X,Y) is the class of L{g)(X,¥). It
is easy to see that f(g) 1s well-defined, that it is a permutation
of C, that £ (gh) = £(g) £ (h) for g,heLow. Similarly, for feUp,
we put R(f)(X,¥) = (X,¥f) and QR (£){X,Y) = {X,¥f). Taking £ and Q&
together one gets, Tor geMed the permutation Iné(g) of C given by
3t (8)(X,Y) = (gX,¥g™h).

%,10 Proposition (The squeezing principle).
Tet 1 <1 <n+ 2, Xest({1}* x {n + 2)*), Yest({1)* x {1}*). sup-
pose that XY = 1 in St({1}* x [n + 2]). Then {X,¥) = (1,1) in C.

Comment We call it the squeezing principle because 1t shows how one
can prove an equality in the chunk by sdueezing the problem into
some St({i}* x [n + 2]).



98

Proof of Proposition Write X as XX, with Xjest({1}* x {i,n + 2)*),

X,eSt({1)* x{1}). (Thils is a new form of the abuse introduced in
3.4. We really mean X;est({1)* x {i,n + 2}*), and we refer to an
element of St({1i}* x {n + 2}*) when writing X,X5) . Write Y as
Y,¥, with Yoest({1)* x (1)), Y est({1)* x {1,1)*). It follows from
the decomposition of E({1i}* x [n + 2]) as a semi-direct product that
XY, = 1 in E({1)* x {1)), hence in st({1)* x {1}), which is iso-
morphic to it. So (X,¥) = {X;,Y,) and we may as well assume
X=X, Y=Y, Asmat(X) = mat(Y¥""), the matrix mat(X) has trivial
columns at positions 1l,i,n + 2. (A column or row is called trivial
if it 1s the same as in the identity matrix). It easily follows
that there is mest({1,n + 2} x {1,i,n + 2}*) such that mat(X)mat(m)
also has trivial rows at positions 1 and n + 2. (and at position
i of course). Replacing (X,Y) by (Xm,m‘lY) we may now assume that
mat(X) has trivial rows and columns at positions 1,i,n + 2. The
same will hold for its inverse mat(Y). So now we have
Xest({i}* x {1,n + 2)*), Yest({1)* x (1,1}*) with XY = 1 in
St({1}* x [n + 2]) and the matrices have these trivial rows and
columns. Because St({1}* x [n + 2]) is a semi-direct product it is
easy to see that actually XY = 1 in St({1}* x {1)}*). Write X as
X5X), with Xyest(ln + 2) x {i,n + 2)%), X3€st({i,n + 2)% x {i,n + 2}*).
As mat(X) has a trivial row at position n + 2 the factor X, has to
be 1. So now we have X = X3 and we may say
Xest({i,n + 2}* x {1i,n + 2}¥). Similarly we get
Yest({1,1)* x {1,1)}*).

Consider [X,xi,l(t)] in St{{n + 2}* x {1i,n + 2)*). Tt lies
in the normal subgroup St{{i)} x {i,n + 2}«), which is mapped iso-
morphically into E(n + 2). But in E(n + 2) we know that mat(X) has
trivial rows and columns at positions 1 and i, so the commutator 1is
trivial. Similarly [X,xl,i(t)] =11in st({i,n + 2}* x {n + 2}%).

So X commutes with Wi’l(l) = xi,l(l)xl,i('l)xi,l(l) in
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st{{n + 2}* x {n + 2}*). On the other hand

wi’l(l)xl,k(a)wi,i(l)_l = Xi,k(a)’

Wi,l(l)xk,l(a)wi,l(l)-l = xk,i(a), Wi,l(l)xk,z(a)wi,l(l)-l = xk,z(a)
if seR, k # 1, k #2, + #1, k¥ 1, 1 #1, kyge[n+ 1]. It follows
that conJugation by Wi,l(l) corresponds to the automorphism
switch(1,1) of St{n + 1) which is induced by the permutation of

[n + 1] which switches 1 and i, and leaves the other indices fixed.
We see that X = Wi’l(l)XWi’l(l)-l = switch(1,1)X in St(n + 1). Let
X' be the counterpart of X in St({1,n + 2)}* x {1,n + 2]}*) which
one gets from Xest({i,n+2}*x{i,n+2}ﬁ by replacing the indices 1 by
indices 1. We have X = X' in Low, so (X,¥) = {(X',¥) = (1,X'¥). To
prove the Proposition it suffices to prove that X'Y = 1 in Up. (This
is also necessary, by 3.7). The relation X' = switch(1l,1)X' in

St(n + 1) has a counterpart X' = switch(n + 2,1)X' in st({1)}* x {1}*),
because for X' there is no difference between 1 and n + 2. (Here
switch(n + 2,1) 1is an automorphism of St{{1]* x {1]*)). Replacing
the indices i1 by indices n + 2 one gets from X' to an element X" in
st({1,1}* x {1,1)*) with X' = X" in st({1}* x {1}¥). So we have to
show that X"Y = 1 in St({1}* x {1}*). This amounts to the same as
proving X"Y = 1 in st({1}* x {1)}*), because for X" and ¥ there is no
difference between 1 and 1. But in st({1}* x {1}*) we know that

XY = 1. And we also know that X = switeh(1,1)X in St(n + 1).

Again, as for X there is no difference between 1 and n + 2 we
also have X = switeh(l,n + 2)X in St({1)}* x {1}¥), 1.e. X = X" in
st({1)* x {1}*¥). So X"Y¥ = 1 in st({1)}* x {1}*) indeed.

3.11 Corollary (Squeezing principle reformulated).

Let X,X'est({1}* x [n + 1]), Y,¥'est({1}* x {1}*) for some
1<41<n+ 2. Suppose that XY = X'Y' in St({1i}* x [n + 2]). Then
{(X,Y) = {X',¥') in C.
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Proof One has {X"1x',Y'Y™) = (1,1) by the Proposition. Now apply
L(X) and A (Y).

n+1l ’
3.12 Notation Let veR™ ~, say v = (vl,...,vn+1). (One should
really write Vv as a column). Then we write xn+2(v) for the pro-
duct of the xi,n+2(vi)' Similarly, if w = (W2""’Wh+2) then xl(w)
stands for the product le(we) ce Xh+2,1(wh+2)‘ We also write
Xh+2(vl""’vn+1) for xn+2(v) and we write xl(WQ,...,Wh+2) for xl(w).

3.13 We went to define maps £(x,,(v)) for ver™ L

The general
case 1g too difficult to do right now. But let us look at the case
v; =0, X = xn+2,l(q), YeUp. In St(n + 2) one has

(x40 (V) 5 Xn+2,1(Q)] = x;(va). So it is rgasonable to put

L% (M) (40 1 (2)5Y) = (% (vo85- 5V 1950) 5%, 5 (V)Y) , and
,ﬁ(xh+2(v))(xh+2’l(q),Y) = class of this element

L(xnpo(¥)) (Rpyn,1 () 5Y).

We have to show that the resulting class only depends on the
class of (xn+2,1(Q)’Y)‘ So suppose (xn+2’1(Q),Y) = (xn+2,1(r),Y').
Then X, ;(a-T)emat(Med), so q = r. But then also Y = ¥' by 3.7.
So there is no other element of the same c¢lass which assumes this
simple form.

We have now defined £ (x,,,(v)){X,Y) in the case that v, =0
and that {(X,Y) contains a representative of a specific form.

1l guppose that

3.14 Now let TeSt(n + 1), YeUp, qeR, VeR
JSH_E(V)T = T’S’H—E(O’WE’“ .,Wn+1) in St(n + 2). We put

W= (O’WE"“’Wn+1)‘ Sow, =0andws= ggﬁ(T"l)v.

One is tempted to define lf(xn+2(v))<Txn+2’1(Q),Y) as being

£ (T) £ (K0 (W) ) <Ky 1(a),¥), where the latter is defined by 3.9
and 3.13. (Its image in St(n + 2) is like we want it). However, it

is not easy to check that this is a consistent definition: What
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happens if (Txn+2,1(q),Y> = (T'xn+2,l(q'),Y') with
xn+2(v)T' = T’xn+2(0,*,...,*)? (Stars stand for things which don't

need names. Two stars need not stand for the same thing).

%.15 Notation 1In the situation of 3.14 we put
L%, 0 (V) (Tx, 5 1(2)Y) = L(T) (% (WpQs - - - »Wp, 19,Q) s X o (W) . So
we do with the representatives what we wanted to do with the classes.

And we extended the definition in 3.13.

3.16 Lemma Let AeSt({{i,n + 2}* x {1,n + 2}*), TeSt(n + 1), YeUp,
qeR, veR™! such that both L(x,,,(v))(Tx,,, 1(a),¥) and
L(xn+2(v))(Txn+2’l(q)A,A-lY) are defined (as in 3.15). Then they

are in the same class.

Proof Using L(T) and R(Y) one reduces to L(xn+2(w))(xn+2’1(q),1)
versus L(Xy, () (Rpyp 1 (@AA™) = L(xyyn(0) (%o 1(2),47) -
One shows that they determine the same element of the chunk by
executing L(xn+2(w)) in both cases and then using A to transform
one representative into the other. The semi-direct product struc-

tures of St({1}* x {n + 2}*) and st({n + 2}* x {1]*) make this easy.

Remark We only needed to require that one of the two is deflned as

in 3.15. Then the other one 1is also defined.

3.17 Lemma Suppose in 3.14 that wy = w, = 0. Let
AeSt([n + 1] x {1,n + 2}*) such that x , ,(w)A = Ax 5 (0,%, ... ,%) .
Let BeSt + 2 * = T!

et Best({n } x {1}*) such that T:Sﬂ_e,l(q)AB T xn+2,l(*) in

Low for some T'eSt(n + 1). (See 3.14 for notations). Then

L(Xpy 0 (V) (Txpyy 0 1(0),¥) =~ L(%yp0 (V) (TR, 1 (2)4B,37171Y) .

Proof First note that, given A, the element B 1s unique, because
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B can be computed in E([n + 2] x {n + 2}*). Write A = AjA, with
Ajest({1) x {n + 2)}*), AyeSt({1l,n + 2)* x {1,n + 2}¥). In Med we
can write AB as A,B,A, with Blest({n + 2} x {1}*). By the previous
Lemma we can assume that A, = 1. And using R(Y) we can get rid of
Y. Now "execute" L(xn+2(v)) in both cases and use L(T) to get rid
of T. Then we have to deal with the case T =1, Y =1, A2 = 1,

v = w. But there we can apply the squeezing principle, with 1 = 2.
(see 3.11).

1

3.18 Definition Let TeSt(n + 1), veR™ -, qeR, YeUp be such that

xn+2(v)T = Txn+2(0,0,*...,*). Then we put
Jf(xn+2(v))(Txn+2,1(q),Y) = class of L(xn+2(v))(Txn+2,1(Q)’Y)' Tt
is easy to see from Lemma 3.17 that this 1s a congistent definition.
So now we have defined £(xh+2(v))(X,Y) for some more v and X.
One checks that our new definition is compatible with the one in
there is TeSt(n + 1) with (X,Y) = (Txn+2’1(*),*),
Koo (V)T = T o n+2(*). In particular £(x,,,(v)){X,¥) is then
2

defined by the definition above. (We say that it is defined at the
bottom because the relevant entries of mat(xn+1,n+2(*n and
mat(xn+2 1(*)) are in the bottom two rows). We will prefer to talk

]

about the case that £(x {X,Y) is defined at the bottom rather

n+2(v))
than the more general case covered by the definition. The reason
is that the notion "defined at the bottom" has a constant meaning,
while "defined" will have a different meaning when we will introduce

£ (%, »(v)){X,Y) In cases not covered by the present definition.

3.19 Given {X,Y)eC, what are the TeSt(n + 1) such that we can write
{(X,Y) = (Txn+2’l(*),*>? Write X as X;X, with Xjest(n + 1),
XesSt({n +2) x [n+ 1]). Using the semi-direct product structure

of Low one sees that a necessary and sufficient condition is that
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there i3 geMed with Xlg = T, So 1t only depends on Xl‘ In particu~
lar, 1f veR™L, Test(n + 1), BeSt({n + 2} x [n + 1]) then
g (xn+2(v))<TB,*> ig defined at the bottom if and only if

£ (Rpyp (VTR p 1 (¥) 50 Ls.

x.20 TLemma Let veR™ 1, TeSt(n + 1), reR, such that
xn+2(v)T = Txn+2(W1’W2""’Wn+1) with (w ,...,Wn+l) unimodular.

Thenf(xmz(vr))urxme,l(*),*) is defined at the bottom.

Proof By "linearity" it is sufficient to do the case r = 1. As
St(n) acts transitively on unimodular columns of length n (see
[4], Ch. V, Thm. (3.3)), there is T'est({1l,n + 2}* x {1,n + 2}¥%)
with xn+2(v)TT' = TT!xl,n+2(Wl)xn+1,n+2(1)' Choose

no_ no_ n -
" = xl,n+1(+wl)‘ Then xn+2(v)TT'T = TT!T xn+1,n+2(1)’ as re

quired.

3.21 Remark Note that this is the Pirst time that we use a stable

range condition.

%.22 Lemma Let cf(xh+2(v))(X,Y} be defined at the bottom and let
(P,Q)eC with mat{X,Y) = mat{P,Q). Then o[f(:cn+2(v))<£>,@,> is defined
at the bottom.

Proof Put M = mat(X'P) = mat(¥Q ). Then MeE(n + 2) and M has
trivial columns at positions 1 and n + 2. Choose BeMed such that
M EEE(B) has trivial rows at those positions too. Using inJective
stabllity for K1 we see that

M mat(B)emat(St{{1l,n + 2)* x {1,n + 2}*)),s0 in particular
Memat(Med). Therefore (X,Y) = (X',Y') with mat(X') = mat(P),

mat(Y') = mat{(Q). But it is not hard to see (and may have been
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noted by the reader) that being defined at the bottom only depends on
the matrices, not on the finer structure of Low.

3.23 Lemma Let v,chn+l

, TeSt(n + 1), (X,Y)eC such that
X (V)T = Tx  »(w) and such that cf(yh_l_,a'(w))(x,Y) is defined at the
bottom. Then of (T)ef (X, (W))(KY) = £ (X, 5(V)){TX,Y) and the

latter ig also defined at the bottom.

Proof Actually it 1s easy to see that they are equal 1if

£ (XK p(W)){X,Y) 1is defined (as in 3.18): Write

(X,Y) = (T'x,, 5 1(*),*) with T'eSt(n + 1) such that one can execute
?

L(xn+2(w))(T'xn+2’1(*),*). Then compare.

3.24 Lemma If L(xn+l(v))(X,Y) is defined (see 3.15) and if
j’(xn+1(v))(X,Y) is defined at the bottom, then the former is g

representative of the latter.

Proof By the previous ILemms we may assume X = Ko 1(Q), aeR. As
_— »

£ (xn_l_e(v))(X,Y) is defined at the bottom, there must be

Aest({1,n + 2}* x {1,n + 2}*) with x_,(¥)A = Axn+l,n+2(*). Then
we may replace (X,Y) by (XA,A"lY), because of Lemma 3.16. But then
it is obvious.

3.25 Lemma (Additivity, first case).
Mtv:(m%y”u%&ﬂ,w=(om?.“mmdy Let
{X,Y)

i

£ (Rpyp ()X, p 1(2),2) and let &£ (%,,0(V))(X,T) be defined
at the bottom. Then i’(xn+2(v))4?(xn+2(w))<xn+2’1(q),z) =
£ (Ko (v + W) Nxyp 1(a),2) .

Proof L(xh+2(v))L(xn+2(W))(Xn+2,l(Q),Z)>=
L(xpp(v + w))(xn+2 1(a),2) and the left hand side is relevant by
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the previous Lemma.

%.26 Definition We say that £ (xn_’_e(v)), L (xn_l_z(w)) slide past
each other at {(X,Y) if there is TeSt(n + 1) such that

(X,Y) = (Tx,5 4(*),*) and such that

xn+2(v) T = Txn+2(o’22’ e ,zk,O, c.50),

xn+2(w)T = Txn+2(o"“"’0’zk+1""’zn+1) for some 2 < k < n+ 1 and

some 22,...,2 in R.

ntl
The relation is symmetric because there is an element T" of
st({1,n + 2]% x (1,0 + 21%) with x; o o ()T" = T 2 4 pyo(*) for
2<1<n+1. (Use a product of the elements wp,q(l)). From the
same observation it follows that both £(xn+2(v))<x,Y),
£ (%0 (w) ) (X,Y) are defined in the fashion described in 3.18. (For
the second one this i1s obvious). Executing the maps one actually
sees that both steps in of(xm_z(.w)) ‘f(xm_z(v))(x,Y) are defined in
the way described by 3.18. And again we can use T" to show from
this that both steps in £ (xn+2(v)) £(xn_|_2(w))(X,Y) are defined
that way.

3.27 Lemma (Additivity, second case) .

Let £ (x,,5(v)), £ (% 40(w)) slide past each other at {(X,Y), and
let both £(xn_|_2(v))(X,Y) and f(xrﬁ,a(v + w)) be defined at the
bottom. Then £ (xm_e(v)) £ (!Sﬂ_z(w))C’(,Y) = £ (xn+2(v + w)){X,Y).

Proof We choose a representative (Ter-Q,l(*)’*) of {X,Y), as in
%.26. One checks that the first execution of the expression
L(xn_l_e(v))L(xn_’_e(w))('J.‘xm_2 1(*),*) leaves a result of the form

3
L(x,, (V) (P,Q) with P = TAxm_E,l(*), Aest([n + 1] x {1)). It
easily follows that £ (X,,5(v))(P,Q) 1s defined at the bottom and

therefore, by Lemma 3.24, we can use

L% 0 (V) VL(xp 0 (W) (Txp 0 ,1(* )s*) for representing
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<f(x;r]+2(v))o€f(xn+2(w))(X,Y). Similarly one can use
L(xn+2(v + W))(Txn+2,1(*),*) for ;f(xn+2(v + w)){X,Y). But then it
is easy. (Compare Lemma 3.25).

n+l

3.28 Lemma Let v,w,zeR~ —, TeSt(n + 1) such that

X2 (1T = Ty ni(*) and Ry (T = Thyo(2) Whth (30 -2,)
unimodular. Then Lemma 3.27 applies for (X,Y) = (Tx_,, 1(*),*).

Proof By Lemma 3.20 we only have to show that &f(xn+2(v)) and

£ (%,o(W)) slide past each other at {(X,Y). There are 8oy eesay

such that 8p2gp + -+ B Z =2, We have a representative of

{X,Y) which takes the form (Tx;,(a,) --- xln(an)xn+2,1(*),*). Re~

placing (’I.‘xm_2 1(*),*) by this representative we reduce to the case
3

zq = 0. Similarly we can reduce to the case 2z 1 = O by using a

n+
representative of the form

(T ,2(00) o0 Xy n ()X 1 (¥)5%). But if 25 = 2,4 = 0
then the situation is the one described in definition 3.26.

3.29 What Lemma 3.28 tells us is that, if Jf(xn+2(w))(X,Y) is de-
fined at the bottom, one has additivity for those v which make a
certain piece of a colum unimodular. This is the sort of situation
the conditions SRg(c,u) refer to. So let us apply them. (Until
now we only used SRn). The case of commutative semi-local rings

diverges from the "general"” case at this point (for the first time).

3.30 Proposition (Additivity for maps defined at the bottom).
Let £ (%,,,(v)){X,Y) be defined at the bottom, with value (P,Q),
let &£ (x,,,(w)){P,Q) be defined at the bottom and let

iy (J&H_Q(V + w)){X,Y) be defined at the bottom. Then

L (Ko (v + WKLY = £ (x,0(0) £ (% -(v) )X, YD



107

Proof We assume Eﬁn and therefore SRi(n +2n+1). Ifv+w=0
then it is easy: apply Lemma 3.23 and Lemma 3.25 for instance. (or
just apply the definitions.) In the general case the 1idea is to
chose 2z such that repeated application of Lemma 3.28 ylelds:

£ (Kpy0(2)) £ (3o (W) £ (Hpyp (M NHXY) =

L (xm_a(z + w)) £ (xn_i_e(v))(X,Y) = £ ()S,H_E(Z + v+ W)X, =
<£(xh+2(z))<£(xn+2(v + w)){X,Y). Then one applies iﬁ(xn+2(-z)) to
both ends of the string. So say {(P,Q) = (Txn+2’1(*),*) with
Xpo(W)T = Txn+1,n+2(*)' Then we want that

xn+2(z)T = Txn+2(*,a2,...,an,*) with (32""’an) unimodular. (That
will guarantee that the first two members of the string exist and
that they are equal). There is an elementary matrix M; = QEE(T'I)
in E(n + 1) such that (*’82""’an’*) is Just M, z. Choose A; to

be the matrix (n - 1 by n + 2) with first column zero and the re-
maining part taken from rows 2 fhrough n of M. Then A; 1s a
matrix of the type which one considers in SRi(n +2,n+ 1). (It
doesn't matter that the obvious way to add rows to the

”Ul-part" of A, is not the way the reader expected when reading
2.2: If a matrix is in E(n + 1) up to a permutatlion of rows, then
the matrix is in E(n + 1) up to multiplication of one row by a sign.
(Use the Wij(l)))' We wlll have unimodular (a2""’an) if and only
if Al(i) 1s unimodular. Next we want the third member of the string
to be defined and we want it to be equal to the second member. Now
there is a matrix M,e¢E(n + 1) such that it works if

My(2z + W) = (%0, -0bp,%) with (b,,...,b,) unimodular. Choose
Ay to be the matrix (n = 1 by n + 2) with the first column equal to
the middle part of M,w and the remainder taken from row 2

through n of M,. Again we have translated what we want into the
form "A;(1) 1s unimodular', with A; of the proper type. Finally
there is A; which stands for the wish to have the fourth member
exist and to have it equal to the third. By SR (n + 2,n + 1)
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we can choose 2z such that it works. It is easy to see {from the
fact that the executions of J?(xn+2(z)) are defined at the bottom)
that one can apply ;f(xn+2(-z)) to both ends. This is an instance
of the case v+ w = 0 and we see that the [(x_ ,,(-2))L (x,,,(2))

cancel out.

%.31 Definition Let veRTTY, (X,Y)¢C such that

mat(xn+2(v))XY)emat(C). We claim there is zeR™Y such that both

steps in <f(xn+2(—z))<f(xn+2(v + z)){X,Y) are defined at the bottom.
We define £ (x,, ,(v)){X,Y) to be equal to the result. We need to
do some checks to see that thls definition is consistent. First

of all it is consistent with the earlier definitions in case
<£(Xh+2(v))(X,Y) is defined at the bottom, by Proposition 3.30.

One can also check that it 1s consistent with the other earlier
definitions, using Lemma 3.24, but those definitions have served

their purpose anyway. (So let's overrule them).

3.32 8o let us prove that the definition makes sense. First let
us show that 2z exists. As in 3.30 we see that there is an n by
n + 2 matrix A, with the property that £ (x,, (v + z)}{X,Y) 1s de-
fined at the bottom (in the way described by Lemma 3.20) if Al(;)
is unimodular. Moreover, this matrix is of the type one considers
in SRﬁ+l(n + 2,n+ 1). (This proof doesn't work for arbitrary
commutative semi-local rings). Choose {P',Q')¢C such that
mat(P'Q') = mat(x,o(V)XY). There is an n by n + 2 matrix A,,

of the proper type, such that £(>51+2(z))(P',Q'> is defined at the
bottom if A2(;) is unimodular. But if (f(xn+2(z))<P',Q'> is de-
fined at the bottom then the second step in

£ (% 0(=2)) £{x,,5(2))(P',Q") is also defined at the bottom. There-
fore, 1if both Al(;) and AE(]Z‘) are unimodular, both steps in

£ (xn+2(-z))<ﬁ(xh+2(v + z)){X,Y) are defined at the bottom. (Use
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Lemma 3.22). So 2z exists. We have only used A, and A,, BO We
mlight still choose Ay, A, because we have SRg+l(n + 2,n + 1) avail-
able. (So far it was Just SR§+1(n + 2,n + 1) which actually holds
for commutative semi-local rings too). We need to show that another
z gives the same answer. So suppose that z' also fits, 1.e. that
both steps in :f(xh+2(-z'))<£(xh¥2(v + 2')){X,Y) are defined at the
bottom. The idea is to choose tsRn+l such that all steps in

£ (X (t-2)) £ (3 o (v + 2T, £ (2, 5(8 + V)X,D,

£ (%, 0(t-2")) L{x 5 (v + 2") )X, D),

(X o(t)) £ (x5 (-2)) £ (x,,0(v + 2))(X,¥) are defined at the bot-
tom. That amounts to four conditions on t and they can simul-
taneously be satisfled because of SRi+l(n +2,n+1). (so we don't
use the old Al,A2 but a new set of four matrices, chosen after z,z').
Using Lemma 3.22 we see that all steps in the following computation
are defined at the bottom, which makes that Proposition 3.30
applies: .f (xn+2(t))£f(xn+2(-z))£7(xn+2(v + z)){X,Y) =

£ (2 p(8-2)) £ (X (v + 2))EY) = £ (x,5(t + V)XY =

£ (Ko (t-2")) L (R o (v + z')){X,Y) =

£ (X p(8)) £ (%0 (-2")) £ (20 (V + 27))(X,Y). Now apply

£ (x40(~t)) to both ends.

3,33 DProposition (Additivity).

£ (Ko (W) £ (Ko (MK = £ (%, 5(v + W))(X,Y) whenever the
left hand side is defined.

Proof Obviously the right hand side is defined if the left hand
side 1s. (Read 3.31). So assume this is the case. Say

(P,Q) = £ (x,,,(W))(X,Y). If both &£ (%0 (v))(P,Q) and

£ (Xppp(v + W))(X,Y) are defined at the bottom then it is an easy
consequence of the definition of Jf(xn+2(w))(X,Y). Choose 2z such

that £(x,,,(v))(P,Q) = £ (Ko (-2)) £ (x5 (v + 2))(P,Q), with both
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steps at the right hand side defined at the bottom, and such that
i’(xn+2(z + v + w)){X,Y) is defined at the bottom. (This is an
SR2+1(n + 2,n + 1) type problem so it can be solved by virtue of
SR2+1(n + 2,n+ 1). We still are doing things that don't work for
some commutative semi-local rings). We have to show that

£ (% o(v + 2)) £ (X o (WNHXY) = £ (x,,5(2)) £ (X, -(v + ) )X, T,
But the right hand side is i?(xn+2(v + w + 2)){X,Y) by the case dis-
cussed above. But then we are back at Just this same case.

ml mest(n + 1), XeLow, YeUp such that

%.34 TLemma TLet v,weR
Xny (V)T = Tx,,(w) and such that £ (%o (V)){TX,¥) is defined. Then

£ (Ko (M ITXYY = L (T) £ (x,,, (W)X, 1.

Proof By definition cf(xh+2(w))<X,Y) = 4f(xn+2(-z))£ (xn+2(w + 2z))
(X,Y) with both steps at the right hand side defined at the bottom.
Now apply Lemma 3.23.

3.35 TIn Section 5 we will have to find an slternative for 3.30,
3.31, 3.32 such that 3.33, 3.34 still hold and such that

£ (X p(V)){X,Y) 1s defined if mat(x,,,(v)XY)emat(C). The next
proofs and definitions will then go through for commutative semi-

local rings too.

3.%6 Lemma The set mat(C) (see 3.8) consists of all matrices in
E(n + 2) whose Tirst column is of the form (a;,...,a ) with

(al,...,an+1) unimodular.

Proof Obviously every element of mat(C) looks like that. Con-
versely, let M be such a matrix. Multiplying M from the left
by a matrix in E(n + 1) one reduces to the case

(al,...,an+2) = (1,0,...,O,an+2), because E(n + 1) acts transitively
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on unimodular columns of length n + 1 (see [ 4], Ch. V, Thm. (3.3)).
So multiplying M from the left by an element of mat(Low) we reduce
to the case that the first column of M is trivial. Multiplying
from the right by an element of mat(Up) we can get the first row
trivial too. By injective stability for Kl the matrix M then is
in mat St({1)}* x {1)*¥), so certainly in mat(Up).

%.%7 For the sake of completeness we include the followlng Lemma.

(Compare with 2.2).

Lemma Let n > m > 2. Let A be an (m-1) x n matrix over a ring S,

where S satisfies SRm. Suppose that A can be completed to an in-

1

vertible n x n matrix. Then there is reS™™ 1 suen that A(x

) is uni-

modular.

Proof We use the notations of 3.4, except that the base ring is now
S, not R. Let MeGL(n,S) be such that A consists of the top m-1
rows of M. It is enough to show the following. There is
LeGL(n,S), with trivial first row, such that in the first column
(al,.'.,an) of ML the piece (al""’am-l) is unimodular. Using SR ,
which follows from SR as n > m; we choose LleE([n] x {1)),

UeE({1) x [n]) so that the (1,n)-entry of ULlM"'1 is zero. As
(ULlM'l)(MLil) = U, one sees that in the first column (bl,...,bn) of
ML{1 the piece (bl"“’bn-l) is unimodular. So if m = n we gre done.
Otherwise n -~ 1 > m and E(n - 1) acts transitively on unimodular
columns of length n - 1. So choose TeE([n] x [n-1]) so that the

first column of TML{1

is trivial. Then choose BeE({1) x [n]) so that
the first row of L, = BTML]® is also trivial. We may replace M by
mrolist, But MLIlLEl = 77181 is an n x n matrix with an invertible
(n-1) x (n-1) submatrix in the upper left hand corner. Thus the

problem has been reduced in size and we can apply induction.
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§4. The Group Uleft.

4.1 fThere is a left-right symmetry in the chunk: Consider the anti-~

homomorphism inv which sends xij(r) to xn+3-i,n+3-j('r)' (It is
1

the composite of the map 2 » 2z~ with a homomorphism). If

I,7 € [n + 2] then we get inv: St(I x J) = St(I' x J') where I' is
the set {ae[n + 2]In+ 3 - aecI} or {n + 3 - alaeI} and J' is the set
{n+ 3 - Dblved). One has inveinv = id, inv(Low) = Up,

inv(Med) = Med, inv(Up) = Low. (We should write

inve, 5 St(I x J) » St(I' x J')). It is easy to see that

inv(X,Y) = {inv(Y),inv(X)) defines an involution of C, i.e. a map
C » C which is its own inverse. We have defined in Section 3 what
£ (X){P,Q) means if X,Pelow, QeUp. We also defined & (Y)(P,Q) if
PeLow, Y,QeUp. The connection between the two notions is as

follows: @R (Y) = inve £(inv(Y))e*inv. This suggests to define

R (x4(v)) = inve £ (inv xy(v))ednv, i.e.

A%y (Voo -5V DI = v (£ (%, 5 (V0 -+ 5Vp) ) {dnv(Y),
inv(X)?) whenever the right hand side is defined. So let us do
that. Then Gl(xl(v))<X,Y) is defined if and only if
EEE(XYxl(V))‘EEE(C)- This is just one of the properties we get by
translating earlier results by megns of 151. Other ones are:

R (T R (% (V)XY = R (x(w)) R(T){X,Y) if both sides are defined

and Test{{1)}* x {(1)*), v = (ve,...,vn+2), w o= (W, with

F s Wpyo)
Txl(w) = xl(v)T. And additivity:

R (x9(v)) R (% (W)X, YY) = R (x7(v + w)){X,¥Y) if Dboth sides are de-
fined. It may seem more convenient to write (X,Y)® (x,(v)) instead
of G%(xl(v))<X,Y). We don't do that because we want to emphasize
the order of execution in expressions like (R(xl(w))af(xn+2(v))(X,Y).
In the alternative notation it would read

(£(%,40 (V) (X, X)) R (xq(W)). The reader may find however that cer-

tain arguments are better understood when one writes R 's at the
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right.

4.2 We want to show that £ (X), J?(xn+2(v)) commute with R (T),

G&(xl(w)) if XeLow, veRD+L

y W= (Woy.o W s), TeSt({1)}* X {1)}%).
(So T 4is less arbitrary than X). As some of these maps are only
defined on part of C it only makes sense to prove, for instance,
that £ (xn+2(v)) R (xl(w)) equals R (xl(w) Yy L (xm_e(v)) where both

compositions are defined.

4.3 Notation If f is a map defined on part of C and with

values In C and if g 1is also such a map then feg is the map
which sends (X,Y)eC to f(g{(X,Y)) whenever the latter is defined.
We say that £ = g if £{X,Y) = g(X,¥) whenever both sides are de-

fined. This is not an equivalence relatlon.

4.4 S0 we want to prove that £(X)e R(T) ® R (T)e £(X) etc. (See
4.2y, In fact £ (X)*R(T) = R(T)e £L(X) 1s a triviality (T and X

as in 4.2). The non-trivial case to consider i1s the one of

L (Xgyo(V)) e R{xy(w)) versus R (g (W) e L%, 5 (¥)) -

— -y —

other at (X,Y) if there are TeSt(n + 1), Uest({1}* x (1}*),
Aest({n + 2) x [n+ 2]), Best({1} x [n + 2]), 2 < k < n, such that
{X,Y) = {TA,BU) and such that

Ko (VT = X (0,0, 0,8 1y y),

le(w) = xl(ge,...,gk,o,...,O)U. We could also require that
actually AeSt{{n + 2} x [k]) because one can take the part of A
which comes from St({n + 2} x [k]*) to the right without spoiling
anything. Having done that one can do the same sort of thing to B
and reduce to the case that BesSt({1} x [k]*). So if we want to

prove that £(xn+2(v)), d%(xl(w)) slide past each other at {(X,Y)
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we only need to have AeSt({n + 2} x [n + 2]), BesSt({1} x [n + 2]).
But if we apply that they slide past each other we usuplly take
Aest({n + 2} x [k]), BeSt({1) x [k]*). We refer to this particular

— Tt - — v—— _ e — — ————

Engal)s 0

4.6 Proposition Let L%, (V) G{(xl(w)) slide past each other

at (X,Y). Then <£(xn+2(v))G%(xl(w))(X,Y) = Oﬁ(xl(w))X?(xn+2(v))(X,Y)
(Both sides are defined).

Proof So take (TA,BU)e(X,Y) separated with respect to

xn+2(v), xl(w). One easily sees that

R(U) e L (%, 5(V)) = L(x, 5(V))e A(U). (Compare 4.4). TIts counter-
part at the other side states £ (T)¢ & (xy(w)) * (ﬁ(xl(w))OcE(T).
From this and Lemma 3.34 one sees that we may assume T = 1.
Similarly we may assume U = 1. Say A = xﬁ+2’l(al) s xn+2,k(ak)
end B = xl,k+l(bk+l) <o xl,n+2(bn+2)' We Just compute both

L (X0 (V) R (%) (W) (A,B) and R (xq(w)) L (%, ,(¥)){A,B) and compare:
L (Xp(v)) Ry (W) CABY = L (xpy o (v)) R (g (W) ) ARy yq (B, q)

X, (Prd) 2 %1 a2 (Pryp)? = o (Rpyp (VI)CAKY 9 (Bpeyq)

%) 1 (O 1) %0 (9 %o (B o= Wobpos - p=Wn 9,0,...,0)) =

£ (xn+2(v))<Axl(w)’PBXM2(O’-W2bn+2"""wker-2’O"'"O)) with

P = product of the xij(-wibj) with 2 <1<k, k+1< j<n+ 1.

So we get cf(xh+2(v))(xl(w)xn+2’l(al +oagW, + ot o),
xn+2’2(a2) e xn+2,k(ak)Pan+2(O,-w2bn+2,...,-wkbn+2,0,...,O)).
Say 4 = @ + agW, + -+ + aw.. Then it equals

(g (Was - s Wier Vi1 B - 5 V1 @5 9) X0 (M Xppp o (a5)
xn+2,k(ak)Pan+2(O"W2bn+2"""kan+2’o""’o)>’ or

(g (Was e Wi Vi1 B -9 VBB Ko p(8p) w0 Xyyp 1 (8)Q
xn+2(v)Pan+2(O,-w2bn+2,...,-kan+2,0,...,0)) where Q = product of
the xij(viaj) with k+1<i<n+1,2< J<k. That again is the
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same as {x) (Wp,+ - s W Vi1 @ V1 S D Xpp o(8p) 0 Hnyp ye(2)Q,
PX) 1601 (Plet1) 7 1,1 (Prerd) Ky (P =Wl e e o =WiPs Ve g5 e - V1))
where p = bn+2 - bk+1vk+1 - e - bn+1vn+1' So
If(xn+2(v))d%(xl(w))(A,B> is equal to this very symmetric expression.
Using inv or doing the same sort of computation for
<R(x1(w))cﬁ(xn+2(v))(A,B) one seés that the results are the same.
Other proof: Use that cf(xn+2(v))<ﬂ(xl(w))<A,B) apparently can be
written in the form {(product of xiJ(r)'S with 1 > j), (product of
xid(r)'s with 1 < J)). Then, applying inv, derive the same result
for R (xy(w)) £ (xm_e(v))(A,B). And show that two elements of this
particular form are equal as soon as their images under EEE are
equal. (Reduce for instance to the case that one of the two elements
is trivial). For n > 2 there still is another proof, based on
writing v = z + (v-2z) where z and v - z have more zeroes than we
assumed for v. The squeezing principle will then do the job. At

eny rate, the computation may look horrendous but there really is no

problem.

4.7 Lemma Let AeSt({n + 2} x [n+ 2]), Be(St{1) x [n + 2]),
Twun+1hlkﬁﬂn*x{Hﬂ,v=(ﬁ3“U%ﬁﬂ,w=(%P”u%%Q,
zZ = (ze,...,zn+2) such that xn+2(v)T = Txn+l,n+2(*)’

le(w) = xl(z)U, (zg,...,zn) is unimodular. Then J?(xn+2(v)),
0{(x1(w)) slide past each other at (TA,BU).

Proof We may assume T = 1 and U= 1. We want to get rid of LY

and Wi As (We,...,Wh) is unimodular, there is
PeSt({n + 1,n + 2} x {1,n + 2}*) with le(w) = xl(wE,...,wn,0,0)P.
We have {(A,B) = (AP'l,PB) and inspection shows that aﬁ(xn+2(v)),

@ (x,(w)) slide past each other at (AP™,PB).

4.8 So now we are in a situation comparable with 3.29. We can



