# How to prove this polynomial always has integer values at all integers 

Wilberd van der Kallen
September 2015


#### Abstract

The following problem was posed by user "Kevin" on Mathoverflow. How to prove this polynomial always has integer values at all integers? $P_{m}(x)=\sum_{i=0}^{m} \sum_{j=0}^{m}\binom{x+j}{j}\binom{x-1}{j}\binom{j}{i}\binom{m}{i}\binom{i}{m-j} \frac{3}{(2 i-1)(2 j+1)(2 m-2 i-1)}$. We provide an answer. $$
P_{m}(x)=\sum_{i=0}^{m} \sum_{j=0}^{m}\binom{x+j}{j}\binom{x-1}{j}\binom{j}{i}\binom{m}{i}\binom{i}{m-j} \frac{3}{(2 i-1)(2 j+1)(2 m-2 i-1)} .
$$


So

Our task is to show it takes integer values on integers.
As Kevin explains at
[question 209140](http://mathoverflow.net/q/209140)
$P_{m}(x)$ is an even polynomial of degree $2 m$ and he could show that $x P_{m}(x)$ always has integer values at all integers.
Folowing Wadim Zudilin we put

$$
B_{k}(x)=\binom{x+k}{2 k}+\binom{-x+k}{2 k} .
$$

For $k \geq 0$ the $B_{k}$ are even polynomials of degree $2 k$ that take integer values on integers. One has $B_{k}(k)=1$ for $k \geq 1$, but $B_{0}(0)=2$. Further $B_{k}(i)=0$ for $|i|<k$. So the matrix

$$
\left(B_{k}(i)\right)_{\substack{0 \leq i \leq m \\ 0 \leq k \leq m}}^{\substack{0 \\ \text { n }}}
$$

is triangular.

Every even polynomial $f(x)$ of degree $2 j$ is clearly a linear combination of $B_{0}, \ldots, B_{j}$ and the coefficients are determined by $f(0), \ldots, f(j)$. When $f(0)=0$ it is actually a linear combination of $B_{1}, \ldots, B_{j}$.

Rewrite $P_{m}(x)$ as

$$
P_{m}(x)=\sum_{k} d(m, k) B_{k}(x)
$$

with $d(m, k) \in \mathbb{Q}$. As explained by Kevin, $P_{m}(k)$ vanishes if $m>2|k|-2 \geq 0$ because all terms in the sum vanish. It can also be shown that $P_{m}(0)=0$ for $m \geq 2$, but that is more tricky. Indeed we will show that $d(m, 0)=0$ for $m \geq 2$.

Note that $P_{m}(x)$ visibly lies in the local ring $\mathbb{Z}_{(2)}$ for integer $x$. So it suffices to show that $d(m, k)$ lies in $\mathbb{Z}_{(p)}$ for any odd prime $p$. In fact we will find that the $d(m, k)$ are integers for $m \geq 1$. And $d(0,0)=3 / 2$ lies in $\mathbb{Z}_{(p)}$ for our odd prime $p$. For $m$ not too large one may simply compute all $d(m, k)$. The matrix

$$
(d(m, k))_{0}^{0 \leq k \leq 10} 0
$$

looks like this

$$
\left(\begin{array}{ccccccccccc}
\frac{3}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 24 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 118 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 60 & 696 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 12 & 720 & 4824 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 336 & 8288 & 38240 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 60 & 6516 & 95928 & 336822 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2520 & 109872 & 1131732 & 3215544 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 392 & 67904 & 1735320 & 13647840 & 32651544
\end{array}\right) .
$$

We will tacitly use it to deal with small values of $m$.
We will study the set

$$
V_{p}=\left\{(m, k) \in \mathbb{Z} \times \mathbb{Z} \mid d(m, k) \in \mathbb{Z}_{(p)}\right\}
$$

Using a method of Zeilberger we will prove relations between the $d(m, k)$ that were first discovered experimentally. One relation allows us to rewrite $m(m-1)(1+2 m) d(m, k)$ in such a manner that we can use the method of Floors described in [question 26336](http://mathoverflow.net/q/26336).

With that method we show that $m(m-1)(1+2 m) d(m, k)$ is an integer multiple of $3 m(m-$ 1). Together with the relations this will allow us to show that $V_{p}$ fills all of $\mathbb{Z} \times \mathbb{Z}$ for odd primes $p$.

Our variables $i, j, k, m, n, q$ will take integer values only.
As in the $\mathrm{A}=\mathrm{B}$ book [1] we use the convention that $\binom{x}{j}$ is a polynomial in $x$ for fixed $j$. And it is the zero polynomial if $j<0$. So $\binom{i}{j}$ is defined for all integers $i, j$. It also vanishes if $j>i \geq 0$. Of course $\binom{i}{j}$ agrees with the usual binomial coefficient if $0 \leq j \leq i$.

By inspecting the values at $x=0, \ldots, j$, we see that

$$
(-1)^{j}\binom{x+j}{j}\binom{x-1}{j}-(-1)^{j-1}\binom{x+j-1}{j-1}\binom{x-1}{j-1}
$$

equals $(-1)^{j}\binom{2 j}{j} B_{j}(x) / 2$ for $j \geq 0$. Taking the telescoping sum over $j$ gives

$$
(-1)^{j}\binom{x+j}{j}\binom{x-1}{j}=\sum_{k=0}^{j}(-1)^{k}\binom{2 j}{j} B_{k}(x) / 2
$$

for $j \geq 0$. (Valid for all $j$, actually).
This allows us to conclude that

$$
d(m, k)=\sum_{i=0}^{m} \sum_{j=k}^{m} \frac{3(-1)^{k+j}\binom{2 k}{k}\binom{j}{i}\binom{m}{i}\binom{i}{m-j}}{2(2 i-1)(2 j+1)(2 m-2 i-1)} .
$$

In particular $d(m, k)=0$ for $m<0$ and for $k>m$. We will see that $m(m-1) d(m, k)$ also vanishes for $2 k-2<m$.
Let us use the notation [statement] $= \begin{cases}1, & \text { if statement is true; } \\ 0, & \text { otherwise. }\end{cases}$
Then

$$
d(m, k)=\sum_{i, j}[j \geq k \geq 0] \operatorname{term}(m, k, i, j),
$$

where

$$
\operatorname{term}(m, k, i, j)=[m \geq 0] \frac{3(-1)^{k+j}\binom{2 k}{k}\binom{j}{i}\binom{m}{i}\binom{i}{m-j}}{2(2 i-1)(2 j+1)(2 m-2 i-1)} .
$$

Put

$$
\begin{aligned}
& \operatorname{rel} 1(m, k)= \\
& \quad-32(3-2 k)^{2}(-k+m+1)(-k+m+2) d(m, k-2) \\
& \quad+4(-k+m+1)\left(2 k m^{2}-2(k-1)(8 k-9) m+(2 k-3)(8(k-2) k+9)\right) d(m, k-1) \\
& \quad+k(-2 k+m+2)(-2 k+m+3)(-2 k+2 m+1) d(m, k)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{rel} 2(m, k)= \\
& \quad-4\left((m-1)^{2}-1\right) d(m-1, k-1) \\
& \quad-4(2(k-1)+m+1)(-k+m+1) d(m, k-1) \\
& \quad+k(2 k-m-2) d(m, k)
\end{aligned}
$$

## Key results

- $\operatorname{rel1}(m, k)$ vanishes.
- $m(m-1) d(m, k)$ vanishes for $2 k-2<m$.
- $\operatorname{rel2}(m, k)$ vanishes.
- $m(m-1)(2 m+1) d(m, k)$ is an integer multiple of $3 m(m-1)$.

Before proving the Key results, let us draw conclusions from them. Let $m \geq 2$. As $d(m, 0)=0$, we have $P_{m}(0)=0$ and the $d(m, k)$ are determined by $P_{m}(1) \ldots, P_{m}(m)$. Now the integral matrix

$$
\left(B_{k}(i)\right)_{1 \leq i \leq m}^{\substack{1 \leq i \leq m}}
$$

is triangular with ones on the diagonal. We conclude that $d(m, k) \in \mathbb{Z}_{(2)}$ for $m \geq 2$.
Let $p$ be a prime, $p \geq 5$, and let $m \geq 2$. If $p$ does not divide $2 m+1$, then $d(m, k) \in \mathbb{Z}_{(p)}$ because $m(m-1)(2 m+1) d(m, k) \in 3 m(m-1) \mathbb{Z}_{(p)}$. Now assume $p$ divides $2 m+1$. Then it does not divide $2 m+3$, so then $d(m+1, j) \in \mathbb{Z}_{(p)}$ for all $j$. Also, $p$ does not divide $(m-1)(m+1)$, so it follows from $\operatorname{rel} 2(m+1, k+1)=0$ that $d(m, k) \in \mathbb{Z}_{(p)}$. We have shown that $d(m, k) \in \mathbb{Z}_{(p)}$ if $p$ is prime, $p \geq 5, m \geq 2$.
Remains $p=3$. Let $m \geq 2$ again.
If 3 does not divide $2 m+1$, then $d(m, k) \in 3 \mathbb{Z}_{(3)}$ because $m(m-1)(2 m+1) d(m, k) \in$ $3 m(m-1) \mathbb{Z}_{(3)}$.
If $m \equiv 1 \bmod 9$, or $m \equiv 7 \bmod 9$, then $(2 m+1) / 3$ is prime to 3 and $d(m, k) \in \mathbb{Z}_{(3)}$ because $m(m-1)((2 m+1) / 3) d(m, k) \in m(m-1) \mathbb{Z}_{(3)}$.

If $m \equiv 4 \bmod 9$, then $(m-1)(m+1) / 3$ is prime to 3 and $d(m, k) \in \mathbb{Z}_{(3)}$ because rel2( $m+$ $1, k+1)=0$ shows $((m-1)(m+1) / 3) d(m, k)$ is an integer linear combination of the integers $d(m+1, j) / 3$.

We conclude that $d(m, k) \in \mathbb{Z}_{(3)}$ for $m \geq 2$. So the $d(m, k)$ are integers for $m \geq 2$ and $P_{m}$ takes integer values on integers for $m \geq 2$. Recall that $P_{0}, P_{1}$ also take integer values. Done.

So we still have to prove the Key results.
First a technical issue. If $x>0$ then $\binom{x}{j}=\frac{\Gamma(1+x)}{\Gamma(1+j) \Gamma(1+x-j)}$ and the bimeromorphic function

$$
f(x, y)=\frac{\Gamma(1+x)}{\Gamma(1+y) \Gamma(1+x-y)}
$$

is continuous at $(x, j)$. However, if $i<0$ then $f$ has an indeterminate value at $(i, j)$. For example, $\binom{i}{i}$ equals 1 if $i \geq 0$, but it vanishes for $i<0$. At $(-1,-1)$ both 0 and 1 are values of $f$. Indeed Mathematica can be steered to give either answer.

Binomial[i, $\mathbf{j}] / . \mathrm{i}->-1 / . j->-1$ gives 1 and
Binomial[i, j] /. j->-1/.i->-1 gives 0 .
And FullSimplify[Binomial[i, $\mathbf{i}]==$ Binomial[i-1,i-1] yields True. This answer is correct, but it tells only that for generic complex numbers $i$ the identity holds.

Thus we need to make case distinctions when using identities between multimeromorphic functions, explicitly or implicitly, to prove identities involving the $\binom{i}{j}$.
We start proving that rel1 $(m, k)$ vanishes.
As $[j \geq k+1](2(2 k+1) \operatorname{term}(m, k, i, j)+(k+1) \operatorname{term}(m, k+1, i, j))=0$, we get from $(\Sigma i j)$ that

$$
2(2 k+1) d(m, k)+(k+1) d(m, k+1)=\sum_{i} \operatorname{iterm}(m, k, i)
$$

where

$$
\operatorname{iterm}(m, k, i)=2(2 k+1) \operatorname{term}(m, k, i, k) .
$$

Now we use the

```
Fast Zeilberger Package version 3.61
written by Peter Paule, Markus Schorn, and Axel Riese
Copyright 1995-2015, Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria.
```

It suggests to put

$$
g(m, k, i)=\frac{3 \times 2^{2 k+3} m(-2 i+m+1) \Gamma\left(k+\frac{3}{2}\right)\binom{k+1}{i-1}\binom{m-1}{k+1}\binom{k+1}{m-i}}{\Gamma\left(\frac{1}{2}\right) \Gamma(k+2)}
$$

and show that

$$
\begin{aligned}
&-32(1+2 k)(3+2 k)(k-m)(1+k-m) \operatorname{iterm}(m, k, i) \\
&-4(1+k-m)\left(57+110 k+72 k^{2}+16 k^{3}-34 m-46 k m-16 k^{2} m+4 m^{2}+2 k m^{2}\right) \\
& \quad \times \operatorname{iterm}(m, k+1, i) \\
&-(2+k)(5+2 k-2 m)(3+2 k-m)(4+2 k-m) \operatorname{iterm}(m, k+2, i) \\
& \quad g(m, k, i+1)+g(m, k, i)=0
\end{aligned}
$$

for $m \geq 0$. So we do that and then sum over $i$, using ( $\Sigma i$. The $g$ terms drop out by telescoping and we get a relation

$$
\begin{aligned}
& -32(1+2 k)(3+2 k)(k-m)(1+k-m)(2(2 k+1) d(m, k)+(k+1) d(m, k+1)) \\
& -4(1+k-m)\left(57+110 k+72 k^{2}+16 k^{3}-34 m-46 k m-16 k^{2} m+4 m^{2}+2 k m^{2}\right) \\
& \times(2(2 k+3) d(m, k+1)+(k+2) d(m, k+2)) \\
& -(2+k)(5+2 k-2 m)(3+2 k-m)(4+2 k-m) \\
& \times(2(2 k+5) d(m, k+2)+(k+3) d(m, k+3)) \\
& \quad=0
\end{aligned}
$$

valid for all $m$, as it is obvious for $m<0$. We may rewrite it as a recursion for rel1:

$$
2(3+2 k) \operatorname{rel} 1(m, k+2)+(2+k) \operatorname{rel} 1(m, k+3)=0 .
$$

As $d(m, k)$ vanishes for $k>m$, it follows from the recursion that rel1 $(m, k)$ vanishes for all $k$.

So we have established the vanishing of $\operatorname{rel1}(m, k)$.
Put

$$
\operatorname{pterm}(m, x, i, j)=\binom{x+j}{j}\binom{x-1}{j}\binom{j}{i}\binom{m}{i}\binom{i}{m-j} \frac{3}{(2 i-1)(2 j+1)(2 m-2 i-1)},
$$

so that

$$
P_{m}(x)=\sum_{i, j} \operatorname{pterm}(m, x, i, j) .
$$

If $k \geq 1$ and pterm $[m, k, i, j]$ is nonzero, then $k-1 \geq j$ and $m \geq j \geq i \geq m-j$. We see that

$$
P_{m}(k)=0 \text { if } 0 \leq 2 k-2<m,
$$

because all the pterm $(m, k, i, j)$ vanish. In particular we get

$$
0=P_{m}(1)=\sum_{k} d(m, k) B_{k}(1)=2 d(m, 0)+d(m, 1),
$$

and

$$
0=P_{m}(2)=\sum_{k} d(m, k) B_{k}(2)=2 d(m, 0)+4 d(m, 1)+d(m, 2)
$$

for $m \geq 3$. So then $d(m, 1)=-2 d(m, 0)$ and $d(m, 2)=6 d(m, 0)$. Substitute this into $\operatorname{rel} 1(m, 2)=0$ and you find

$$
4 m(m-1)(-2 m-1) d(m, 0)=0 .
$$

This means that $d(m, 0)=0$ for $m \geq 3$. As $d(2,0)$ also vanishes, we now know that $m(m-1) P_{m}(k)$ vanishes if $m>2|k|-2$. As the matrix

$$
\left(B_{k}(i)\right)_{0}^{0 \leq i \leq m \leq m}
$$

is triangular, we now conclude that

$$
\begin{equation*}
m(m-1) d(m, k) \text { vanishes for } m>2 k-2 . \tag{SSE}
\end{equation*}
$$

So we have established the vanishing of $m(m-1) d(m, k)$ for $m>2 k-2$.
Before turning to rel2 $(m, k)$ we compute $d(2 k-2, k)$ and $d(2 k-3, k)$ for $k \geq 3$. These are the values that help to compute all $d(m, k)$ recursively with the recursion given by $\operatorname{rel}(m, k)=0$. As $d(2 k-2, j)$ vanishes for $j<k$, one has

$$
d(2 k-2, k)=P_{2 k-2}(k)=\operatorname{pterm}(2 k-2, k, k-1, k-1)
$$

and similarly

$$
d(2 k-3, k)=P_{2 k-3}(k)=\operatorname{pterm}(2 k-3, k, k-1, k-2)+\operatorname{pterm}(2 k-3, k, k-1, k-1) .
$$

So we know $d(m, k)$ for $m \geq 2 k-3 \geq 3$. By (SSE) we also know $d(m, k)$ for $k \leq 1$ and any $m$. Using these values we get $\operatorname{rel} 2(m, k)=0$ by inspection for $m \geq 2 k-3$ or $k \leq 1$. Notice that $(-7+2 k) \operatorname{rel} 2(2 k-4, k)-\operatorname{rel} 1(2 k-4, k)$ is a combination of the known terms $d(-5+2 k,-1+k), d(-4+2 k,-2+k), d(-4+2 k,-1+k)$. It also vanishes by inspection, so we now have that $\operatorname{rel} 2(m, k)=0$ for $m \geq 2 k-4$ or $k \leq 1$.

By substituting the definitions and expanding we check that

$$
\begin{aligned}
& (-1+k)(-1+2 k-2 m)(-3+2 k-m)(4-2 k+m) \mathrm{rel} 2(m, k) \\
& +4\left(-1+(-1+m)^{2}\right) \operatorname{rel} 1(m-1, k-1) \\
& -32(5-2 k)^{2}(-2+k-m)(-1+k-m) \operatorname{rel} 2(m, k-2) \\
& +4(1-k+m) \\
& \times\left(-99+16 k^{3}-2 m(32+m)-8 k^{2}(11+2 m)+2 k(81+m(31+m))\right) \operatorname{rel} 2(m, k-1) \\
& -(-1+k)(-4+2 k-m) \operatorname{rel} 1(m, k) \\
& -4(-1+k-m)(-5+2 k+m) \operatorname{rel} 1(m, k-1) \\
& =0
\end{aligned}
$$

As rel1 vanishes, this leads to the following recursion for rel2.

$$
\begin{aligned}
& (-1+k)(-1+2 k-2 m)(-3+2 k-m)(4-2 k+m) \mathrm{rel} 2(m, k) \\
& -32(5-2 k)^{2}(-2+k-m)(-1+k-m) \operatorname{rel} 2(m, k-2) \\
& +4(1-k+m) \\
& \times\left(-99+16 k^{3}-2 m(32+m)-8 k^{2}(11+2 m)+2 k(81+m(31+m))\right) \operatorname{rel} 2(m, k-1) \\
& =0
\end{aligned}
$$

As $\operatorname{rel} 2(m, k)=0$ for $2 k-4 \leq m$ or $k \leq 1$, the recursion shows by induction on $k$ that $\operatorname{rel} 2(m, k)=0$ for all $m, k$.

So we have also established the vanishing of $\operatorname{rel} 2(m, k)$ and it is time to show the Key result that $m(m-1)(2 m+1) d(m, k)$ is an integer multiple of $3 m(m-1)$. This is obvious for $m<2$, so we further assume $m \geq 2$. Then we know that $d(m, 0)=0$ and we have seen this implies $d(m, k) \in \mathbb{Z}_{(2)}$. So it suffices to show that $m(m-1)(2 m+1) d(m, k) \in$ $3 m(m-1) \mathbb{Z}[1 / 2]$.

Using relation ( $\Sigma i$ ) we may rewrite $\operatorname{rel} 1(m, k)=0$ as

$$
\begin{aligned}
& 2(m-1) m(2 m+1) d(m, k-1) \\
& +(2-2 k+m)(3-2 k+m)(1-2 k+2 m) \sum_{i} \operatorname{iterm}(m, k-1, i) \\
& +16(3-2 k)(-2+k-m)(-1+k-m) \sum_{i} \operatorname{iterm}(m, k-2, i) \\
& =0
\end{aligned}
$$

We claim that

$$
\begin{aligned}
& (2-2 k+m)(3-2 k+m)(1-2 k+2 m) \operatorname{iterm}(m, k-1, i) \\
& +16(3-2 k)(-2+k-m)(-1+k-m) \operatorname{iterm}(m, k-2, i)
\end{aligned}
$$

lies in $3 m(m-1) \mathbb{Z}[1 / 2]$.
That will prove that the $(m-1) m(2 m+1) d(m, k-1)$ are integer multiples of $3 m(m-1)$.
Put

$$
\operatorname{frac} 1(m, k, i)=\frac{3(m-1) m\binom{2(k-1)}{k-1}(-2 k+2 m+1)\binom{k-1}{i}\binom{m}{i}\binom{i}{-k+m+1}}{(2 i-1)(2 m-2 i-1)}
$$

and

$$
\operatorname{frac} 2(m, k, i)=6(k-m-1)\binom{2(k-1)}{k-1}\binom{k-1}{i}\binom{m}{i}\binom{i}{-k+m+1} .
$$

Then $\operatorname{frac} 1(m, k, i)+\operatorname{frac} 2(m, k, i)$ equals

$$
\begin{aligned}
& (2-2 k+m)(3-2 k+m)(1-2 k+2 m) \operatorname{iterm}(m, k-1, i) \\
& +16(3-2 k)(-2+k-m)(-1+k-m) \operatorname{iterm}(m, k-2, i)
\end{aligned}
$$

so it suffices to show that frac1 $(m, k, i) /(6 m(m-1))$ and $\operatorname{frac} 2(m, k, i) /(6 m(m-1))$, which make sense for $m \geq 2$, lie in $\mathbb{Z}[1 / 2]$ for $m \geq 2$. Recall that the Catalan numbers

$$
C(i)=\frac{\binom{2 i}{i}}{i+1}
$$

are integers. See
[A000108](https://oeis.org/A000108)
We now look at $\operatorname{frac} 1(m, k, i) /(6 m(m-1))$.
If $\operatorname{frac} 1(m, k, i)$ is nonzero then $m \geq k-1 \geq i \geq m+1-k \geq 0$. We distinguish two cases: $m=k-1 \geq i \geq 0$ and $m>k-1 \geq i \geq m+1-k \geq 0$.
First let $m=k-1 \geq i \geq 0$. If $i=k-1$, then

$$
\operatorname{frac} 1(m, k, i) /(6 m(m-1))=\operatorname{frac} 1(k-1, k, k-1) /(6(k-1)(k-2))=C(k-2) .
$$

Similarly $\operatorname{frac} 1(k-1, k, 0) /(6(k-1)(k-2))=C(k-2)$.
So we may assume $0<i<m=k-1$. Then
$\operatorname{frac} 1(m, k, i) /(6 m(m-1))=\operatorname{frac} 1(m, m+1, i) /(6 m(m-1))$ equals

$$
\frac{-(2 i-2)!(2 m)!(-2 i+2 m-2)!}{2(i!)^{2}(2 i-1)!((m-i)!)^{2}(-2 i+2 m-1)!}
$$

and we must show it takes values in $\mathbb{Z}[1 / 2]$.
This is the kind of expression to which one may apply the method of Floors explained in [question 26336](http://mathoverflow.net/q/26336).

It is based on

$$
\operatorname{ord}_{p} n!=\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor+\ldots
$$

According to the method it suffices to check that test $(m, i, 2 n+1) \geq 0$ for $n \geq 1$, where

$$
\begin{aligned}
\operatorname{test}(m, i, q) & = \\
& -2\left\lfloor\frac{m-i}{q}\right\rfloor+\left\lfloor\frac{-2 i+2 m-2}{q}\right\rfloor-\left\lfloor\frac{-2 i+2 m-1}{q}\right\rfloor \\
& -2\left\lfloor\frac{i}{q}\right\rfloor+\left\lfloor\frac{2 i-2}{q}\right\rfloor-\left\lfloor\frac{2 i-1}{q}\right\rfloor+\left\lfloor\frac{2 m}{q}\right\rfloor .
\end{aligned}
$$

This is a tedious puzzle. For fixed $q$ the function $\operatorname{test}(m, i, q)$ is periodic of period $q$ in both variables $i$ and $m$. So for fixed $q$ one may simply compute all values. We do it for $3 \leq q=2 n+1<17$. The results are nonnegative. But if $q$ is large we need to be more efficient. If both $q=2 n+1$ and $m$ are fixed, then test $(m, i, q)$ can only change value where at least one of the Floors jumps as a function of $i$. So it suffices to sample around the jumping points (modulo $q$ ). We know where they are. More specifically, we only need to consider the 15 cases where one of $i-1, i, i+1$ lies in $\{0,1,-1+m, m,-2+m-n,-1+m-n, 1+n\}$. So we can eliminate $i$ at the expense of having 15 cases. Similarly we can eliminate $m$ for each of those cases, ending up with 153 test functions that depend on $n$ only. Each test function is a linear combination of seven Floors. Each of the Floors stabilises after $n$ has reached an easily computable bound. For instance $\left[-\frac{8}{2 n+1}\right]$ is constant for $n \geq 4$. In fact the bound 5 suffices for all $7 \times 153$ Floors. Compute the 153 stable values. They are nonnegative. This solves the puzzle; the check for $3 \leq q=2 n+1<17$ was overkill.

So we now turn to the case $m>k-1 \geq i \geq m+1-k \geq 0$. Then
$\operatorname{frac} 1(m, k, i) /(6 m(m-1) C(i-1))=$
$\frac{i!(2 k-2)!m!(-2 i+2 m-2)!(-2 k+2 m+1)!}{(2 i)!(k-1)!(-i+k-1)!(m-i)!(-2 i+2 m-1)!(-k+m+1)!(2 m-2 k)!(i+k-m-1)!}$
We use the method of Floors again to show that $\operatorname{frac} 1(m, k, i) /(6 m(m-1) C(i-1)) \in \mathbb{Z}[1 / 2]$. This time we eliminate $k, m, i$ in that order and take $n \geq 6$ as bound where all $13 \times 3508$ Floors are stable.

So we have shown that $\operatorname{frac} 1(m, k, i) /(6 m(m-1))$ lies in $\mathbb{Z}[1 / 2]$ for $m \geq 2$. Remains showing that $\operatorname{frac} 2(m, k, i) /(6 m(m-1))$ lies in $\mathbb{Z}[1 / 2]$ for $m \geq 2$.

If $\operatorname{frac} 2(m, k, i)$ is nonzero then $m>k-1 \geq i \geq m+1-k>0$ and $\operatorname{frac} 2(m, k, i) /(6 m(m-1))$ equals

$$
\frac{-(2 k-2)!(m-2)!}{i!(k-1)!(-i+k-1)!(m-i)!(m-k)!(i+k-m-1)!} .
$$

This can be treated like the previous case. We eliminate $k, m, i$ in that order and take $n \geq 6$ as bound where all $8 \times 1278$ Floors are stable.

Done

## References

[1] Marko Petkovšek, Herbert S. Wilf, Doron Zeilberger, A=B. With a foreword by Donald E. Knuth. A K Peters, Ltd., Wellesley, MA, 1996. xii+212 pp. ISBN: 1-56881-063-6

