ANOTHER PRESENTATION FOR STEINBERG GROUPS

BY

W. VAN DER KALLEN

(Communicated by Prof. T. A. Springer at the meeting of December 18, 1976)

§ 1. introduction

Let R be a commutative ring with identity, $n \geqslant 3$. Suslin has shown that the elementary subgroup $E(n, R)$ is normal in the general linear group $G L(n, R)$. In other words, $E(n, R)$ is invariant under change of co-ordinates. Here we will establish the analogue for the Steinberg group $S t(n, R)$, when $n>4$. We will give a presentation for $S t(n, R)$ which is invariant under change of co-ordinates. Thus a change of co-ordinates, given by an element M of $G L(n, R)$, will induce an automorphism α_{M} of $S t(n, R)$. This α_{M} is compatible with inner conjugation by M in $G L(n, R)$. If M is the image of some element x of $S t(n, R)$ then α_{M} is just inner conjugation by x. It follows that $K_{2}(n, R)$ is central in $\operatorname{St}(n, R)$, and, if $n \geqslant 5$, that $\operatorname{St}(n, R)$ is the universal central extension of $E(n, R)$.

I am indebted to Keith Dennis for suggesting this work and formulating relevant questions when it was in progress.

§ 2. the Results

2.1. Throughout R is a commutative ring with identity. (For noncommutative rings the proofs fail, especially in 3.2). Let $n \geqslant 4$.

Definitions. Let U be the set of pairs (i, j) with i a unimodular column of length n, j a row of length n such that $j i=0$. For $(i, j) \in U$ we put $e(i, j)=1+i j$, where 1 is the identity matrix in $G L(n, R)$. So $e(i, j) v=v+i(j v)$, if v is a column of length n. (Note that $j v \in R$). And also $w e(i, j)=w+(w i) j$, if w is a row of length n. We have $(i j)^{2}=0$, so $e(i, j) \in G L(n, R)$.
2.2. Definition. $S t^{*}(n, R)$ is the group defined by the following presentation.

Generators: $X(i, j)$ with $(i, j) \in U$.
Relations:

$$
\begin{gathered}
X(i, j) X(i, k)=X(i, j+k) \text { if }(i, j),(i, k) \in U . \\
X(i, j) X(k, l) X(i, j)^{-1}=X(k+i(j k), l-(l i) j), \text { if }(i, j),(k, l) \in U .
\end{gathered}
$$

Note that $X(k+i(j k), l-(l i) j)=X\left(e(i, j) k, l e(i, j)^{-1}\right)$.
2.3. Remark. One may want to generalize the definition to the case where R^{n} is replaced by a finitely generated projective R-module P, with dual P^{*}. For U one then takes the set of pairs (i, j) with i unimodular in P, $j \in P^{*}$ such that $j i=0$. (Recall that i is called unimodular if there is $k \in P^{*}$ with $\left.k i=1\right)$.
2.4. Notatrons. Let ε_{p} denote the p-th basis vector of R^{n}, i.e. the column with 1 at place p and zeroes elsewhere. Let $\varepsilon_{\mathcal{p}}^{T}$ denote the transpose of ε_{p}. The usual generators $e_{p q}(a)$ of $E(n, R)$ can now also be written as $e\left(\varepsilon_{p}, a \varepsilon_{q}^{\boldsymbol{R}}\right)$. Let $\pi: S t^{*}(n, R) \rightarrow G L(n, R)$ denote the natural homomorphism which sends $X(i, j)$ to $e(i, j)$. We also denote by π the natural homomorphism $S t(n, R) \rightarrow G L(n, R)$ which sends $x_{p q}(a)$ to $e_{p q}(a)$.
2.5. Theorem 1. Let $n \geqslant 4$. There is an isomorphism $\operatorname{St}(n, R) \rightarrow$ $\rightarrow S t^{*}(n, R)$, sending $x_{p q}(a)$ to $X\left(\varepsilon_{p}, a \varepsilon_{q}^{\boldsymbol{T}}\right)$.
2.6. Corollary 1. If $n \geqslant 4, K_{2}(n, R)$ is central in $\operatorname{St}(n, R)$.

Proof. It is easy to see that $x X(k, l) x^{-1}=X\left(\pi(x) k, l \pi(x)^{-1}\right)$ for $x \in S t^{*}(n, R),(k, l) \in U$. Therefore ker π is central in $S t^{*}(n, R)$. Now apply the theorem.
2.7. Corollary 2. If $n>5, \operatorname{St}(n, R)$ is a universal central extension of $E(n, R)$.

Proof. See [4], remark to theorem 5.10.
2.8. Corollary 3. If $n=4$ and R has no residue field with two elements, $S t(n, R)$ is a universal central extension of $E(n, R)$.

Proof. See [3] Theorem (2.6) and [4] Theorem 5.3.
2.9. Corollary 4. Let $M \in G L(n, R)$ and let β_{M} denote inner conjugation by M in $G L(n, R)$. There is one and only one homomorphism $\alpha_{M}: S t(n, R) \rightarrow S t(n, R)$ that makes the following diagram commute:

Remarks. If $n \geqslant 5$ Corollary 4 follows from Corollary 2 and the fact that $E(n, R)$ is normal in $G L(n, R)$.

Conversely, it follows from Corollary 4 that $E(n, R)$ is normal in $G L(n, R)$, but Suslin's proof of the latter is included in the proof of Theorem 1.

Proof of Corollary 4. Uniqueness follows from Corollary 1 and the fact that $S t(n, R)$ is perfect. (See [4], Lemma 5.4). To prove existence one factors over $S t^{*}(n, R)$, where one sends $X(i, j)$ to $X\left(M i, j M^{-1}\right)$.
2.10. Recall that $S t(n, R)$ admits an automorphism called "transpose inverse", which sends $x_{p q}(a)$ to $x_{q p}(-a)$. This automorphism has no convenient description in $S t^{*}(n, R)$ because U is not closed under the operation $(i, j) \rightarrow\left(j^{T}, i^{T}\right)$. (Recall that ${ }^{T}$ stands for "transpose"). But U is not the only set of pairs (i, j) for which one can prove results like Theorem 1. We give an example.
2.11. Defintition. Let V be the set of pairs (i, j) with
(a) i is a column of length n.
(b) j is a row of length n.
(c) $j i=0$.
(d) There is $M \in G L(n, R)$ such that both $M i$ and $j M^{-1}$ have at least two zeroes.
Let $S t^{\wedge}(n, R)$ be the group dcfined by the following presentation.
Generators: $Y(i, j)$ with $(i, j) \in V$.
Relations:

$$
\begin{gathered}
Y(i, j) Y(i, k)=Y(i, j+k) \text { if }(i, j),(i, k),(i, j+k) \in V . \\
Y(i, k) Y(j, k)=Y(i+j, k) \text { if }(i, k),(j, k),(i+j, k) \in V . \\
Y(i, j) Y(k, l) Y(i, j)^{-1}=Y(k+i(j k), l-(l i) j) \text { if }(i, j),(k, l) \in V .
\end{gathered}
$$

2.12. Theorem 2. Let $n \geqslant 4$. There is an isomorphism $\operatorname{St}(n, R) \rightarrow$ $\rightarrow S t^{\wedge}(n, R)$, sending $x_{p q}(a)$ to $Y\left(\varepsilon_{p}, a \varepsilon_{q}^{T}\right)$.
2.13. In $S t^{\wedge}(n, R)$ the "transpose inverse" automorphism can be described by $Y(i, j) \mapsto Y\left(j^{T}, i^{T}\right)^{-1}$.
2.14. We leave it to the reader to select his own favorite set of pairs (i, j) and see what goes through for that set.
2.15. Remark 1. It is not always true that $\alpha_{M} x=x$ for $x \in K_{2}(n, R)$. (This would be the case if $K_{2}(n, R) \rightarrow K_{2}(R)$ were injective and also if we had $M \in E(n, R)$). Counter examples can be obtained from [2], 7.187.21, using tables of homotopy groups of spheres, with M a diagonal matrix whose diagonal is $(-1,1,1, \ldots, 1)$.

Remark 2. Even if R is not commutative therc is an action of $G L(n, R)$ on $S t(n+2, R)$, for $n \geqslant 1$. This can be seen by means of a variation on Theorem B' of [1]. Instead of using the $x_{i j}(r)$ with $|i-j| \leqslant 2$ as generators, one now uses the $x_{i j}(r)$ with $i>n$ or $j>n$ (and, as always, $i \neq j$). Relations are those Steinberg relations which involve only the chosen generators.

With this presentation it is not hard to define an action of $G L(n, R)$. (cf. proof of Corollary 4).

§ 3. PROOF OF THE THEOREMS

3.1. We write $i \in R^{n}$ to indicate that i is a column of length n and we write $j^{T} \in R^{n}$ to indicate that j is a row of length n. Say $i, j^{T}, k^{T} \in R^{n}$. Put $w_{p q}=\left(j_{p} k_{q}-j_{q} k_{p}\right)\left(i_{q} \varepsilon_{p}^{r}-i_{p} \varepsilon_{q}^{T}\right)$. Here i_{q}, k_{p} are co-ordinates of i, k resp., and the result is a row with at least $n-2$ zeroes. Note that $w_{p q}=w_{q p}$, $w_{p p}=0$.
3.2. Lemma. $\quad w_{p q} i=0$ and $\sum_{p<q} w_{p q}=(k i) j-(j i) k$.

Proof. Straightforward.
3.3. Now assume $(i, j) \in U$ and choose k such that $k i=1$. Then we find $\sum_{p<q} w_{p q}=j$ and the ($i, w_{p q}$) are in U. So $X(i, j)$ is the product of the $X\left(i, w_{p q}\right)$. As $n \geqslant 4$, the $w_{p q}$ have at least two zeroes. (In Suslin's proof that $E(n, R)$ is normal in $G L(n, R)$ one only needs one zero. Therefore he only requires $n \geqslant 3$).

3.4. Lemma. $S t^{*}(n, R)$ is perfect.

Proof. By 3.3 it is sufficient to show that $X(i, w)$ is in the commutator subgroup when $(i, w) \in U$ and w has at least two zeroes. Say $w_{1}=w_{2}=0$. Suppose j, v are such that $(i, j),(v, w) \in U$. Then

$$
[X(i, j), X(v, w)]-X(i, j) X(i, j-(j v) w)^{-1}=X(i,(j v) w)
$$

In particular, if $j i=0$ and $v=\varepsilon_{1}$, then $X\left(i, j_{1} w\right)$ is a commutator. Similarly $X\left(i, j_{2} w\right)$ is a commutator. So we will be done if the ideal J generated by the possible values of j_{1} and j_{2} is the unit ideal. Taking $j=i_{p} \varepsilon_{q}^{T}-i_{q} \varepsilon_{p}^{T}$ one sees that J contains the co-ordinates of i. Now recall that i is unimodular.
3.5. It is easy to see that $x_{p q}(a) \mapsto X\left(\varepsilon_{p}, a \varepsilon_{q}^{\boldsymbol{T}}\right)$ defines a homomorphism $\phi: S t(n, R) \rightarrow S t^{*}(n, R)$.

Lemma. To prove Theorem 1 it is sufficient to find a homomorphism $\psi: S t^{*}(n, R) \rightarrow S t(n, R)$ so that $\psi \phi$ is the identity and so that $\pi \psi=\pi$.

Proof. Assume we have ψ. Then $\pi \phi \psi=\pi$. But $\pi: S t^{*}(n, R) \rightarrow E(n, R)$ is a central extension (see proof of Corollary 1) and $S t^{*}(n, R)$ is perfect, so $\phi \psi$ is the identity, by [4] lemma 5.4. The theorem follows.
3.6. In order to obtain ψ it is sufficient to find elements $X(i, j)$ in $S t(n, R)$ such that
(a) $X(i, j)$ is defined when $(i, j) \in U$, and $\pi(X(i, j))=e(i, j)$.
(b) $X(i, j) X(i, k)-X(i, j+k)$ if $(i, j),(i, k) \in U$.
(c) $X(i, j) X(k, l) X(i, j)^{-1}=X(k+i(j k), l-(l i) j)$ if $(i, j),(k, l) \in U$.
(d) $X\left(\varepsilon_{p}, a \varepsilon_{a}^{T}\right)=x_{p q}(a)$.

Note that we used the notation $X(i, j)$ before to denote the generators of $S t^{*}(n, R)$. There will be no confusion as we will not need $S t^{*}(n, R)$ any more; the computations and definitions in the sequel all refer to $S t(n, R)$.
3.7. Notation. If $i \in R^{n}, \mathrm{l} \leqslant r \leqslant n$, set $x(i)_{r}=\prod_{p \neq r} x_{p r}\left(i_{p}\right)$. So $x(i)_{r}$ is a product of factors with "column index" r. We can ignore the coordinate i_{r}. One may also replace i by i^{\prime} where i^{\prime} has a zero at place r and the same co-ordinates as i otherwise. Clearly $x(i)_{r}=x\left(i^{\prime}\right)_{r}$.

If $j^{T} \in R^{n}, 1 \leq r \leq n$, set $x_{r}(j)=\prod_{p \neq r} x_{r p}\left(j_{p}\right)$. Here the "row index" of the factors is r. The following well known fact is very useful in computations. Let $j^{T} \in R^{n}, j_{r}=0$, and let z be a product of factors with column index different from r. Then $z x_{r}(j) z^{-1}=x_{r}\left(j \pi(z)^{-1}\right)$. (If the factors do not have row index r either, the condition $j_{r}=0$ is superfluous). Similarly $y x(i)_{r} y^{-1}=x(\pi(y) i)_{r}$ if $i_{r}=0$ and y can be written as a product of factors with row index different from r. (We will meet situations where an element can be written two ways. It is of course sufficient if one of these two ways satisfies the criterion). Also note the rules $x(i+k)_{r}=x(i)_{r} x(k)_{r}$ and $x_{r}(j+l)=x_{r}(j) x_{r}(l)$.
3.8. Definition. Let $i, j^{T} \in R^{n}, j i=0, \quad 1 \leqslant r \leqslant n, i_{r}=0$. Then set $x(i, j)=\left[x(i)_{r}, x_{r}(j)\right] x\left(i j_{r}\right)_{r}$. It is easy to see that $\pi(x(i, j))=e(i, j)$. We have to show that the definition is consistent, i.e. that if i_{s} is also zero, $\left[x(i)_{r}, x_{r}(j)\right] x\left(i_{j_{r}}\right)_{r}=\left[x(i)_{s}, x_{s}(j)\right] x\left(i j_{s}\right)_{s}$.
3.9. Say $r=1, s=2$. Writc j as $a \varepsilon_{1}^{T}+b \varepsilon_{2}^{T}+k$, where $k_{1}=k_{2}=0$. Put $y=\left[x(i)_{1}, x_{1}(k)\right]$. Then y is a product of factors with row index different from 2, as $i_{2}=0$. Therefore $y x_{12}(b) y^{-1}=x\left(\pi(y) b \varepsilon_{1}\right)_{2}=x_{12}(b)$. Similarly

$$
y x(i b)_{2} y^{-1}=x(i b)_{2}, \quad\left[x(i)_{1}, x_{12}(b)\right]=x(i b)_{2}, \quad\left[x(i a)_{1}, x(i b)_{2}\right]=1 .
$$

So

$$
\begin{gathered}
{\left[x(i)_{1}, x_{1}(j)\right] x(i a)_{1}=\left[x(i)_{1}, x_{12}(b)\right] x_{12}(b)\left[x(i)_{1}, x_{1}(k)\right] x_{12}(b)^{-1} x(i a)_{1}=} \\
=x(i b)_{2} y x(i a)_{1}=y x(i b)_{2} x(i a)_{1}=y x(i a)_{1} x(i b)_{2} .
\end{gathered}
$$

Interchanging the roles of 1 and 2 yields

$$
\left[x(i)_{2}, x_{2}(j)\right] x(i b)_{2}=\left[x(i)_{2}, x_{2}(k)\right] x(i a)_{1} x(i b)_{2}
$$

So it remains to show that $y=\left[x(i)_{2}, x_{2}(k)\right]$. Just as y commutes with $x_{12}(b)$ it commutes with $x_{12}(1)$. It also commutes with $x_{21}(1)$. (Apply "transpose inverse" or use that y is a product of factors with column index different from 2). So y commutes with $w_{12}(1)=x_{12}(1) x_{21}(1)^{-1} x_{12}(1)$, and $y=w_{12}(1) y w_{12}(1)^{-1}=\left[x(i)_{2}, x_{2}(k)\right]$, as required.
3.10. Definition. Let $i, j^{T} \in R^{n}, j i=0, \quad 1 \leqslant r \leqslant n, j_{r}=0$. Then set $x(i, j)=x_{r}\left(i_{r} j\right)\left[x(i)_{r}, x_{r}(j)\right]$. Again $\pi(x(i, j))=e(i, j)$. The definition is internally consistent for reasons similar to those given above. One can also use that the "transpose inverse" automorphism sends the present $x(i, j)$ to the inverse of $x\left(-j^{T},-i^{T}\right)$, where the latter is taken in the sense of 3.8. Remains to show that definition 3.10 is consistent with definition 3.8 when both apply. If $i_{r}=j_{r}=0$ this is obvious. So we are already free to use both definitions of $x(v, w)$ when $v_{r}=w_{r}=0$ for some r. Now say $i_{1}=j_{2}=0$. Write $j=a \varepsilon_{1}^{T}+k, i=c \varepsilon_{2}+l$, where $k_{1}=k_{2}=l_{1}=l_{2}=0$. We have to show that $\left[x(i)_{1}, x_{1}(j)\right] x(i a)_{1}=x_{2}(c j)\left[x(i)_{2}, x_{2}(j)\right]$, or that $x(i, k) x(i a)_{1}=$ $-x_{2}(c j) x(l, j)$. The left hand side equals

$$
x_{2}(c k)\left[x(i)_{2}, x_{2}(k)\right] x(i a)_{1}=x_{2}(c k) x(l, k) x_{2_{1}}(c a) x(l a)_{1}
$$

the right hand side equals

$$
x_{2}(c j)\left[x(l)_{1}, x_{1}(j)\right] x(l a)_{1}=x_{2}(c k) x_{21}(c a) x(l, k) x(l a)_{1} .
$$

So we need that $x(l, k)$ commutes with $x_{21}(c a)$. It does, by the usual argument. The trick in these computations is to apply the definitions 3.8, 3.10 with different values of r, in order to rewrite commutators. Thus one can break some commutators into pieces. Other commutators can be rewritten so that a certain row or column index is avoided. In the sequel these manipulations will be left to the reader.
3.11. Lemma. Let $i, j^{T}, k^{T} \in R^{n}, j i=k i=0$. Assume either that i has at least two zeroes, or that there are p, q, r, distinct, with $j_{r}=j_{p}=k_{p}=k_{q}=0$. Then $x(i, j) x(i, k)=x(i, j+k)$. A similar statement holds with rows and columns interchanged. (e.g. apply "transpose inverse").

Proof. First let $i_{p}=i_{q}=0, p \neq q$. Then

$$
x(i, j+k)=\left[x(i)_{p}, x_{p}(j)\right] x_{p}(j)\left[x(i)_{p}, x_{p}(k)\right] x_{p}(j)^{-1} x\left(i j_{p}+i k_{p}\right)_{p}
$$

Decomposing the second commutator one sees that it can be written without row index p and also without column index p. The result follows easily. Next let $j_{r}=j_{p}=k_{p}=k_{q}=0, p, q, r$ distinct. Again the commutators $\left[x(i)_{p}, x_{p}(j)\right],\left[x(i)_{p}, x_{p}(k)\right]$ can be written without column index p and the result follows easily.
3.12. Lemma. Let $i, j^{T} \in R^{n}, y=x_{p q}(a)$. (So y is one of the ordinary generators of $S t(n, R)$). If j has at least two zeroes and $j i=0$, then $y x(i, j) y^{-1}=x\left(\pi(y) i, j \pi(y)^{-1}\right)$.

Proof. Say $p=1, q=2$. One has essentially two cases: $j_{3}=0 ; j_{1}=j_{2}=0$. In each case decompose $x(i, j)$, then conjugate by y, then put things together again, using arguments as above.

21 Indagationes
3.13. Definition. Let $(i, j) \in U$. (see 2.1). We define $\bar{X}(i, j)$ to be the set of $x \in \operatorname{St}(n, R)$ that can be written as $\prod_{m} x\left(i, w^{m}\right)$, where $\sum_{m} w^{m}=j$, each w^{m} is a scalar multiple of one of the rows $i_{q} \varepsilon_{p}^{T}-i_{p} \varepsilon_{q}^{T}$. One may use the same pair p, q repeatedly and one may choose the order in the product. Thus it is obvious that $x \in \bar{X}(i, j), y \in \bar{X}(i, k)$ implies $x y \in \bar{X}(i, j+k)$, when $(i, j),(i, k) \in U$. Our purpose is to show that each set $\bar{X}(i, j)$ consists of exactly one element, which will then be written as $X(i, j)$. The $X(i, j)$ will satisfy the requirements listed in 3.6.
3.14. Lemma. Let $(i, j) \in U, y \in S t(n, R)$. Then

$$
y \bar{X}(i, j) y^{-1} \subseteq \bar{X}\left(\pi(y) i, j \pi(y)^{-1}\right)
$$

Proof. We may assume $y=x_{p q}(a)$ and it suffices to show that

$$
y x(i, w) y^{-1} \in \bar{X}\left(\pi(y) i, w \pi(y)^{-1}\right)
$$

for $w=b\left(i_{r} \varepsilon_{s}^{T}-i_{s} \varepsilon_{r}^{T}\right)$. There are a few cases, such as the case $p=r, q \neq s$. In each case apply 3.12 and, where necessary, 3.11.
3.15. Lemma. Let $\left(\varepsilon_{1}, j\right) \in U, M \in E(n, R)$. Then $\bar{X}\left(M \varepsilon_{1}, j M^{-1}\right)$ consists of exactly one element.

Proof. Choose $y \in S t(n, R)$ with $\pi(y)=M$. Then

$$
y \bar{X}\left(\varepsilon_{1}, j\right) y^{-1} \subseteq \bar{X}\left(M \varepsilon_{1}, j M^{-1}\right)
$$

and

$$
y^{-1} \bar{X}\left(M_{\varepsilon_{1}}, j M^{-1}\right) y \subseteq \bar{X}\left(\varepsilon_{1}, j\right)
$$

so we may assume $M=1$. In that case $x\left(\varepsilon_{1}, w^{m}\right)=x_{1}\left(w^{m}\right)$ (usc $r=1$ in 3.10) and thus $\prod_{m} x\left(\varepsilon_{1}, w^{m}\right)=x_{1}(j)$.
3.16. Remark. At this stage one can already show that $K_{2}(n, R)$ is central in $S t(n, R)$, by an argument as in 2.6.
3.17. Definition. Let $i, j^{T}, k^{T} \in R^{n}$ with $j i=0, k i=1$. We would like to define $x_{i}(j ; k)$ as the product of the $x\left(i, w_{p q}\right)$ with $p<q$, where $w_{p q}$ is defined as in 3.1. The product might depend on the order of the factors however (we will see later that it does not). Therefore we define instead $\bar{x}_{i}(j ; k)$ to be the set of values that one gets when varying the order. From 3.2 it follows that $\bar{x}_{i}(j ; k) \subseteq \bar{X}(i, j)$.
3.18. Lemma. Let $(i, j) \in U, k^{T} \in R^{n}$ with $k i=1$. If j has at least two zeroes then $x(i, j) \in \bar{x}_{i}(j ; k) \subseteq \bar{X}(i, j)$.

Proof. - Say $j_{1}=j_{2}=0$. The product of the $x\left(i, w_{1 q}\right)$ is $x(i, v)$ where $v=\Sigma_{q} w_{1 q}$, by 3.11. (Use that the second co-ordinate of $w_{1 q}$ is zero). The first co-ordinate of v is zero, by 3.2 , so the product of the $x\left(i, w_{1 q}\right)$ is of the form $x(i, l)$ with $l_{1}=l_{2}=0$. The same observation holds for the product
of the $x\left(i, w_{2 q}\right)$ and also for each of the remaining factors $x\left(i, w_{p q}\right)(2<p<q)$. So we can take all factors together and obtain $x\left(i, \sum_{p<q} w_{p q}\right)$, i.e. $x(i, j)$. (The order we used is as follows. First come the $w_{1 q}$, then the $w_{2 q}$, then the rest.)
3.19. Lemma. Let $(i, j),(i, k) \in U$ where j, k each have at most two non-zero co-ordinates. Then $x(i, j), x(i, k)$ commute.

Proof. Either 3.11 applies or we are essentially in the following situation: $n=4, j_{3}=j_{4}=k_{1}=k_{2}=0$. Write i as $v^{1}+v^{2}+v^{3}+v^{4}$ where $v^{1}=\varepsilon_{3}$, $v^{2}-\varepsilon_{4}, v^{3}=-\varepsilon_{3}+i_{4} \varepsilon_{4}$. Then the v^{r} are all of the form $M \varepsilon_{1}$ as in 3.15 and $x\left(v^{r}, j\right) \in \bar{X}\left(v^{r}, j\right)$ by 3.18. We have $x(i, k) x\left(v^{r}, j\right) x(i, k)^{-1} \in \bar{X}\left(v^{r}+i\left(k v^{r}\right), j\right)$, so $x(i, k) x(i, j) x(i, k)^{-1}=\Pi_{r}\left(x(i, k) x\left(v^{r}, j\right) x(i, k)^{-1}\right)=\prod_{r} x\left(v^{r}+i\left(k v^{r}\right), j\right)=$ $=x(i, j)$ by 3.11, 3.15, 3.18.
3.20. Definition. By 3.19 there is only one element in $\bar{x}_{i}(j ; k)$. We call it $x_{i}(j ; k)$. Note that $x_{i}(u ; k) x_{i}(v ; k)=x_{i}(u+v ; k)$.

Remark. For $n>4$ we do not need Lemma 3.15 to prove Lemma 3.19. Then $x_{i}(j ; k)$ can be defined immediately after 3.11. One can then proceed with $3.18,3.13,3.21$ and only then discuss $3.12,3.14$. In other words, our introduction of the sets $\bar{X}(i, j), \bar{x}_{i}(j ; k)$, instead of the elements $X(i, j)$, $x_{i}(j ; k)$, is only relevant for $n=4$.
3.21. Lemma-Definition. Let $(i, j) \in U$. Then $\bar{X}(i, j)$ consists of exactly one element. We call it $X(i, j)$.

Proof. Choose k such that $k i=1$. Then

$$
\prod_{m} x\left(i, w^{m}\right)=\prod_{m} x_{i}\left(w^{m} ; k\right)=x_{i}\left(\sum_{m} w^{m} ; k\right)=x_{i}(j ; k)
$$

if the w^{m} are as in 3.13. So $x_{i}(j ; k)$ is the unique element of $\bar{X}(i, j)$.
3.22. It is easy to check that the $X(i, j)$ satisfy the requirements listed in 3.6, so Theorem 1 is proved.
3.23. Definition. Let $i, j^{T} \in R^{n}$ with $j i=0$. Assume there is $M \in G L(n, R)$ such that $j M$ has at least two zeroes. Choose columns v^{r} such that $\sum_{r} v^{r}=i,\left(v^{r}, j\right) \in U$. (This is possible, cf. proof of Lemma 3.19). We set $Z(i, j)=\Pi_{r} X\left(v^{r}, j\right)$. We need to show that $Z(i, j)$ does not depend on the choice of the v^{r}. We claim that, independent of this choice, $Z(i, j)=$ $=\alpha_{M}\left(x\left(M^{-1} i, j M\right)\right.$, where α_{M} is as in 2.9. For, by 3.18, X(M-1 $\left.v^{r}, j M\right)=$ $=x\left(M^{-1} v^{r}, j M\right)$, and the product of the $x\left(M^{-1} v^{r}, j M\right)$ is $x\left(M^{-1} i, j M\right)$, by 3.11. Also, by construction, $\alpha_{M}\left(X\left(M^{-1} v^{r}, j M\right)\right)=X\left(v^{r}, j\right)$. (See proof of 2.9). The claim follows. From the claim one also sees that $Z(i, j)$ could have been defined as $\alpha_{M}\left(x\left(M^{-1} i, j M\right)\right.$).
3.24. Definition. Let $(i, j) \in V$. (see 2.11). Define $Y(i, j)=Z(i, j)$. In other words, choose M such that $j M$ has at least two zeroes and put $Y(i, j)=\alpha_{M}\left(x\left(M^{-1} i, j M\right)\right)$. Note that the generators of $S t^{\wedge}(n, R)$ are also called $Y(i, j)$. Clearly $Y(i, k) Y(j, k)=Y(i+j, k)$ when $(i, k),(j, k),(i+j, k) \in V$. Also, $\alpha_{M}(Y(i, j))=Y\left(M i, j M^{-1}\right)$ when $(i, j) \in V, M \in G L(n, R)$. In particular, $Y(i, j) Y(k, l) Y(i, j)^{-1}=Y(k+i(j k), l-(l i) j)$ if $(i, j),(k, l) \in V$.
3.25. Let τ denote the "transpose inverse" involution of $S t(n, R)$ (see 2.10) and also the analogous involution of $G L(n, R)$. Let $v, w^{T} \in R^{n}, w v=0$. If w has at least two zeroes, $\tau(x(v, w))=x\left(-w^{T},-v^{T}\right)^{-1}$. (cf. 3.10). From uniqueness of α_{M} one sees that $\alpha_{M}=\tau \alpha_{\tau M} \tau, M \in G L(n, R)$. It follows that $\tau(Y(i, j))=Y\left(-j^{T},-i^{T}\right)^{-1}$ for $(i, j) \in V$. Therefore the $Y(i, j)$ also satisfy the first relation in the list that defines $S t^{\wedge}(n, R)$. We get a homomorphism $S t^{\wedge}(n, R) \rightarrow S t(n, R)$, sending $Y(i, j)$ to $Y(i, j)$ for $(i, j) \in V$.

3.26. Lemma. $S t^{\wedge}(n, R)$ is perfect.

Proof. If there are p, q, r, distinct, with $i_{p}=i_{r}=j_{q}=j_{r}=0$, then $Y(i, j)=\left[Y\left(i, \varepsilon_{r}^{\boldsymbol{T}}\right), Y\left(\varepsilon_{r}, j\right)\right]$. If $(i, j) \in V$ and i has at least two zeroes, we can therefore write $Y(i, j)$ as the product of three commutators. For $M \in G L(n, R)$ there is an automorphism of $S t^{\wedge}(n, R)$ sending $Y(i, j)$ to $Y\left(M i, j M^{-1}\right)$ for $(i, j) \in V$. The result follows.
3.27. Theorem 2 follows by an argument as in 3.5.

Remark. The homomorphism $S t(n, R) \rightarrow S t^{\wedge}(n, R)$ which sends $x_{p q}(a)$ to $Y\left(\varepsilon_{p}, a \varepsilon_{q}^{\boldsymbol{T}}\right)$ can also be described as sending $x_{p q}(a)$ to $Y\left(a \varepsilon_{p}, \varepsilon_{q}^{T}\right)$. For, when r is chosen distinct from p and q, one has

$$
Y\left(\varepsilon_{p}, a \varepsilon_{q}^{T}\right)=\left[Y\left(\varepsilon_{p}, \varepsilon_{r}^{T}\right), Y\left(a \varepsilon_{r}, \varepsilon_{q}^{T}\right)\right]=Y\left(a_{p}, \varepsilon_{q}^{T}\right) .
$$

More generally one has $Y(i, a j)=Y(a i, j)$ for $a \in R,(i, j) \in V$.
Rijksuniversiteit Utrecht, Utrecht, The Netherlands

REFERENCES

1. Dennis, R. K. and M. R. Stein - Injective Stability for K_{2} of local rings, Bull. Amer. Math. Soc., 80, 1010-1013 September 1974.
2. Kallen, W. van der - Injective Stability for K_{2}, Proc. Northwestern Conf. on Algebraic K-Theory, Lecture Notes in Math. 551, 77-154, Springer 1976.
3. Kallen, W. van der and M. R. Stein - On the Schur Multipliers of Stoinborg and Chevalley groups over commutative rings, to appear in Mathematische Zeitschrift.
4. Milnor, J. - Introduction to Algebraic K-Theory, Annals of Math. Studies no. 72, Princeton University Press, Princeton, 1971.
5. Suslin, A. - On the structure of the special linear group over polynomial rings, to appear in Izv. Akad. Nauk SSSR Ser. Mat.
