SL3(C[X]) DOES NOT HAVE BOUNDED WORD LENGTH

Wilberd van der Kallen

Introduction.

When R 1is a ring, we say that the elementary group En(R) has
bounded word length (with respect to elementary matrices) if there

is an integer vn(R) such that each element of En(R) can be written
as a product of length at most vn(R), the factors in the product
being elementary matrices. D. Carter and G. Keller have recently
shown ([2]) that SLn(R) has bounded word length if R is the ring
of ihtegers in an algebraic number field and n > 3, (In this case

SL_(R) equals E (R).) As the K, of such a ring of integers is

2
finite, their result implies that for n > 4 the Steinberg group
Stn(R) has bounded word length with respect to its usual generators

xij(r).

In this note we show that there is no bounded word length for
SLn(k[X]) if kX 1is a field of infinite transcendence degree over its
prime field and n 1is at least 2. We also draw attention to the
question of bounded word length for Stn+4(Z[Xl,...,Xn]), whigh is

still open for n > 1.

(1.1) Let R be a ring which is associative with 1.

Lemma (R. K. Dennis)
if En(R) has bounded word length, n > 2, then En+l(R) also has

bounded word length. (Similar result for Steinberg groups.)

Sketch of proof. Instead of elementary matrices one may use unipotent

triangular matrices (upper or lower triangular). Given that every
element in En(R) can be written as a product of N unipotent

triangular matrices in En(R), one shows that the set {g € E (R) :

n+l

g can be written as a product of N unipotent triangular matrices
in En+l(R)} is invariant under left multiplication by generators

e..(r) of (R) with [i-j| = 1.

1] En+l
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Remark. A unipotent triangular matrix in En(R) can be written as the
product of three commutators. (n >3). A similar statement holds in

Stn(R).

(1.2) Following a suggestion from a logician, let us look at the
canonical isomorphism GLn(an)-——> GLn(R)nq, where an denotes the

<«
infinite product l] X of copies of X. This isomorphism induces a
i=1

map Kl(n,an)-—> Kl(n,R)]N and it is easy to see that this map is
injective if and only if En(R) has bounded word length. Now suppose
that s.r. R < o, i.e., that R satisfies a stable range condition.

Then an satisfies the same stable range condition and we have

Kl(n,RnI) = Kl(an)’ Kl(n,R)EE Kl(R) for n > s.r. R+ 1. 1t follows

that if En(R) has bounded word length for some n (n > 2), it has

bounded word length for n > s.r. R + 1.

Note that E(R) = E_(R) never has bounded word length: There is no
shorter way to write el'z(l)e3’4(1)---en,n+l(l). If one considers

word length with respect to commutators then one does get a bound for

E_(R): Every element can be written as a product of four unipotent
triangular matrices, hence of twelve commutators. (This also holds in
St_(R).) Thus the question of bounded word length is more interesting

for En(R) (or Stn(R)) with n finite.

(1.3) Lemma. Let F be a field.

(i) 1f Stn(F) has bounded word lehgth, n > 2, then KZ(F) has
bounded word length in terms of the Steinberg symbols {u,v}.

(ii) Let B > 1 be an integer and assume that every element of KZ(F)
can be written as a product of B Steinberg symbols. Then the

Milnor K-group Kﬁ(F) is annihilated by 2((B+1)!) for n > 2B + 2.

Proof. Part (i) follows from the Bruhat decomposition in Stn(F).

(cf. [5] Lemma 9.15)
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Part (ii). We may assume n = 2B + 2. Let

Q
|

= 2(xl)'- . . z(xn) € Kﬁ(F). Rewrite the element

B o= L0x)R(xy) + + = - + &(x__)&(x) in K, (F) (= Ky(F))
as R(yl)l(yz) + ¢ - .+ ﬁ(y2B¥l)2(y2B)' Using that 22,(2)2 = 0 for

all =z € F*, we find that 2((B+1)!)a = 283%1 = 0.

{1.4) Remarks.

(1) In the proof of part (i) it is essential that F 1is something
like a field, as one sees from the following example. Let k denote
the algebraic closure of @ and put F = k(X) ® k(¥Y). We view F as
a localization of k{(X)[Y]. The ring F is a f—dimensional domain

and it follows from a localization sequence argument that KZ(F) is

" generated by Steinberg symbols. Using tame symbols one shows that the
element o = .%? {x-3,3-¥} of K,(F) cannot be written as a product
of fewer than _n Steinberg symbols in Kz(ig. However, it can be
written as the single Steinberg symbol {.rl(%gg),X-Y} in the K,

of the field of fractions k(X,Y) of F. J%ﬁat is more, it can be
written as a single Dennis-Stein symbol < *(1 -'%?(%E%))/(X-Y),X-Y> in
St4(F). {(The sign depends on a choice of conventi;is.) Thus a is

an element with word length at least n in terms of Steinberg symbols,
but with word length at most 6 in terms of the usual generators of
St4(F).

(2) It follows from a theorem of H. W. Lenstra Jr. ([4]) that one

may take B = 1 in part (ii) when F 1is a global field. (In fact the
higher Milnor K-groups are known in this case ([1]) and they are
annihilated by 2.) Recall also that it is tempting to conjecture that,
if F is a field of Kronecker dimension §(F) (i.e., if F has
transcendence degree §(F)~1 over a global field), the Milnor K-group

Kﬂ(p) is torsion for n > §(F). (cf. [1] (5.10)).

(1.5) Proposition. Let k be a field such that SLn(k[X]) (= En(k[X]))
has bounded word length for some n > 2. Then k has finite

transcendence degree over its prime field.
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Proof. By (l1.1) we may assume n > 3. Say every element of En(k[x])
is the product of B elementary matrices. Consider the familiar

exact sequence
K, (kIX]) > K, (k[X]/(x*-X)) > K (k[X], (X°=X)) > K (K[X]).

The cokernel of the first map is Kz(k) an& that is therefore also
the kernel of the last map. Tracing the proof of exactness of the
sequence (cf. [5] Theorem 6.2) one sees that any element o of Kz(k)
can be represented, as an element of the cokernel of the first map,

by an expression of length at most B in stn(k[x]/(xz—x)).
Projecting down to Stn(k) via X #» 0, X H.l respectively, and
dividing the two results, we see that o can also be represented by
an expression of length at most 2B in Stn(k). Arguing as in (1.3)
we conclude that Kﬁ(k) is a torsion group for m large. By ([6]

Proposition 2) the result follows from this.

(2.1) If A, B are rings, then we say that A covers B if for every
finite subset V of B there is a homomorphism ¢: A — B with

v C ¢(p). Clearly, if A covers B and EQ(A) has bounded word
length, then En(B) has bounded word length too. If R is

commutative and S is a multiplicative subset, then the polynomial

ring RI[X] covers S—lR because any finite subset of S_lR admits

a common denominator. If F is a field of transcendence degree d

over its prime field, then every finitely generated subfield of F

is a monogenic (separable) extension of a purely transcendental
extension of the prime field, hence Z[Xl,.u.,xd+2] covers F. Thus

we are led to ask:

H th?
(Qn). Does En+3(z[xl,...,xn]) have bounded word leng
An equivalent question is:

. th?
(Qﬁ). Does Stn+4(z[xl,...,xn]) have boupded word leng
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(2.2) Note that for symplectic groups the answer to the analogue of
the question (Q6) is known to be negative: Let 1T Dbe the continuous
symplectic symbol Kgympl'(ﬂz) + Z. The surjective map

Kgympl.az) -+ Kiympl'(nz) 3z sends expressions of bounded length

via products of bounded length of symplectic Steinberg symbols to a

bounded subset of Z.

In particular this shows that there is no bounded word length in
StZGZ), but that is clear anyway, because it is a classical result,
related to thé theory of continued fractions, that even SLzﬁz) does

not have bounded word length. (Compare also [3] §8.)

References.

1. H. Bass and J. Tate, The Milnor ring of a global field, Algebraic
K-theory II, Springer Lecture Notes 342, (1973), pp. 349-447.

2. D. Carter and G. Keller, Bounded word length in SLn(O),
Preprint, University of Virginia.

3. P. M. Cohn, On the structure of the GL
I.H.E.S. No. 33(1967), pp. 421-499.

5 of a ring, Publ. Math.

4. H. W. Lenstra, Jr., K2 of a global field consists of symbols,
Algebraic K-theory, Springer Lecture Notes 551 (1976), pp. 69-73.

5. J. Milnor, Introduction to Algebraic K-theory, Annals of Math.

Studies 72, Princeton University Press, 1971.

6. T. A. Springer, A remark on the Milnor ring, Proceedings Koninkl.
Nederl. Akademie van Wetenschappen Series A, 75, No. 2 =
Indag. Math. 34, No. 2 (1972), pp. 100-102.

Mathematisch Instituut _
der Rijksuniversiteit te Utrecht

Budapestlaan, De Uithof

Utrecht, The Netherlands






