Proof of Sun's conjectures on Schröder-like numbers

Ji-Cai Liu ${ }^{1}$ and Wilberd van der Kallen ${ }^{2}$
${ }^{1}$ College of Mathematics and Information Science, Wenzhou University, Wenzhou 325035, PR China jc2051@163.com

${ }^{2}$ Mathematisch Instituut, Universiteit Utrecht, P.O. Box 80010, 3508 TA Utrecht, Netherlands
W.vanderKallen@uu.nl

Abstract. For any non-negative integer n, define R_{n} and $R_{n}(x)$ by

$$
R_{n}=\sum_{k=0}^{n}\binom{n+k}{2 k}\binom{2 k}{k} \frac{1}{2 k-1} \quad \text { and } \quad R_{n}(x)=\sum_{k=0}^{n}\binom{n+k}{2 k}\binom{2 k}{k} \frac{x^{k}}{2 k-1}
$$

respectively. We mainly prove that for any positive integer n and odd prime p,

$$
\begin{aligned}
& \frac{3}{n} \sum_{k=0}^{n-1} R_{k}(x)^{2} \in \mathbb{Z}[x] \\
& 3 \sum_{k=0}^{p-1} R_{k}^{2} \equiv\left(11+4(-1)^{\frac{p+1}{2}}\right) p \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

which were originally conjectured by Z.-W. Sun.
Keywords: congruences; p-adic integer; Zeilberger algorithm
MR Subject Classifications: 11A07; 11B65; 05A10

1 Introduction

In combinatorics, the Schröder numbers are given by

$$
S_{n}=\sum_{k=0}^{n}\binom{n+k}{2 k}\binom{2 k}{k} \frac{1}{k+1},
$$

which describes the number of paths from $(0,0)$ to (n, n), using only steps $(1,0),(0,1)$ and $(1,1)$, that do not rise above the line $y=x$. For more information on these numbers, one refer to $[7,8]$. Some arithmetic properties of the Schröder numbers have been studied by Sun $[9,11]$, Cao and Pan [1], and the first author [5].

Motivated by Schröder numbers, Z.-W. Sun [10] introduced the following interesting numbers (see also http://oeis.org/A245769)

$$
R_{n}=\sum_{k=0}^{n}\binom{n+k}{2 k}\binom{2 k}{k} \frac{1}{2 k-1},
$$

and obtained many amazing arithmetic properties of these numbers. For example, Sun proved that for any odd prime p,

$$
\sum_{k=0}^{p-1} R_{k} \equiv-p-(-1)^{\frac{p-1}{2}} \quad\left(\bmod p^{2}\right)
$$

Sun also made the following conjecture [10, Conjecture 5.4]:
Conjecture 1.1 Suppose n is a positive integer and p is an odd prime. Then

$$
\begin{align*}
& \sum_{k=0}^{n-1}(2 k+1) R_{k}^{2} \equiv 0 \quad(\bmod n) \tag{1.1}\\
& \sum_{k=0}^{p-1}(2 k+1) R_{k}^{2} \equiv 4 p(-1)^{\frac{p-1}{2}}-p^{2} \quad\left(\bmod p^{3}\right) \tag{1.2}\\
& 3 \sum_{k=0}^{n-1} R_{k}^{2} \equiv 0 \quad(\bmod n) \tag{1.3}\\
& 3 \sum_{k=0}^{p-1} R_{k}^{2} \equiv\left(11+4(-1)^{\frac{p+1}{2}}\right) p \quad\left(\bmod p^{2}\right) \tag{1.4}
\end{align*}
$$

Recently, Guo and the first author [3] have successfully proved (1.1) and (1.2) by some combinatorial identities and Zeilberger algorithm.

For any positive integer n, $\operatorname{Sun}[10,(1.4)]$ defined the following polynomials:

$$
R_{n}(x)=\sum_{k=0}^{n}\binom{n+k}{2 k}\binom{2 k}{k} \frac{x^{k}}{2 k-1} .
$$

The first aim of the paper is to prove Sun's stronger conjecture of (1.3), see the comments of http://oeis.org/A268136.
Theorem 1.2 Suppose n is a positive integer. Then

$$
\begin{equation*}
\frac{3}{n} \sum_{k=0}^{n-1} R_{k}(x)^{2} \in \mathbb{Z}[x] \tag{1.5}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\frac{3}{n} \sum_{k=0}^{n-1} R_{k}^{2} \equiv 1 \quad(\bmod 2) \tag{1.6}
\end{equation*}
$$

Guo and the first author [3] introduced the following numbers:

$$
W_{n}=\sum_{k=0}^{n}\binom{n+k}{2 k}\binom{2 k}{k} \frac{3}{2 k-3},
$$

and some similar arithmetic properties of these numbers have also been studied. The second aim of the paper is to show the following two congruences:

Theorem 1.3 If p is an odd prime, then (1.4) holds and we also have

$$
\begin{equation*}
35 \sum_{k=0}^{p-1} W_{k}^{2} \equiv\left(-77-4(-1)^{\frac{p+1}{2}}\right) p \quad\left(\bmod p^{2}\right), \quad \text { for } p \geq 5 \tag{1.7}
\end{equation*}
$$

In the next section, we first prove some important lemmas. The proof of Theorem 1.2 and 1.3 will be given in Section 3 and 4, respectively.

2 Some lemmas

Lemma 2.1 Suppose m is a non-negative integer. Then

$$
\begin{equation*}
\sum_{i=0}^{m} \sum_{j=0}^{m}\binom{x+j}{j}\binom{x-1}{j}\binom{j}{i}\binom{m}{i}\binom{i}{m-j} \frac{3}{(2 i-1)(2 m-2 i-1)(2 j+1)} \tag{2.1}
\end{equation*}
$$

always takes integer values for all $x \in \mathbb{Z}$.
Proof. Let $P_{m}(x)$ denote the polynomial (2.1). For $m=0,1$, it is easy to check that $P_{m}(x)$ is integer-valued. Assume $m \geq 2$. Since $\binom{x+j}{j}\binom{x-1}{j}=\binom{-x+j}{j}\binom{-x-1}{j}$, we conclude that $P_{m}(x)$ is an even polynomial. Let

$$
B_{k}(x)=\binom{x+k}{2 k}+\binom{-x+k}{2 k}
$$

We can rewrite $P_{m}(x)$ as

$$
P_{m}(x)=\sum_{k=0}^{m} d(m, k) B_{k}(x),
$$

with $d(m, k) \in \mathbb{Q}$.
Note that

$$
(-1)^{k}\binom{x+k}{k}\binom{x-1}{k}-(-1)^{k-1}\binom{x+k-1}{k-1}\binom{x-1}{k-1}=(-1)^{k}\binom{2 k}{k} B_{k}(x) / 2 .
$$

Taking the telescoping sum over k gives

$$
\begin{equation*}
(-1)^{j}\binom{x+j}{j}\binom{x-1}{j}=\sum_{k=0}^{j}(-1)^{k}\binom{2 k}{k} B_{k}(x) / 2 . \tag{2.2}
\end{equation*}
$$

Substituting (2.2) into (2.1), we conclude that

$$
d(m, k)=\sum_{i=0}^{m} \sum_{j=k}^{m} \frac{3(-1)^{k+j}\binom{2 k}{k}\binom{j}{i}\binom{m}{i}\binom{i}{m-j}}{2(2 i-1)(2 j+1)(2 m-2 i-1)} .
$$

It suffices to prove that $d(m, k) \in \mathbb{Z}$ for $m \geq 2$.
We need the following two key results:

$$
\begin{align*}
& 4(m-1)(m+1) d(m, k)+4(m+2 k+2)(m-k+1) d(m+1, k) \\
& -(k+1)(2 k-m-1) d(m+1, k+1)=0 \tag{2.3}
\end{align*}
$$

and

$$
\begin{equation*}
(2 m+1) d(m, k) / 3 \in \mathbb{Z} \tag{2.4}
\end{equation*}
$$

Before proving the key results, let us draw conclusions from them.
Noting that $\binom{2 k}{k} / 2=\binom{2 k-1}{k}$ is an integer and $(2 i-1)(2 j+1)(2 m-2 i-1)$ is an odd integer, we immediately get $d(m, k) \in \mathbb{Z}_{2}$, where \mathbb{Z}_{p} denotes the set of all p-adic integers for prime p.

If $3 \nmid 2 m+1$, by (2.4), we have $d(m, k) \in \mathbb{Z}_{3}$. If $m \equiv 1(\bmod 9)$ or $m \equiv 7(\bmod 9)$, then $(2 m+1) / 3$ is coprime to 3 . It follows from (2.4) that $d(m, k) \in \mathbb{Z}_{3}$. If $m \equiv 4$ $(\bmod 9)$, then $(m-1)(m+1) / 3$ and $2 m+3$ are both coprime to 3 . From (2.4), we have $d(m+1, k) / 3 \in \mathbb{Z}_{3}$ for all k, and so $d(m, k) \in \mathbb{Z}_{3}$ by (2.3).

Let $p \geq 5$ be a prime. If $p \nmid 2 m+1$, by (2.4), $d(m, k) \in \mathbb{Z}_{p}$. If $p \mid 2 m+1$, then $p \nmid 2 m+3$, and so $d(m+1, k) \in \mathbb{Z}_{p}$ for all k by (2.4). Noting that $2 m+1=2(m+1)-1$ and $2 m+1=2(m-1)+3$, we get $p \nmid(m+1)(m-1)$. It follows from (2.3) that $d(m, k) \in \mathbb{Z}_{p}$.

Now we have shown that $d(m, k) \in \mathbb{Z}_{p}$ for any prime p and $m \geq 2$. This implies that $d(m, k) \in \mathbb{Z}$ for $m \geq 2$. So we still have to prove (2.3) and (2.4).

We first prove that

$$
\begin{align*}
& \frac{(2 m+1) d(m, k)}{3} \\
& =\sum_{i=0}^{m}\binom{2 k}{k}\binom{k}{i}\binom{m}{i}\binom{i}{m-k}\left(\frac{m-k}{m(m-1)}-\frac{2 m-2 k-1}{2(2 i-1)(2 m-2 i-1)}\right) . \tag{2.5}
\end{align*}
$$

Note that

$$
2(2 k+1)(-1)^{k}\binom{2 k}{k}+(k+1)(-1)^{k+1}\binom{2 k+2}{k+1}=0
$$

Then we have

$$
\begin{equation*}
2(2 k+1) d(m, k)+(k+1) d(m, k+1)=\sum_{i=0}^{k} \frac{3\binom{2 k}{k}\binom{k}{i}\binom{m}{i}\binom{i}{m-k}}{(2 i-1)(2 m-2 i-1)} . \tag{2.6}
\end{equation*}
$$

Define

$$
\begin{align*}
& S(m, k)=2 m(m-1)(2 m+1) d(m, k)+(m-2 k)(m-2 k+1)(2 m-2 k-1) D(m, k) \\
& +16(1-2 k)(k-m-1)(k-m) D(m, k-1) \tag{2.7}
\end{align*}
$$

where $D(m, k)$ denotes the left-hand side of (2.6). Applying the Zeilberger algorithm [6] to the right-hand side of (2.6), we get the following recurrence for $D(m, k)$:

$$
\begin{equation*}
2(2 k+3) S(m, k+1)+(k+2) S(m, k+2)=0 \tag{2.8}
\end{equation*}
$$

By Zeilberger algorithm, we find that $d(m, 0)=0$ for $m \geq 2$, and so by (2.6) and (2.7) we have $S(m, 0)=0$ for $m \geq 2$. It follows from (2.8) and induction that $S(m, k)=0$ for $m \geq 2$ and $k \geq 0$, that is

$$
\begin{align*}
& 2 m(m-1)(2 m+1) d(m, k)+(m-2 k)(m-2 k+1)(2 m-2 k-1) D(m, k) \\
& +16(1-2 k)(k-m-1)(k-m) D(m, k-1)=0 \tag{2.9}
\end{align*}
$$

Substituting (2.6) into the left-hand side of (2.9) and then noting that

$$
\begin{aligned}
& \frac{3(m-2 k)(m-2 k+1)(2 m-2 k-1)}{(2 i-1)(2 m-2 i-1)}\binom{2 k}{k}\binom{k}{i}\binom{m}{i}\binom{i}{m-k} \\
& +\frac{48(1-2 k)(k-m-1)(k-m)}{(2 i-1)(2 m-2 i-1)}\binom{2 k-2}{k-1}\binom{k-1}{i}\binom{m}{i}\binom{i}{m-k+1} \\
& =\left(\frac{3 m(m-1)(2 m-2 k-1)}{(2 i-1)(2 m-2 i-1)}+6(k-m)\right)\binom{2 k}{k}\binom{k}{i}\binom{m}{i}\binom{i}{m-k},
\end{aligned}
$$

we conclude the proof of (2.5). Substituting (2.5) into the left-hand side of (2.3) and then applying Zeilberger algorithm again, we can prove (2.3).

In order to prove (2.4), it suffices to prove that every term on the right-hand side of (2.5) is an integer. Note that (see [3, (2.1)])

$$
\binom{2 i}{i}\binom{2 m-2 i}{m-i} \left\lvert\,\binom{ 2 k}{k}\binom{k}{i}\binom{m}{i}\binom{i}{m-k}\right.
$$

and $2(2 i-1) \left\lvert\,\binom{ 2 i}{i}\right.$. It follows that

$$
\binom{2 k}{k}\binom{k}{i}\binom{m}{i}\binom{i}{m-k} \frac{2 m-2 k-1}{2(2 i-1)(2 m-2 i-1)}
$$

is always an integer. We still have to prove

$$
\binom{2 k}{k}\binom{k}{i}\binom{m}{i}\binom{i}{m-k} \frac{m-k}{m(m-1)}=\binom{2 k}{k}\binom{k}{i}\binom{m-1}{i-1}\binom{i-1}{m-k-1} \frac{1}{m-1}
$$

is an integer. For the p-adic order of n !, there is a known formula

$$
\operatorname{ord}_{p} n!=\sum_{j=1}^{\infty}\left\lfloor\frac{n}{p^{j}}\right\rfloor
$$

where $\lfloor x\rfloor$ denotes the greatest integer less than or equal to a real number x. Applying this method, it suffices to prove that for any positive integer $q \geq 2$

$$
\begin{align*}
& \left\lfloor\frac{2 k}{q}\right\rfloor-\left\lfloor\frac{k}{q}\right\rfloor-\left\lfloor\frac{k-i}{q}\right\rfloor-\left\lfloor\frac{i}{q}\right\rfloor \\
& +\left\lfloor\frac{m-2}{q}\right\rfloor-\left\lfloor\frac{m-i}{q}\right\rfloor-\left\lfloor\frac{m-k-1}{q}\right\rfloor-\left\lfloor\frac{i+k-m}{q}\right\rfloor \geq 0 \tag{2.10}
\end{align*}
$$

We distinguish two cases to prove (2.10).
If $\left\lfloor\frac{m-2}{q}\right\rfloor \geq\left\lfloor\frac{m-i}{q}\right\rfloor+\left\lfloor\frac{m-k-1}{q}\right\rfloor+\left\lfloor\frac{i+k-m}{q}\right\rfloor$, then (2.10) is obviously true.
If $\left\lfloor\frac{m-2}{q}\right\rfloor=\left\lfloor\frac{m-i}{q}\right\rfloor+\left\lfloor\frac{m-k-1}{q}\right\rfloor+\left\lfloor\frac{i+k-m}{q}\right\rfloor-1$, then there exist integers a_{1}, a_{2} and a_{3} such that $m-i=a_{1} q, m-k-1=a_{2} q$ and $i+k-m=a_{3} q$. So we have $k=\left(a_{1}+a_{3}\right) q$, $i=\left(a_{2}+a_{3}\right) q+1$ and $k-i=\left(a_{1}-a_{2}\right) q-1$. It follows that

$$
\left\lfloor\frac{2 k}{q}\right\rfloor-\left\lfloor\frac{k}{q}\right\rfloor-\left\lfloor\frac{k-i}{q}\right\rfloor-\left\lfloor\frac{i}{q}\right\rfloor=1,
$$

which implies that (2.10) is true.
Lemma 2.2 Let p be an odd prime and m be an integer such that $0 \leq m \leq 2 p-2$. Then

$$
\begin{align*}
& \sum_{i=0}^{p-1} \sum_{j=0}^{p-1}(-1)^{j}\binom{j}{i}\binom{m}{i}\binom{i}{m-j} \frac{3}{(2 i-1)(2 m-2 i-1)(2 j+1)} \\
& \equiv \begin{cases}3 \quad(\bmod p), & \text { if } m=0, \\
2(\bmod p), & \text { if } m=1, \\
6 \quad(\bmod p), & \text { if } m=p, \\
4(-1)^{\frac{p+1}{2}}(\bmod p), & \text { if } m=\frac{3 p-1}{2}, \\
0 \quad(\bmod p), & \text { otherwise. } .\end{cases} \tag{2.11}
\end{align*}
$$

Proof. Let $S_{p}(m)$ denote the left-hand side of (2.11). We distinguish three cases to prove (2.11).

Case 1. $m=0$ or 1 . It is easy to verify that $S_{p}(0)=3$ and $S_{p}(1)=2$.
Case 2. $2 \leq m \leq p-1$. In this event, we have

$$
\begin{aligned}
S_{p}(m) & =\sum_{i=0}^{m}\binom{m}{i} \frac{3}{(2 i-1)(2 m-2 i-1)} \sum_{j=0}^{m}(-1)^{j}\binom{j}{i}\binom{i}{m-j} \frac{1}{2 j+1} \\
& =(-1)^{m} \sum_{i=0}^{m}\binom{m}{i}^{2}\binom{2 m}{2 i}^{-1} \frac{3}{(2 m+1)(2 i-1)(2 m-2 i-1)} \\
& =0,
\end{aligned}
$$

where we have utilized the following two identities:

$$
\begin{align*}
& \sum_{j=0}^{m}(-1)^{j}\binom{j}{i}\binom{i}{m-j} \frac{1}{2 j+1}=\frac{(-1)^{m}}{2 m+1}\binom{m}{i}\binom{2 m}{2 i}^{-1}, \tag{2.12}\\
& \sum_{i=0}^{m}\binom{m}{i}^{2}\binom{2 m}{2 i}^{-1} \frac{1}{(2 i-1)(2 m-2 i-1)}=0, \quad \text { for } m \geq 2,
\end{align*}
$$

which can be proved by Zeilberger algorithm $[4,6]$.
Case 3. $p \leq m \leq 2 p-2$. If $m-i \leq j \leq p-1$, then $\binom{m}{i} \equiv 0(\bmod p)$. Otherwise $\binom{i}{m-j}=0$. This implies that

$$
\binom{j}{i}\binom{m}{i}\binom{i}{m-j} \frac{1}{(2 i-1)(2 m-2 i-1)(2 j+1)} \equiv 0 \quad(\bmod p)
$$

unless $i=\frac{p+1}{2}, m-\frac{p+1}{2}$. It follows that

$$
\begin{align*}
S_{p}(m) & \equiv \sum_{j=0}^{p-1}(-1)^{j}\binom{j}{\frac{p+1}{2}}\binom{m}{\frac{p+1}{2}}\binom{\frac{p+1}{2}}{m-j} \frac{3}{p(2 m-p-2)(2 j+1)} \\
& +\sum_{j=0}^{p-1}(-1)^{j}\binom{j}{m-\frac{p+1}{2}}\binom{m}{\frac{p+1}{2}}\binom{m-\frac{p+1}{2}}{m-j} \frac{3}{p(2 m-p-2)(2 j+1)} \\
& =2 \sum_{j=0}^{p-1}(-1)^{j}\binom{j}{\frac{p+1}{2}}\binom{m}{\frac{p+1}{2}}\binom{\frac{p+1}{2}}{m-j} \frac{3}{p(2 m-p-2)(2 j+1)} \\
& =\frac{6}{p(2 m-p-2)}\binom{m}{\frac{p+1}{2}} \sum_{j=0}^{p-1}(-1)^{j}\binom{j}{\frac{p+1}{2}}\binom{\frac{p+1}{2}}{m-j} \frac{1}{2 j+1} \quad(\bmod p) . \tag{2.13}
\end{align*}
$$

If $\frac{3 p+1}{2} \leq m \leq 2 p-2$, then $\left(\frac{p+1}{2} \frac{m-j}{2}\right)=0$ for $0 \leq j \leq p-1$, and so $S_{p}(m) \equiv 0(\bmod p)$.
If $m=\frac{3 p-1}{2}$, then $\binom{\frac{p+1}{2}}{m-j}=0$ for $0 \leq j \leq p-2$, and so

$$
S_{p}\left(\frac{3 p-1}{2}\right) \equiv \frac{2}{p}\binom{\frac{3 p-1}{2}}{\frac{p+1}{2}}\binom{p-1}{\frac{p+1}{2}} \equiv 4(-1)^{\frac{p+1}{2}} \quad(\bmod p)
$$

If $m=p$ or $p+2 \leq m \leq \frac{3 p-3}{2}$, then $\frac{6}{p(2 m-p-2)}\binom{m}{\frac{p+1}{2}}$ is a p-adic integer. Noting that $\binom{j}{\frac{p+1}{2}} \frac{1}{2 j+1} \equiv 0(\bmod p)$ for $p \leq j \leq m$ and applying (2.12), we obtain

$$
\begin{align*}
& \sum_{j=0}^{p-1}(-1)^{j}\binom{j}{\frac{p+1}{2}}\binom{\frac{p+1}{2}}{m-j} \frac{1}{2 j+1} \\
& =\sum_{j=0}^{m}(-1)^{j}\binom{j}{\frac{p+1}{2}}\binom{\frac{p+1}{2}}{m-j} \frac{1}{2 j+1}-\sum_{j=p}^{m}(-1)^{j}\binom{j}{\frac{p+1}{2}}\binom{\frac{p+1}{2}}{m-j} \frac{1}{2 j+1} \\
& \equiv \frac{(-1)^{m}}{2 m+1}\binom{m}{\frac{p+1}{2}}\binom{2 m}{p+1}^{-1}(\bmod p) . \tag{2.14}
\end{align*}
$$

It is easy to see that

$$
\frac{(-1)^{m}}{2 m+1}\binom{m}{\frac{p+1}{2}}\binom{2 m}{p+1}^{-1} \equiv \begin{cases}(-1)^{\frac{p+1}{2}}(\bmod p), & \text { if } m=p \tag{2.15}\\ 0 \quad(\bmod p), & \text { if } p+2 \leq m \leq \frac{3 p-3}{2}\end{cases}
$$

Combining (2.13)-(2.15) and noting that

$$
\begin{equation*}
\frac{1}{p}\binom{p}{\frac{p+1}{2}}=\frac{1}{(p+1) / 2}\binom{p-1}{\frac{p-1}{2}} \equiv 2(-1)^{\frac{p-1}{2}} \quad(\bmod p) \tag{2.16}
\end{equation*}
$$

we obtain

$$
\begin{aligned}
S_{p}(p) & \equiv 6 \quad(\bmod p), \\
S_{p}(m) & \equiv 0 \quad(\bmod p), \quad \text { for } p+2 \leq m \leq \frac{3 p-3}{2}
\end{aligned}
$$

If $m=p+1$, then

$$
\begin{aligned}
& S_{p}(p+1) \\
& =\frac{6}{p^{2}}\binom{p+1}{\frac{p+1}{2}} \sum_{j=0}^{p-1}(-1)^{j}\binom{j}{\frac{p+1}{2}}\binom{\frac{p+1}{2}}{p+1-j} \frac{1}{2 j+1} \\
& =\frac{6}{p^{2}}\binom{p+1}{\frac{p+1}{2}}\left(\sum_{j=0}^{p+1}(-1)^{j}\binom{j}{\frac{p+1}{2}}\binom{\frac{p+1}{2}}{p+1-j} \frac{1}{2 j+1}+\binom{p}{\frac{p+1}{2}} \frac{p+1}{2(2 p+1)}-\binom{p+1}{\frac{p+1}{2}} \frac{1}{2 p+3}\right) \\
& =\frac{6}{p^{2}}\binom{p+1}{\frac{p+1}{2}}\left(\frac{1}{2 p+3}\binom{p+1}{\frac{p+1}{2}}\binom{2 p+2}{p+1}^{-1}+\binom{p}{\frac{p+1}{2}} \frac{p+1}{2(2 p+1)}-\binom{p+1}{\frac{p+1}{2}} \frac{1}{2 p+3}\right) \\
& \equiv \frac{1}{p}\binom{p+1}{\frac{p+1}{2}}\left(\frac{3}{p}\binom{p}{\frac{p+1}{2}}-\frac{3}{2 p}\binom{p+1}{\frac{p+1}{2}}\right)(\bmod p) .
\end{aligned}
$$

Noting that

$$
\frac{1}{p}\binom{p+1}{\frac{p+1}{2}}=\frac{2}{p}\binom{p}{\frac{p+1}{2}} \equiv 4(-1)^{\frac{p-1}{2}} \quad(\bmod p)
$$

with the help of (2.16), we get $S_{p}(p+1) \equiv 0(\bmod p)$. This completes the proof.

Lemma 2.3 Let $p \geq 11$ be a prime and m be an integer such that $0 \leq m \leq 2 p-2$. Then

$$
\begin{align*}
& 35 \sum_{i=0}^{p-1} \sum_{j=0}^{p-1}(-1)^{j}\binom{j}{i}\binom{m}{i}\binom{i}{m-j} \frac{9}{(2 i-3)(2 j+1)(2 m-2 i-3)} \\
& \equiv \begin{cases}35,-70,64 \quad(\bmod p), & \text { if } m=0,1,3, \text { respectively, } \\
70,-140,-36 \quad(\bmod p), & \text { if } m=p, p+1, p+3, \text { respectively, } \\
80(-1)^{\frac{p+1}{2}} \quad(\bmod p), & \text { if } m=\frac{3 p-1}{2}, \\
84(-1)^{\frac{p-1}{2}} \quad(\bmod p), & \text { if } m=\frac{3 p+1}{2}, \\
0 \quad(\bmod p), & \text { otherwise. }\end{cases} \tag{2.17}
\end{align*}
$$

Proof. Let $T_{p}(m)$ denote the left-hand side of (2.17). If $m=0,1,2,3$, we can check the values of $T_{p}(m)$ directly. If $4 \leq m \leq p-1$, we use the following identity

$$
\sum_{i=0}^{m}\binom{m}{i}^{2}\binom{2 m}{2 i}^{-1} \frac{1}{(2 i-3)(2 m-2 i-3)}=0, \quad \text { for } m \geq 4
$$

If $p \leq m \leq 2 p-2$, then

$$
\begin{aligned}
T_{p}(m) \equiv & 35 \sum_{j=0}^{p-1}(-1)^{j}\binom{j}{\frac{p+3}{2}}\binom{m}{\frac{p+3}{2}}\binom{\frac{p+3}{2}}{m-j} \frac{9}{p(2 m-p-6)(2 j+1)} \\
& +35 \sum_{j=0}^{p-1}(-1)^{j}\binom{j}{m-\frac{p+3}{2}}\binom{m}{\frac{p+3}{2}}\binom{m-\frac{p+3}{2}}{m-j} \frac{9}{p(2 m-p-6)(2 j+1)} \\
& =70 \sum_{j=0}^{p-1}(-1)^{j}\binom{j}{\frac{p+3}{2}}\binom{m}{\frac{p+3}{2}}\binom{\frac{p+3}{2}}{m-j} \frac{9}{p(2 m-p-6)(2 j+1)} \quad(\bmod p) .
\end{aligned}
$$

The rest of the proof is similar to that of (2.11), and we omit the details.

3 Proof of Theorem 1.2

Proof of (1.5). By [2, (2.5)], we have

$$
\begin{align*}
\binom{k}{i}\binom{k+i}{i}\binom{k}{j}\binom{k+j}{j} & =\sum_{r=0}^{i}\binom{i+j}{i}\binom{j}{i-r}\binom{j+r}{r}\binom{k}{j+r}\binom{k+j+r}{j+r} \\
& =\sum_{s=j}^{i+j}\binom{i+j}{i}\binom{j}{s-i}\binom{s}{j}\binom{k}{s}\binom{k+s}{s} . \tag{3.1}
\end{align*}
$$

Using (3.1) and the fact that $\binom{k+i}{2 i}\binom{2 i}{i}=\binom{k}{i}\binom{k+i}{i}$, we get

$$
\begin{aligned}
& 3 \sum_{k=0}^{n-1} R_{k}(x)^{2} \\
& =\sum_{k=0}^{n-1} \sum_{i=0}^{k} \sum_{j=0}^{k}\binom{k+i}{2 i}\binom{2 i}{i}\binom{k+j}{2 j}\binom{2 j}{j} \frac{3 x^{i+j}}{(2 i-1)(2 j-1)} \\
& =\sum_{k=0}^{n-1} \sum_{i=0}^{k} \sum_{j=0}^{k} \sum_{s=j}^{i+j}\binom{i+j}{i}\binom{j}{s-i}\binom{s}{j}\binom{k}{s}\binom{k+s}{s} \frac{3 x^{i+j}}{(2 i-1)(2 j-1)} \\
& =\sum_{k=0}^{n-1} \sum_{m=0}^{2 k} \sum_{s=0}^{m} \sum_{i=0}^{s}\binom{m}{i}\binom{m-i}{m-s}\binom{s}{m-i}\binom{k}{s}\binom{k+s}{s} \frac{3 x^{m}}{(2 i-1)(2 m-2 i-1)} \\
& =\sum_{m=0}^{2 n-2} \sum_{s=0}^{m} \sum_{i=0}^{s} \sum_{k=0}^{n-1}\binom{m}{i}\binom{m-i}{m-s}\binom{s}{m-i}\binom{k}{s}\binom{k+s}{s} \frac{3 x^{m}}{(2 i-1)(2 m-2 i-1)}
\end{aligned}
$$

where $m=i+j$. Applying $\binom{m-i}{m-s}\binom{s}{m-i}=\binom{s}{i}\binom{i}{m-s}$ and the following identity

$$
\sum_{k=0}^{n-1}\binom{k}{s}\binom{k+s}{s}=\binom{n+s}{s}\binom{n-1}{s} \frac{n}{2 s+1}
$$

which can be easily proved by induction on n, we obtain

$$
\begin{align*}
& 3 \sum_{k=0}^{n-1} R_{k}(x)^{2} \\
& =n \sum_{m=0}^{2 n-2} \sum_{s=0}^{m} \sum_{i=0}^{m}\binom{n+s}{s}\binom{n-1}{s}\binom{m}{i}\binom{s}{i}\binom{i}{m-s} \frac{3 x^{m}}{(2 s+1)(2 i-1)(2 m-2 i-1)} \tag{3.2}
\end{align*}
$$

Then the proof of (1.5) directly follows from Lemma 2.1 and (3.2).
Proof of (1.6). Letting $x=1$ in (3.2), we immediately get

$$
\begin{equation*}
\frac{3}{n} \sum_{k=0}^{n-1} R_{k}^{2} \equiv \sum_{m=0}^{2 n-2} \sum_{s=0}^{m} \sum_{i=0}^{m}\binom{n+s}{s}\binom{n-1}{s}\binom{m}{i}\binom{s}{i}\binom{i}{m-s} \quad(\bmod 2) \tag{3.3}
\end{equation*}
$$

Noting that

$$
\binom{s}{i}\binom{i}{m-s}=\binom{s}{m-s}\binom{2 s-m}{s-i}
$$

and then applying the Chu-Vandermonde identity to (3.3) yields

$$
\begin{equation*}
\frac{3}{n} \sum_{k=0}^{n-1} R_{k}^{2} \equiv \sum_{m=0}^{2 n-2} \sum_{s=0}^{m}\binom{n+s}{s}\binom{n-1}{s}\binom{s}{m-s}\binom{2 s}{s} \quad(\bmod 2) \tag{3.4}
\end{equation*}
$$

Since $\binom{2 s}{s}=2\binom{2 s-1}{s-1}$ for $s \geq 1$, we conclude that every term on the right-hand side of (3.4) is even except for $m=s=0$. It follows that

$$
\frac{3}{n} \sum_{k=0}^{n-1} R_{k}^{2} \equiv 1 \quad(\bmod 2)
$$

This completes the proof of (1.6).

4 Proof of Theorem 1.3

Proof of (1.4). Letting $n=p$ and $x=1$ in (3.2), and then noting that for $0 \leq s \leq p-1$

$$
\binom{p+s}{s}\binom{p-1}{s} \equiv(-1)^{s} \quad\left(\bmod p^{2}\right)
$$

and for $0 \leq s, i \leq p-1$ and $0 \leq m \leq 2 p-2$

$$
\binom{m}{i}\binom{s}{i}\binom{i}{m-s} \frac{3 p}{(2 s+1)(2 i-1)(2 m-2 i-1)} \in \mathbb{Z}_{p}
$$

we obtain

$$
\begin{align*}
& 3 \sum_{k=0}^{p-1} R_{k}^{2} \\
& \equiv p \sum_{m=0}^{2 p-2} \sum_{s=0}^{p-1} \sum_{i=0}^{p-1}(-1)^{s}\binom{m}{i}\binom{s}{i}\binom{i}{m-s} \frac{3}{(2 s+1)(2 i-1)(2 m-2 i-1)} \quad\left(\bmod p^{2}\right) . \tag{4.1}
\end{align*}
$$

Combining (2.11) and (4.1), we have

$$
\begin{aligned}
3 \sum_{k=0}^{p-1} R_{k}^{2} & \equiv\left(3+2+6+4(-1)^{\frac{p+1}{2}}\right) p \\
& \equiv\left(11+4(-1)^{\frac{p+1}{2}}\right) p \quad\left(\bmod p^{2}\right) .
\end{aligned}
$$

This completes the proof of (1.4).
Proof of (1.7). For $p=5,7$, it is easy to verify that (1.7) holds. For $p \geq 11$, we apply (2.17) and then obtain

$$
35 \sum_{k=0}^{p-1} W_{k}^{2} \equiv\left(-77-4(-1)^{\frac{p+1}{2}}\right) p \quad\left(\bmod p^{2}\right) .
$$

The proof runs analogously, and we omit the details.

Acknowledgments. The authors would like to thank the anonymous referee for valuable comments which improved the presentation of the paper.

References

[1] H.-Q. Cao and H. Pan, A Stern-type congruence for the Schröder numbers, preprint, 2015, arXiv:1512.06310v1.
[2] V.J.W. Guo, Some congruences involving powers of Legendre polynomials, Integral Transforms Spec. Funct. 26 (2015), 660-666.
[3] V.J.W. Guo and J.-C. Liu, Proof of a conjecture of Z.-W. Sun on the divisibility of a triple sum, J. Number Theory 156 (2015), 154-160.
[4] W. Koepf, Hypergeometric Summation, an Algorithmic Approach to Summation and Special Function Identities, Friedr. Vieweg \& Sohn, Braunschweig, 1998.
[5] J.-C. Liu, A supercongruence involving Delannoy numbers and Schröder numbers, J. Number Theory 168 (2016), 117-127.
[6] M. Petkovšek, H. S. Wilf and D. Zeilberger, $A=B$, A K Peters, Ltd., Wellesley, MA, 1996.
[7] R. P. Stanley, Hipparchus, Plutarch, Schröder, and Hough, Amer. Math. Monthly 104 (1997), 344-350.
[8] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999.
[9] Z.-W. Sun, On Delannoy numbers and Schröder numbers, J. Number Theory 131 (2011), 2387-2397.
[10] Z.-W. Sun, Two new kinds of numbers and related divisibility results, preprint, 2014, arXiv:1408.5381v8.
[11] Z.-W. Sun, Arithmetic properties of Delannoy numbers and Schröder numbers, preprint, 2016, arXiv:1602.00574v3.

