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Let G be a semisimple algebraic group defined and split over ko=GF(p). For
q=p", let G(q) be the subgroup of GF(q)-rational points. The main objective of
this paper is to relate the cohomology of the finite groups G(q) to the rational
cohomology of the algebraic group G. Let V be a finite dimensional rational
G-module, and, for a non-negative integer e, let V(e) be the G-module obtained
by “twisting” the original G-action on V by the Frobenius endomorphism
xt— x[71 of G. Theorem (6.6) states that, for sufficiently large q and e (depending
on V and n), there are isomorphisms H"(G, V(e))= H"(G(q), V(e))= H"(G(q), V)
where the first map is restriction. In particular, the cohomology groups H"(G(q), V)
have a stable or “generic” value Hy,, (G, V). This phenomenon had been observed
empirically many times (cf. [6, 20]). The computation of generic cohomology
reduces essentially to the computation of rational cohomology. One (surprising)
consequence is that Hj.,(G, V) does not depend on the exact weight lattice for a
group G of a given type cf. (6.10), though this considerably affects the structure
of G(q). We also obtain that rational cohomology takes a stable value relative to
twisting — i.e., for sufficiently large &, we have semilinear isomorphisms H"(G, V(¢))
>~ H"(G, V(e)) for all e>e¢.

This paper contains many new results on rational cohomology beyond those
required for the proof of the main theorem. We mention in particular the vanishing
theorems (2.4) and (3.3), and especially the results (3.9) through (3.11) which relate
H?*(G, V) and Ext}(V, W) to the structure of Weyl modules. These results explain
for example the generic values of H' determined in [6], cf. (7.6). Also, it is shown
in Theorem (3.12) that every finite dimensional rational G-module has a finite
resolution by finite dimensional acyclic G-modules.

A key ingredient in the proofs is an important theorem of G. Kempf [19] on
the vanishing of cohomology of certain homogeneous line bundles. This result
is translated into the language of rational cohomology in (1.2), and is used in
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the proof of the transfer theorem (2.1) as well as the vanishing criterion (3.2).
Another frequently used result is the calculation of the cohomology ring
H*(,Add, k) given in Section 4.

Finally we mention that this paper contains a short proof of the Mumford
conjecture first proved by Haboush [11]; cf. (3.6).

§ 1. Some Preliminaries

Let k be an algebraically closed field of characteristic p=0, and let k, be the
prime field of k. All algebraic groups in this paper are taken to be affine and
defined over k. Our notation conforms closely to that of [8]; in particular, R(G)
denotes the affine coordinate ring of the algebraic group G. For geG, fe R(G),
g-f and f-g are the elements of R(G) defined by (g-f)(x)=f(xg) and ([ - g)(x)
=f(gx) for xeG. Finally a G-module V is rational if it is a sum of finite dimen-
sional submodules which are rational in the usual sense.

Given an algebraic group G and a rational G-module M, we can consider
the rational (Hochschild) cohomology groups H"(G, M), n=0, defined in the
usual manner from a rationally injective resolution of M (cf. [10] and [16]).
Thus, if F; is the fixed-point functor Mi— M€, then H"(G, M)=R" F;(M), the n'*
right derived functor. Similarly, in the category of rational G-modules we can
talk about the derived functors Ext}; of Homg;. When V is a finite dimensional
rational G-module, Extj;(V, M)~ H"(G, V*® M) for all rational G-modules M,
where V* is the rational G-module dual to V.

In what follows, use will be made of the Lyndon spectral sequence for rational
cohomology. This is defined in the following manner: Let N be a closed normal
subgroup of G. It is a formality that IY is a rationally injective G/N-module
when [ is a rationally injective G-module. Hence, if M is a rational G-module,
by [14; Thm. 2.4.1, p. 148], there exists a spectral sequence

EZ9=H"(G/N, R? Fy(M))= E5" 9= H?*%(G, M).

Since G/N is an affine variety, [8; Thm. (4.3)] implies immediately that R? Fy(M)
>~ HY(N, M). This proves the following result of Haboush [12]:

(1.1) Lemma. Let N be a closed normal subgroup of an affine algebraic group G,
and let M be a rational G-module. Then there exists a Lyndon spectral sequence

E84=HP(G/N, HY(N, M)) = EZ;" 4= H?*4(G, M).

As an immediate consequence, note that if N consists entirely of semisimple
elements, then H*(G, M)~ H*(G/N, M"). Dually, if G/N consists of semisimple
elements, then H*(G, M)= H*(N, M)°/~.

For purposes of making routine verifications, it is convenient to have this
spectral sequence in a somewhat more explicit form. Let I* (resp. J*) be a resolu-
tion of the trivial module k by rationally injective G-modules (resp. G/N-modules).
For example, we can take I* to be the standard (homogeneous) resolution with
I"=R(G"*!'). Then J*® (I*® M)" is a G/N-injective resolution of the complex
(I*® M)" in the sense required by Grothendieck [14], and so the spectral se-
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quence above may be identified with the spectral sequence of the double complex
(J*® (I*® MV)OIN.

In particular, if G, is a closed subgroup of G and Ny<1G,, is a closed subgroup
of N, then restriction induces a map of spectral sequences, which, most simply,
is just that arising from the restriction maps

(RUG/NP*H® (R(GT ) @ MY¥)9™ = (R(Go/No)” ') ® (R(GE 1) @ M)¥o)5olRe,

The existence of the restriction map on the Lyndon spectral sequence will be
heavily used in § 5.

Suppose k has positive characteristic, and let 9t be a restricted ideal of the
Lie algebra of G which is stable under the adjoint action of G. We denote by
G/ the quotient group of G by 9t[2:§5], and for a rational G-module M we
denote by M™ the subspace of M annihilated by 9t. Clearly, M™ is a rational
G/M-module (and as such is even rationally injective when M is a rationally
injective G-module). Let 0 M — I* be a resolution of M by rationally injective
G-modules I". If we assume W is toral (i.e., consists of semisimple elements, and
hence is abelian), we get that 0 - M™ — [*¥ is a resolution of M¥ by rationally
injective G/M-modules I"". Clearly, (I"™)®=]"6 and hence H*(G, M)=
H*(G/M, M)'. We also obtain the following result which will be used in (2.7)
below: Suppose f: G— G’ is a surjective central isogeny of semisimple groups
[3:§2] and let M be a rational G'-module. We regard M as a G-module by means
of f, and it follows, using [3; Cor. (2.19)] and the remark immediately following
(1.1), that H*(G, M)~ H*(G', M).

When G is a semisimple algebraic group over k, the following notation will
be used: B will be a Borel subgroup and T a fixed maximal torus of B. We denote
by X the root system of T in G, viewed as a subset of the character group (or
weight lattice) A= X*(B)=X*(T). Let 4 be the set of fundamental roots defined
by B, and let A* =4 be the corresponding set of dominant integral weights. Let
(, ) be a fixed positive definite symmetric bilinear form on Q ® X*(T), in-
variant under the Weyl group, and for a root a, set {4, a)=2(4, o)/(a, ). We
will denote by Q the root lattice ZX, and by Q™ the set Z* X* where 2" is the
set of positive roots defined by 4, and Z* is the set of non-negative integers.
Finally, when G is defined and split over k, we will assume T (and hence B) is
ko-split. We write B=T - U.

The theorem below is essentially due to G. Kempf [19]: our proof is merely
a translation of his results into the language of rational cohomology. Let G be a
semisimple group. For ieA, we also denote by 4 the one-dimensional rational
representation of B afforded by 4.

(1.2)  Theorem. For AeA*, H"(B, R(G)® — 4)=0 for all positive integers n.

Proof. For a rational B-module M, define a locally free ¢ p-Module $(M) as
follows: for U open in G/B, set I'(U,3(M))=(I(r '(U),0z)® M), where

1

We point out that this fact can also be obtained from a spectral sequence, similar to that of (1.1),
which relates the cohomology of G to that of G/ and 9. The details are left to the interested reader.
Still a third proof can be based on (2.1): H*(G, M)=H*(B. M)~H*(U.M)"=H*(U, M)™™"
= H*(B/N, M)~ H*(G/N, M)
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n: G— G/B is the quotient morphism and B-fixed points are taken relative to
the left diagonal action. If I is a rationally injective B-module, 9(/) is a I'-acyclic
0,p-Module: it is enough to check this when I =R(B), where it is easy. Thus, by
(1.4) below, for any rational B-module M, H"(G/B, $(M))= H"(B, R(G) ® M) for
all non-negative integers n. (This is a known result of Haboush [12].) Now by
Kempf [19], we have H"(G/B,3(—2))=0 for all positive integers n if AeA™.
The theorem follows.

(1.3) Remark. Let H be a closed subgroup of an algebraic group G. If 0 > M
—I,— I, > --- is a resolution of a rational H-module M by rationally injective
H-modules, it is clear (almost by definition) that H"(H,R(G)® M) is the n'"
homology group of the complex 0— I,|®— I, | —--- of induced modules. For
the definition and properties of induced modules we refer the reader to [8]. In
particular, if H"(H, R(G)® M)=0 for all positive integers n, then 0 — M| — I,|¢
— I,/ —--- is a resolution of M| by rationally injective G-modules.

For the rest of this paper, we assume the field k has positive characteristic p.
This is mainly done for convenience, even though some of the results (e.g., Thm.
(2.1)) clearly hold in characteristic zero. For an algebraic group G defined over
the prime field k, if g=p", let 6,: G — G be the Frobenius endomorphism induced
by the field automorphism x+ x? The fixed-points of ¢, will be denoted G(qg).
Also, given a rational G-module V, and a non-negative integer e, we define V(e)
to be the rational G-module with underlying space V, but with a new G-action
g v=0,(g)v. We remark that if G is semisimple and if V' is irreducible of high
weight A then V(e) is irreducible of high weight p® A.

We end this section by recalling a useful result of Grothendieck [14; Remark 3,
p. 148]. Let T: ¥ - %' be a left exact additive functor from an abelian category
% with enough injectives to an abelian category %’. Then we have

(1.4) Lemma. Suppose 0—> M — A* is a resolution of an object M of € by T
acyclics A' (i.e., RP T(A)=0 if p>0). Then R? T(M)= H?(T(A") for all p=0.

§ 2. A Transfer Theorem

Let G be semisimple over k, and let B be a Borel subgroup of G. The following
was conjectured in [7; § 5, Remark]:

(2.1) Theorem. If V is a rational G-module, then H(G, V)= H"(B, V) for all non-
negative integers n.

Proof. By (1.2) and (1.3), if 0>k — I, —> I; —»--- is a resolution of k by rationally
injective B-modules, then, inducing up to G, 0=k — I,|° - I,|—--- is a resolu-
tion of k by rationally injective G-modules. Thus, tensoring with V, we see
0-V->VRI,->VRIL —-- and 0> V->V® (|- VR (,|°)—--- are ratio-
nally injective resolutions of V first as a B-module, then as a G-module. But
V®(Ij|G)g(V® Ij)]G by [8; Prop. (1.5)], and Frobenius reciprocity [8; Prop.
(1.4)] yields an isomorphism Homg (k, V® (Iﬂ“)); Homg(k, V®I;). Q.E.D.
Our first application of this theorem occurs in the vanishing theorem proved
below. We require two easy lemmas. Recall the root lattice is denoted by Q.
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(2.2) Lemma. Let n be a character of B. If n¢Q™, then H"(B, n)=0 for all non-
negative integers n.

Proof. Let 0> n—>n® R(U)->n® R(U)® R(U)—--- be the standard U-resolu-
tion, with T acting on R(U) by conjugation. This is a rationally injective B-resolu-
tion by [8]. Clearly, R(U) is a polynomial ring in generators y, of T-weight —a,
o a positive root. Now our hypothesis implies that, on taking T-fixed points, one
obtains the zero complex. Q.E.D.

Still another proof could be given using the Lyndon spectral sequence (1.1)
and the precise computation of H*(,Add, k) given in § 4.

Enumerate the fundamental system 4 as {J,, ..., §,}. Let ne A, write n=2r,5;,
and put h(n)=2'r,.

(2.3) Lemma. For n as above, we have H"(B,n)=0 for each n> h(y).

Proof. Let 0y, ..., 0y be the elements of X*, and write 0;=Xm;, ,. We can
compute H"(U, 1) using the normalized n-cochains C{(U, 7). These are rational
maps f:U x --- x U—#n (n copies) with f(uy,...,u,)=0 whenever u;=1 for
some i. (See [13; p.238] for a discussion —which carries over to rational coho-
mology —of normalized cochains for finite groups; cf. also [16].) Choose a basis
of CH(U,n)=C{(U,k)®n consisting of monomials of degree =n in a set of
T-weight vectors generating R(U). The weight of such a monomial is u=n—2 a;0;,
where a;eZ" and X a;=n. Since for each j there exists a k with m; >0, if we
express 7 in terms of the ¢’s and sum over the coefficients we obtain

hn) =Y. mjia;<h(n) =3 a;<h(n)—n<0.
k,j i

Hence, u#+0. Q.E.D.

For a rational G-module V, let h(V) denote the maximum of the h(n)’s where
n runs over the weights of T'in V.

(2.4) Theorem. a) If no weight of T in V lies in Q, then H*(G, V)=0. In partic-
ular, if V is irreducible of high weight A¢ Q, then H*(G, V)=0.

b) In any case, H'(G, V)=0 for all n>h(V). In particular, if V is irreducible
of high weight A, then H"(G, V)=0 for all n>h(A).

Proof. By (2.1), H*(G, V)= H*(B, V). Clearly, we can assume V is finite dimensional.
Using induction on the dimension of the B-module V and the long exact sequence
of cohomology, we obtain part a) from (2.2), and part b) from (2.3). Q.E.D.

(2.5) Remarks. a) We record here the obvious fact that (2.4) holds for B as well
as G.

b) It follows from (2.4b) and (1.4) that every finite dimensional rational
G- (or B-)module has a finite resolution by acyclic modules (cf. § 3). In the next
section we will show that the latter may be taken to be finite dimensional.

(2.6) Example. If G=SL,(k), p=2, and 1=2"4,, with 4, fundamental, then the
bound in (2.4b) is sharp: If L is irreducible of high weight A, then the weights
of T in L are + 4. Since H*(B, —4)=0, by (2.2), the long exact sequence of co-
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homology and (2.1) yield
H*(G, L)~ H*(B, )=~ H*(U, )" ~H*(U, k) _,;.

If we apply (4.1), then we see H*(U, k)= S(V) where V is the vector space spanned
by the T-weight vectors a(—2'9;) of weight —276,, i=0. Now it is easily verified
that the monomial a(—4,)*""" spans H*" '(U,k)_,.

(2.7) Remark. Given a rational G-module V, let V' be the submodule generated
by the weight vectors having weights in the root lattice. Then by (2.4a) we obtain
easily that H*(G, V)=H*(G, V'). Let f: G— G, be a surjective central isogeny
from G to the corresponding adjoint group G, (cf. [3; §2]). The action of G on V'
comes from one of G; on V', and it follows from the remarks of § 1 that H*(G, V')
>~ H*(Gy, V’). Therefore, when treating only rational cohomology, we may
always reduce to the case where G is of adjoint type. (A similar argument says we
could also reduce to the simply connected case.)

§ 3. Acyclic Modules

A rational module M for an algebraic group G over k is called acyclic (or G-
acyclic) if H"(G, M)=0 for all n>0. If M is rationally injective, it is obviously
acyclic, and the converse is true if G is unipotent (we leave the details to the reader).

(3.1) Theorem. (Frobenius reciprocity for rational Ext.) Let H be a closed sub-
group of an algebraic group G, and let M be a rational H-module. Assume that
R(G)®M is H-acyclic. Then for any rational G-module V we have

Extg (V, M%) = Extyy (V |, M)
for all non-negative integers n.

Proof. Let 0> M — I,— 1, —>--- be a resolution of M by rationally injective
H-modules. Then, by (1.3), 0> M|®—>I,|>1;|°—--- is a resolution of the
induced G-module M|¢ by rationally injective G-modules. Since, by Frobenius
reciprocity [8; Prop.(1.4)], Homg (V, IjIG);HomH(Vl,,, I;), the result follows.

Let G be semisimple and let B be a Borel subgroup of G as before. Let iy — y/*
be the opposition involution on A. (That is, y* = —wy where w, is the element
of the Weyl group with wo(X*)=—2") Then y**=y and (AT)*=A*. The
character group A is partially ordered in the usual way. Clearly, y > iff y* > (*.

It is known [18] that —4|% is the dual of the Weyl module W(4) obtained
from reduction modulo p of the complex irreducible representation of high weight
A (of the corresponding complex semisimple Lie algebra) by a minimal %;,-lattice
(as explained in [23]). Essentially the argument is that [19] implies dim W (4)*
=dim — (% (cf. for example the argument in [11; (1.1)]), while there is an obvious
injection W (A)* - —A|% since W(A)* has an irreducible socle.

(3.2) Corollary. Let Ae A*, and let V be a finite dimensional rational G-module
such that A is not (strictly) less than —n for any weight  of T in V. Then for all
positive integers n, we have Ext%(V, —|%)=0.

Proof. By (3.1) and (1.2), Ext%(V, —A|%) =~ Ext(V, —A)= H"(B, V*® — 4). Now the
result follows from (2.4a) applied to B (cf. (2.5a)).
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(3.3) Corollary. For any pair A, peA*, the rational G-module —7|°® — u|®
is acyclic.

Proof. Interchanging A and u if necessary we can assume that A is not less than u*.
The result now follows from (3.2) with V =(—u|%)*.

(3.3') Corollary. For any pair A, neA*, the rational B-module —i|°® —u is
acyclic.

(3.4) Corollary. If LeA*, then —A|% is acyclic as a G- (or B-)module.
Proof. Take u=0 in (3.3) (resp. (3.3')).

(3.5) Corollary (Steinberg). We have H*(G,k)=0.

Proof. Take 2A=0 in (3.4). (This also follows from (2.4b).)

(3.6) Corollary. (Mumford conjecture [11].) Let V be a finite dimensional rational
module for a simply connected semisimple group G having a non-zero fixed-point v.
Then there exists a non-constant G-invariant homogeneous polynomial [ on V
with f(v)=%0.

Proof. As in [11], it is enough to produce a G-map h: V — St(q)®St(q) with
h(v)#0, where St(q) is a Steinberg module for G (of high weight (g — 1) p, where
p is one-half the sum of the positive roots and ¢ is a power of p). For this, note
St(q)= —(g—1) p|° and so Ext} (V kv, St(q)®St(q))= Exth(V/kv)®St(q)— (g—1) p)
(by (3.1) and (1.2))= H* (B, (V /k v)*® —(q—1) p®St(q))=0 for sufficiently large g
by (3.3), applied to the composition factors of (V/kv)*® —(q—1) p. The result
follows easily.?
As a corollary of the proof of (3.6), and using (2.7), we have

(3.7) Corollary. Let V be a finite dimensional rational G-module. Then V®St(q)
®St(q) is G-acyclic for sufficiently large q=p". Also, if W is a finite dimensional
rational B-module, W ®St(q)® —(q— 1) p is B-acyclic for sufficiently large q.

(3.8) Corollary. Let V be a finite dimensional rational G-module (resp. B-module).
For any non-negative integer n, we have that H"(G, V) (resp. H"(B, V) is a finite
dimensional k-space.

Proof. This clearly holds for n=0. It follows for general n by using dimension
shifting and (3.7), which implies finite dimensional modules can be embedded
in finite dimensional acyclic modules.

The following results give effective methods of computing H?*(G, V) and
Extg (V, W) for many common irreducible modules V, W.

(3.9) Corollary. Let V(4) be the irreducible G-module of high weight ). Then
H?(G, V()= H"(G, M(A*)*)

where M (A*) is the unique maximal submodule of the Weyl module W (2*).

> The use of (1.2) here is not actually necessary: The discussion preceeding [11; (1.1)] and the
proof of (1.2) show that R(G)® —(q— 1) p is B-acyclic for large g. Also, [11; (1.1)] implies —(q—1) p|¢
=St(q) for large q
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Proof. By (3.4), the long exact sequence of cohomology, and the fact that — A*|®
>~ W (A*)*.

(3.10) Corollary. Suppose A, neA* with 1 not less than n. If V(1), V(n) are the
irreducible modules of high weights A, n respectively, then Ext§(V(n, V(A)
~Homg (V (1), M(A*)*), where M(A*) is as in (3.9).

Proof. Apply the covariant long exact sequence for Extg to the sequence 0 — V(1)
— — ¥ M(A*)* -0 and use (3.2).

(3.11) Remarks. a) In view of the isomorphisms

Extg (V(n), V(A) = Ext! (V(A)*, V (n)*)= Extg (V (%), V(%))
and the fact that the opposition involution preserves the natural ordering on
weights, (3.10) can be applied when 4 <n.

b) In view of the isomorphism Homg(V(n), M(A*)*)=Homg; (M (1¥*), V(n)*),
we may express (3.10) in terms of the structure of the Weyl modules:

Extg (V(4), V(n)=Homg (M(2), V().

In other words, if 4 is not less than 5, then the dimension of Ext§(V(4), V(1)) is
the multiplicity of V(1) in the Frattini quotient of the unique maximal submodule
M (2) of the Weyl module W (A).

¢) The lemma (3.10) together with the structure theorem [4] allows an easy
explicit determination of the extensions of irreducibles by irreducibles when
G=SL,(k). These results will appear in [5].

Finally, we mention the following result.

(3.12) Theorem. Any finite dimensional rational G-module (resp. B-module)
V has a finite resolution by finite dimensional G-acyclic (resp. B-acyclic) modules.

Proof. This is clear from (3.7) (cf. proof of (3.8)), and (2.4b).

§ 4. The ring H*(, Add, k)

Let T be a ky-split torus acting on U=, Add with weight a. We shall describe
H*(U, k) as a T-algebra (under cup product, as defined in the usual way). Let V
be a vector space with basis a(—p‘a), i=0, 1, ..., and let T act on V by ta(u)
=u(t)a(p), teT. If p is odd, we shall require also a vector space W with basis
b(—p'a), i=1,2, ..., again with tb(u)=pu(t) b(u). Let B: V- W be the isomorphism
defined by fa(u)=b(p ), and note that (" v)=tB(v) for ve V, te T. For any power
q of p, let V(qg) be the subspace spanned by the vectors a(—p'a), p'<q. Set W(q)
=BV (9).

Let S(V) (resp. A(V)) denote the symmetric algebra (resp. the exterior algebra)
of V, viewed as graded T-algebras in the obvious sense.

(4.1) Theorem. We have isomorphisms of graded T-algebras
H*(U,k)=S(V) if p=2;
H*(U,k)=A(V)®S(W) if p*2,
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where V, W have degrees 1, 2 respectively. Moreover, the restriction map H*(U, k)
— H*(U(q), k) induces T (q)-isomorphisms

S(V(g)=H*(U(qg),k) if p=2;
AV (@)RS(W(g)=H*(U(q),k) if p*2.

Finally, when p+2, the map Ply,, defines the Bockstein homomorphism from
H'(U(q), k) to H*(U(q), k).

Proof. We can obtain H*(U, k) as the cohomology of the complex C*(U, k)
of nonhomogeneous rational cochains (cf. [10; p. 185], [16; p. 497], and [13; p. 238]).
The n'™ term C"(U, k) consists of all rational maps from U x--- x U (n copies)
into k, and the differential on C*(U, k) is given by the formula

OF ) (s ooy thy )= gy ooyt )+ D (=D f gty g Uy )
i=1

H(=1" T (g, .oy ).

We regard C"(U, k) as R(U)®---®R(U)=k[w,,...,w,] in an obvious notation.
Observe that the polynomials of degree <g¢ in each indeterminate w; form a
subcomplex C"(U, k; q). Moreover, this subcomplex is even closed under cup
multiplication

(fugdwy,...,w)=f(w,...w)gWi 1, ..., W,)

for f of degree k, g of degree n —k (see [22; Ex. 1, p. 248] and [15; Ex. 13.6, p. 219]).

Next, consider the restriction map C*(U,k)— C*(U(q), k) from the non-
homogeneous complex for U to that for U(q). This clearly induces an isomorphism
C*(U, k;q)=C*(U(q), k). In particular, the inclusion C*(U,k;q)< C*(U,k)
is split, and so remmains an inclusion H*(U,k;q)< H*(U, k) upon taking co-
homology. Also, H*(U, k; q)= H*(U (q), k).

We calculate H'(U, k)=Z'(U, k) to be the span of the elements w," for r a
power of p. If p=2, H*(U(q), k) is a symmetric algebra S(H'(U(q), k)). Thus, the
same is true for the subalgebra H*(U,k; q) of H*(U, k)—i.e. it is a polynomial
ring generated by a basis for its degree 1 terms, namely,

H*(U, k; q)=k[w,";r|q, r<4q].

The theorem follows in this case by setting a(—ro)=w,".

If p is odd, then it follows as above that H*(U, k)= A(V)QS(W), where W
consists of those terms corresponding to the degree 2 generators in the finite
cases. These can be described in terms of the degree 1 generators by means of the
Bockstein operator:

(S @)+ f @)= f @)’ —f ()
p
This completes the proof of the theorem.

f -

(4.2) Remarks. a) We record here the following fact, obtained from the proof
of the theorem. Suppose i, j=0 and p'=p’(mod(q—1)). Then the elements
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a(—p‘a), a(—p’o) have the same restriction to H*(U(qg), k) as do b(—p'a), b(— pia)
when i, j>1.

b) It follows from the theorem that the restriction map H*(U, k) » H*(U(q), k)
is surjective. This is a known result of [10;II, §3, no. 4], where a description
of H'(U, k) and H?(U, k) also appears.

§ 5. Some Reductions

We begin with some remarks on spectral sequences.

Suppose f={f*" is a map E—E of first quadrant cohomology spectral
sequences, and assume f3°‘ is an isomorphism for s+t<m and is an injection
for s+t=m+1. Then the same is true for all £** with r=2, and hence for r= 0.
Moreover, if EX = @ E,* and EX = @ E"* can be regarded as the graded

r+s=k r+s=k
objects associated with certain filtrations of abelian groups E¥, and E¥, in such a

way that the maps fJ°* with r+s=k arise from filtration preserving maps
k. EX — E* , then f¥ is an isomorphism for k <m and an injection for k=m+ 1.
We leave the details to the reader (cf. also [24]).

The long exact sequence of cohomology has a similar property with respect
to isomorphism and injection: Suppose we have a map of long exact sequences

. Ak Bk Ck Ak+1 Bk+l

‘ I

Jfk lgk Jhk l]kn {gkn
“___)/Ik ;Ek ‘C_k r/Ik+l Bk+1 CO

such that f* h* are isomorphisms for k <m and are injections for k=m+ 1. Then
¢* is an isomorphism for k<m and is an injection for k=m+ 1. This may be
checked by diagram-chasing, or application of the 5-lemma as stated in [21;
p. 14].

Finally, we mention the following: Suppose E=(E;’',d,) is a spectral se-
quence whose terms are k-vector spaces. Suppose T is either a torus or a finite
abelian p'-group which acts (rationally) as a group of automorphisms of E. If
Ae X*(T), then the weight spaces (E');, together with the restrictions of the
differentials d,, form a spectral sequence E, and E= @ E,. We refer to [22] for
details. We call E;, the A-component of E.

These remarks are applied as follows: Let B=T-U be the Borel subgroup
of the semisimple group G, defined and split over ko=GF(p) as in § 1, and let V
be a finite dimensional rational G-module. Let g be a power of p. We are interested
in conditions which guarantee that a restriction map f™: H™(B, V)— H™(B(q), V)
is an isomorphism or is an injection. A first reduction is to the case where V=4
is one dimensional: If, on each composition factor of V, f* is an isomorphism
for n<m and an injection for n=m+ 1, then f" has these properties for V itself.
Next, regarding H"(B, A)=~H"(U, )T~H"(U,k)_,, we take a T-stable central
subgroup Z, of U and consider the — A-component of the Lyndon spectral sequence
cf.§1)for Z,,U. The E, term is (H*(U/Z,, k® H'(Z,, k))_, . For fixed t=t, , the abelian
groups involved are in turn obtainable (up to a filtration) by a spectral sequence
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with E$"? term given by (H(U/Z,,k)® H*(Z,/Z,,k)® H"(Z,, k)) _;, where
Z,]Z, is a T-stable central subgroup of U/Z,. This is just the —A-component of
the tensor product with H"(Z,, k) of the E, term of a Lyndon spectral sequence.
At this point we pause to note that similar constructions apply for U(q) and
— 4|1 - and that restriction induces a map (cf. § 1) from the two spectral sequences
considered so far to their counterparts for U(q). (The groups Z,, Z, are auto-
matically o -stable, being products of root groups.) If restriction is an isomorphism
on the E 2 terms above when s+t, +t; <m and an injection for s+t, +t, =m+1,
then restriction is an isomorphism on the E% ' terms of the first spectral sequence
when s+t <m and an injection for s+t=m+ 1. This in turn gives an isomorphism
H"(B, 1)—> H"(B(q), 4) for n=<m and an injection for n=m+ 1.

Obviously we can continue this procedure, further refining the T-stable
central series until the successive quotients are each covered by a single root
group. Let 0, ..., 0y be the positive roots, and denote by U; the root group
corresponding to a root );. We have proved the following:

(5.1) Lemma. Let V be a finite dimensional rational B-module. Suppose, for each
weight 2 of T in V, that restriction induces an isomorphism

) (H*(U;, k)® - @ H*™(Uy, k)) ;= (H"(Uy(q), )@ - @ H™(Uy(q), k) )7q)

for sy +--+sy<m and an injection for s;+---+sy=m-+ 1. Then restriction in-
duces an isomorphism H"(B, V) — H"(B(q), V) for n <m and an injection for n=m+ 1.

In view of (4.1), the question as to whether (§) is an isomorphism or an in-
jection is purely arithmetic.

For example, let p=2. Let L(sy, ..., Sy), R(s;, ..., sy) denote the left and right
hand sides respectively of ($). Put L(n)= &  L(s;, ..., sy) and define R(n)

St+-+SN=n

similarly. By (4.1), L(n) has a basis consisting of monomials a(y) ... a(y,) with
= —p*oy, 20, 042", and ) p*oy =4 If u=—p'a with i=0 and xeX™, let
a(u) denote the image of a(u) under restriction. By (4.2a) we have that a(—p'a)
=a(—pla) if p'=p’ (mod (g — 1)). Also, it follows from (4.1) that a basis for R(n)
consists of monomials @(y,) ... a(w,) with w=—p*a, 1<p*<gq, 4,eZ”, and

Ep“‘ o, =4 (mod (q—1) A). Thus, the image of any basis monomial for L(n) is
1

one of the monomials of R(n). In particular, ($) is injective on L(n) if and only if
no two basis monomials map to the same basis monomial in R(n). A somewhat
simpler sufficient condition is the following:

(5.2) Injectivity Condition (p=2). In every equation
Z p oy =4
k=1

with i, 20 and a,€ X for all k, we have p* <q for all k.

Similarly, ($) is an isomorphism if and only if it induces a bijection on basis
monomials. A sufficient condition for this is the following:



154 E. Cline et al.
(5.3) Isomorphism Condition (p=2). Every congruence

p* =4 (mod(g—1)4)

M=

k

[}

1

with 1 <p*<q and o€ X~ for all k, is an equality

Y proy =4
k=1
We give analogous conditions for p=2 as follows. The details are similar to

the above, and are left to the reader.
(5.4) Injectivity Condition (p 3 2). In every equation
ny . na .

Y oo+ Y ploy=2

k=1 =1
with ny +2n,=n, i, 20, =1, and o, 0,€Z* for all k, I, we have p*<q and p'<q
for all k, 1.
(5.5) Isomorphism Condition (p #2). Every congruence

p o+ Y ply=1  (mod(g—1)A)
k=1 =1

with ny+2n,=n, 1 <p*<q, 1<p'<q, and o, o,eX* for all k, I, is an equality
e . n2 N
z plk dk+ z pJ':;L.
k=1 1=1

We will analyze these conditions in the next section. It turns out that when
A=p°u, peA, and e is sufficiently large, that (3) is an isomorphism for all suffi-
ciently large g.

We conclude this section with the observation that the corresponding results
for G come immediately from those for B.

(5.6) Lemma. Let V be a finite dimensional rational G-module and let n be a
non-negative integer. Suppose the p-power q is such that restriction H"(B, V)
— H"(B(q), V) is an isomorphism (resp. an injection). Then restriction H"(G, V)
— H"(G(q), V) is an isomorphism (resp. an injection ).

Proof. Consider the commutative diagram of restriction maps:
H"(G,V)—— H"(G(q), V)
v J
H"(B, V) —— H"(B(q), V).

By (2.1) the left side is an isomorphism, and the right side is an injection since the
index of B(g) in G(g) is prime to p. The lemma is now immediate.
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(5.7) Remark. We note that in the isomorphism case of the above lemma we
also get that H"(G(q), V)= H"(B(q), V). This holds for all finite dimensional
rational V' and sufficiently large g, since we can “twist” V so that the arithmetic
results of the next section apply (cf. (6.6)). This result was previously known [7],
and to a large extent suggested the present investigation.

§ 6. Arithmetic and the Main Theorem

In this section we first give arithmetic conditions which guarantee that the con-
ditions (5.2) through (5.5) are satisfied. We then prove the main theorem and some
related results.

For the convenience of the reader, we begin with some preliminary remarks
concerning the arithmetic results. Assume p=2 for simplicity. Suppose we have
a congruence

Y proy=p°i  (mod(p°*/ —1)A) (A)
k=1

with 1 <p*<p®*/ and o,e X" for all k. We would like to conclude (cf. (5.3)) that
(A) must be an equality when e, f are sufficiently large. Rewrite (A) as

Y pr o =p A+ (p =y (B)
k=1

where pe A. We can assume 4, u belong to the root lattice Q by multiplying this
expression by a suitable positive integer (and increasing n). Decompose the sum
in (B) into two parts X, +p° X,, where the terms p™ o, in X, are those with i, <e.
Now multiply (B) by p/ and regroup to obtain

szl+22:A+(Pe+f—1)(}-+Pfﬂ_zz)- (©)

The “small” terms on the left hand side of (C) all lie in X,, whereas the “small”
part of the right hand side is A—(A+p/ u—2,)=—p/ u+2,. Thus, if we can
show the two “small” parts are the same, we have u=0, and equality holds in
(A). So reformulate the problem:

n

Y P ae=a+(pt =) p, (D)
k=1
with 4, ueQ and 1<pi<p**/. We want to show that the terms p* oy, with i, <f
sum to A—pu when e, [ are sufficiently large. Clearly, we will be able to force
uz0; also, we can get A—p=0: consider an expression

r
Y p*+s=pu
k=1

with s, t,u positive integers, 0<i, <t, and s small. If we try to put the left hand
side into a p-adic expansion, starting with s, then we discover that we need a lot
of terms in the sum to prevent non-zero coefficients of powers of p smaller than
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p'. (This type of argument is applied many times below via (6.1), which would
be applied here by noting that p'u—1=p'(u—1)+p'—1 has a large number of
“digits”.) This remark is applied by taking coefficients at a fundamental root of
both sides of (D), the coefficient of 1 —pu playing the role of —s. Since n is fixed,
r is bounded, and we force a contradiction if s is positive. Once we know A —u =0,
it is an easy matter to show that a subsum in (D) is actually equal to 4 —u (cf. the
first paragraph of the proof of (6.4)). Then another “digit counting” argument
shows this subsum consists of the terms with i, < f.

(6.1) Lemma. (Digit counting.) Let r be a non-negative integer, and consider a
sum

Y pr=Ap'+B

k=1

where 0= j,<a, A=0, 0<B<p” are all integers. Let dig (B) be the sum of the
coefficients in the p-adic expansion of B. Then r= A +dig (B).

Proof. 1f we collect terms, starting with the smallest values of p*, and write the
sum in the form 4 p®+ B as above, we can only decrease coefficients. Q.E.D.

(6.2) Remark. We alert the reader that this lemma will most often be applied
with the sum replaced by ) p*+s, and r replaced in the conclusion by r+s.
k=1

Now define integer functions e and f by

=[]

and
S(r)=[log,(r|+1)]+2

where [ ] denotes the greatest integer function.

(6.3) Lemma. Let r be a non-negative integer. Consider an expression
Y P =L+t =M
k=1

for integers L, M, e=e(r), f = f(L), and 0L j, <e+f. Then L=M =0.

Proof. Increasing f if necessary, we can assume e=e(r). Clearly, by hypothesis,
|[L|<p/~'—1<p°*/—1, s0 M must be non-negative. This inequality also implies
L=M=0 when e= —1 (and so r=0). Thus, we can assume r>0 and ¢=>0.

Now suppose e=0. Then the sum in our expression is at most (p—1)p/ 1.
Thus,

p=)p/'ZL+(p' - )M>—@p/ ' =)+ - )M
=/ —p )+ -D)(M-1).

This implies L>M =0, since M >0 gives a contradiction. Thus, we can assume
that e is positive.
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Suppose M > L =0. If we digit count in the expression
2P HM—L-1)=(pM—1)p=*/ = +(p=* /' 1)
k=1

(see (6.2)), we obtain that r+ M —L—1=ZpM—1+(p—1)(e+f—1). Since
(p—1l)ezr—p+1, L=0, and f=2, this implies that r+ M —1=pM +r—1.
Thus, M(p—1)=<0, a contradiction.

Therefore, if the lemma fails, we have M >0> L. Now apply digit counting
to the expression

Y PR+ M—1=(pM—1)pe* 14 (pe* -+ L—1).
k=1
Since p**/ '+ L—-1=p/(p* '~ 1)+(p/+L—1) and p/ >p/ +L—-1>(p—1)p' !,
we see that dig(p**/ '+L—-1)=(p—1)(e—1)+p. Thus, r+M—1=(pM —1)
+(p—1)(e—1)+p. Again since e(p—1)=r—p+1, this leads to p—2=(p—1) M,
a contradiction.

(6.4) Lemma. Consider an expression
Y PR =L+ —-1)M
k=1

satisfying the hypotheses of (6.3). Then there are no terms with L<p<p’, and
the terms with p™* < L sum to L— M.

Proof. We can assume the p’* are arranged in increasing order, and we let

n
8= Y. P
K=1

The result is clear when M =0, so we can assume M > 1. Choose b=0 maximal
with s,<L—M. If we write s,,,—s,=p’, then 0SL—M—s,<p’ and also
L— M=s,(mod p’), so it follows that L —M =s,. It remains only to show that
p’=p’. Applying digit counting to the expression

r

Y PE=(pM—1) Tt (pt ),

k=b+2
we obtain r—b—1Z(pM~—-1)+@p—1Ue+f—1—-)=@p—e+f—j). Thus,
r—=1=(p—1)(e+f—j), so eze+f—jand j=f Q.E.D.

Let w=Xnz6 be the maximal root in 2", and put c=max ns. For { in the
root lattice Q, write {=2 m;d and put ¢({)=max |m;|.

For Ae 4, let t(1) be the order of the image of 4 in the abelian group 4/Q, and
let t=1(G) be the torsion exponent of A/Q. Also, we write A=t 1, and we define
t,(4) to be the p-part of ¢(1).

(6.5) Proposition. Let n be a non-negative integer, A A, e=e(ctn). Let = f(c(A)).
Suppose we have an expression

n

L PR =2+t — 1)y, ()

k=1
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where o are positive roots, 0<i,<e+f, and peA. Then A=j=0, and the terms
in (*) with p*<c(A) sum to . —p.

Proof. Multiply the expression (x) through by ¢ to obtain

Z +pt =)o ()

Expressing Z, fi, and the o, in terms of the fundamental roots () leads to ex-
pressions of the form

r

Y pr=L+(p —1)M

k=1

where r<ctn, f=f(c(4), and e=e(r). The proposition now is an immediate
consequence of (6.4).
Let G be a semisimple group defined and split over k,=GF(p) as before.

(6.6) Main Theorem. Let V be a finite dimensional rational G-module and let m
be a non-negative integer. Let e, f be non-negative integers with e = e(ctm), f = f(c(1))
for every weight i of T in V. If p%2 assume also eze(ct,(4)(m—1))+ 1.

Then the restriction map H"(G, V(e))— H"(G(p** /), V(e)) is an isomorphism
for n<m and is an injection for n=m+1.

Proof. First suppose p=2. By §5, we have just to check that the hypotheses of
(5.2) and (5.3) are satisfied for the weight p® A:

If ) p* oy =p°4, then for (5.2) we have to check that i,<e+f for each k.
k=1 _ =
If not, then certainly tp®*/ <p°c(4) and so p/ <tp/ <c(A)<p’, a contradiction.
For (5.3), suppose we have a congruence

n

Y pro=p°i (mod (p**/—1)A)

k=1

with n<m, 1 <p*<p®*/ and oy eX for all k. Write this in the form

Y P ou=p A+ = p

k=1
with ueA as in the discussion at the beginning of this section. Now u=0 follows
as indicated there from (6.5). This completes the proof when p=2.

Now suppose p=2. The verification of (5.4) is exactly as in the p=2 case for
(5.2). To check (5.5) suppose we have a congruence

n na
Lrt et Ypha=pth  (mod (p/~1)4)
k=1 1=

with n,+2n,<m, 1<p*<p®*/, 1<pi<p®*/, and «,, yeX* for all k,I. The
argument in the p=2 case gives here an equality

ny . na X
ZP"‘ o+ ZP" o=
k=1 =1
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where

- i il ji<etf
=0 if j=etf

If j,=0 for some /=I,, then multiply the above expression by t,(4), subtract a
fundamental root J, appearing in a,, from both sides, and digit count at the
coefficient of d,. This leads to (m—])t,,({l)c— 1=(p— l)eg(p—l)([(m—l)tp(/l)c
—1)/(p—1)]+1), a contradiction. Hence, j, = j, for all [, and the proof is complete.

(6.7) Remarks. a) The above theorem of course holds if G is replaced by B, and
V by any rational B-module. We can even replace G by any connected closed
subgroup (or section) H of G containing T, and V by a rational H-module. The
proof is essentially the same.

b) In the statement of the theorem, V(e) can be replaced by V, provided the
weights of T in V are all divisible by a sufficiently high power of p. We leave the
reformulation to the interested reader. Also, it should be noted that in general
H™(H(q), V)~ H™(H(q), V(e)) for any algebraic group H defined over k, and V
a finite dimensional rational H-module. Thus, the theorem implies that
H™(H(q), V) is stable for sufficiently large ¢ when H=G (or any H as in a) above).
We denote this stable value of H™(H(q), V) by H.,(H,V) and we call this the
m™ generic cohomology group of H in V. Note that for any e=0 we have a semi-
linear isomorphism Hy., (G, V)= Hg,, (G, V(e)) obtained from twisting, as well as
a map H™(G, V)— H,, (G, V) obtained from restriction. It would be interesting
to have examples where this map is not injective®. It is easy to give examples
where it is not surjective (cf. (6.15a)). The above theorem says of course that it
becomes an isomorphism when V is sufficiently twisted.

c) In verifying the hypotheses of the theorem, it is not necessary to check
each weight 4 individually. For example, suppose V is an irreducible G-module
with high weight u. Then c(Z)éc(ﬁ) for every weight 4 of Tin V, and t,(2)<t,(u):
in particular, if the hypotheses of the theorem are satisfied for yu, they are auto-
matically satisfied for A.

d) When G is adjoint, we have t=t1,(4)=1 in the hypotheses of the theorem.
Of course G(q) need not be a Chevalley group in the sense of [23], and its coho-
mology groups may be smaller than those of the corresponding Chevalley group.
Nevertheless, if one is interested solely in rational cohomology (as in (6.8)) it is
permissible (and always possible, cf. (2.7)) to use the adjoint group. (Also, Cor.
(6.9) shows that the cohomology groups of G(q) are not smaller for g large.)

e) It would be interesting to have a version of the theorem with G(q) replaced
by G, for ¢ a rational endomorphism with finite fixed-point set. It appears likely
from [7] and [1] that a similar result holds in essentially the same form. The
reductions in §5 generalize easily to this case, though the arithmetic appears
more formidable. It would also be interesting to have versions of the theorem
for more general groups H than those describec in a) above.

(6.8) Corollary ( Rational stability). Let G be a semisimple group and V a finite
dimensional rational G-module. Let m be a non-negative integer. Then there is a
hon-negative integer ¢ such that, for each integer e 2 ¢, twisting induces a semilinear
w H™(G, V(e)= H™(G, V(e)).

See Section 7
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(6.9) Corollary. Let G, V, m,¢ be as in (6.8). Then there is a semilinear isomorphism
H7., (G, V)= H"(G, V(o).

(6.10) Corollary. Let f: G— G’ be a surjective central ky-isogeny of semisimple
groups (defined and split over k, as above). Let V be a finite dimensional rational
G’-module. Then there is a (linear) isomorphism Hy,., (G, V)= Hg,,(G', V) for all
non-negative integers m.

We also have the following generic version of (2.4a); it may also be viewed
as a generic version of the fact that “the center kills cohomology ”:

(6.11) Corollary. Let G, V,m be as in (6.8). Assume for each weight A of T in V
and non-negative integer e that p®/ is not in the root lattice. Then Hy,, (G, V)=0.
( This happens in particular when V is irreducible and its high weight A satisfies
the condition.)

All the corollaries above hold for B, etc. as in (6.7 a). The following corollary,
which is a generic version of (2.2), follows from the proof of (6.6) and the non-
negativity condition in (6.5).

(6.12) Corollary. Suppose i€ A and Hg,, (B, A)#0 for some non-negative integer
m. Then A 20.

§ 7. 1- and 2-Cohomology

Suppose we wish to apply (6.9) and (3.6) through (3.10) to compute Hg,, (G, V)
for m=1, 2. Since the Weyl modules associated with V(e) generally get more
complicated as ¢ becomes large, it is desirable to be able to take ¢ as small as
possible. Say m=1. For large p, the estimate in (6.6) allows us to take ¢=0 (note
e(0)= —1). For small p however the situation is less satisfactory. The theorems
below give sharper results for m=1, 2.

First, though, a general remark on rational cohomology is in order. The
approach of Section 5 gives a way of directly determining the value of ¢ which
works in (6.8) and (6.9): There is an obvious analogue of (5.1) for guaranteeing
that H"(B,A)— H"(B,pA) is an isomorphism for n<m and an injection for
n=m+ 1. The analogues of (5.2), (5.4) result in no conditions at all, while (5.3),
(5.5) become:

n

(p=2) In every equation Zp"" o =pA with i,=20, o,eZ*, we have iy=1 for

k=1
each k, (n<m);
(p%2) In every equation Y p*oy+ Y p/'ay=pA with n, +2n,=n, i, 20, j;=1,
k=1 k=1
o, ,€Zt, we have i, 21 and j,=2 for each k, [, (n=m).

If these equations are satisfied for every weight 1 in a finite dimensional rational
G-module V, we have H"(G, V)=H"(G, V(1)) for n<m, and an injection
H™ (G, V)—» H™ (G, V(1)). Now we are in a position to determine some good
values for ¢ for (6.8) when m=1, 2.
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(7.1) Theorem. Let G, V be as in (6.8). Then H'(G, V(1)) = H,.,, (G, V(1)). Moreover,
this holds with V(1) replaced by V, except possibly when p=2, X has an indecom-
posable component of type C,, =1, and 1/2a is a weight of V for some root a. Finally,

the map H*(G,V)— H.,(G, V) is an injection.

Proof. For the first assertion it is enough to show H'(G, V(1))=H'(G, V(2)).
This follows from the fact that the equation a=p*1 for ae X, AeA is impossible.
For the second assertion, it is enough to observe that an equation a=p4 is possible
if and only if p=2, and « is a long root in a component of type C,, [=1. The last
assertion follows easily from the second assertion, the remarks preceeding (7.1),
and (2.4a). Q.E.D.

(7.2) Theorem. Let G, V be as in (6.8). Then H*(G, V(2))= HZ., (G, V(2)) and the
map H*(G, V(2))> H;..(G, V(2)) is injective. Moreover, we can replace V(2) by
V(1) in this statement except possibly when p=2, X contains an indecomposable
component of type C, (1= 1), and 1/20 is a weight of V for some root o. Finally, if

p+2, 3, and no root is a weight of V, then V(2) may even be replaced by V.

Proof. The first assertion follows from the impossibility of equations p®a+ f=p> 4,
pa=p3ifor o, e, 2 a weight in V: The second equation is clearly not possible,
and in the first, a=0 (otherwise p=2, f§ belongs to a component of type C,, and
we get in fact fepQ, an absurdity). Thus, a+f=p>4, and (o B> +<{B,B>=0
(mod p?*). This is impossible since we may arrange |{a, )| <1 if o= f.

The remaining assertions follow similarly. Q.E.D.

We also have the following two sharp criteria for injectivity.

(7.3) Proposition. Let G,V be as in (6.8). If VI=V"@ for a given p-power q,
then restriction H' (G, V)— H'(G(q), V) is injective.

Proof. Let y be a rational 1-cocycle such that y|s ,, is cohomologous to 0. Adjusting
7 we can assume y|;=0. There exists a vector v such that y(g)=gv—v, geG(q).
It follows ve V'@ =V", Now adjusting y by the coboundary defined by v on G,
we have y|;=0 and y|g,, =0. Since G=(T, G(q)), it follows from the cocycle
condition that y=0. Q.E.D.

(7.4) Theorem. Let G, V be as in (6.8), and assume G is simply connected. Suppose
V=Hom (U, W) where U, W are finite dimensional rational G-modules with
4,8y =q—1 for every high weight A of every irreducible composition factor of
U or W and every fundamental root . Then H (G, V)=H"(G(q), V) and the map
HY (G, V)— H'(G(q), V) is injective.

Proof. First suppose U, W are irreducible. In this case, the statement regarding
H° is a well-known result of Steinberg. By (3.10) the group H'(G, Hom (U, W))
= Extg(U, W) ExtL(W*, U*)is isomorphic to Homg (M, W) (or else Homg (M, U*))
where M is the maximal submodule of the Weyl module associated with U (or W#*).
By [25; Theorem 2D] this M remains the unique maximal submodule upon
restriction to G(q), which implies that the map Homyg,, (M, W)— Extg (U, W)
18 injective. The reader may check the proof of (3.10) to see that the injective
composite ExtL(U, W)=~Homg;(M, W)< Homg ,, (M, W) — Extlmq,(U, W) is in-
deed restriction. (There is of course the other case with W replaced by U, which
is handled similarly.)
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Now just assuming U is irreducible, the validity of the theorem for arbitrary
W is established using induction, and the observation on the long exact sequence
in Section 5. A similar argument now establishes the theorem for arbitrary U, W.

Notice the conclusion of (7.4) is interesting even for n=0. We have

(7.5) Corollary. Under the hypotheses of (7.4), every G(q)-submodule of W is
a G-submodule.

Proof. Let L be a G(g)-submodule of W. By induction we may assume L is irreducible.
Let U be an irreducible G-module isomorphic to L as a G(g)-module and having
high weight 2 satisfying <4, o) <g—1 for each fundamental root 6. By (7.4) we
have Homg (U, W)=Homg,, (U, W), and the desired result follows.

(7.6) Examples. a) First we consider a very simple case, to illustrate some of
the ideas. Let G=SL,(k), and let V be the standard 2-dimensional module with
high weight 4,, the fundamental weight. Assume p=2. Then 4, is not in the root
lattice, so H™(G, V)=0 for all m=0. Moreover, the Weyl module associated with
the twisted irreducible module V(1) with high weight 24, is 3-dimensional
(=2 x 2 matrices of trace 0). Thus, H' (G, V(1))=k by (3.11b). By (6.7b) and (7.1),
it follows that Hg..(G, V)= Hg.,(G, V(1))=k. In particular, Hg.,(G,V) is not
isomorphic to H! (G, V) without twisting. Also, by (3.9), we obtain that H*(G, V(1))
=H'(G, k)=0. On the other hand, Example (2.6) shows that H?*(G, V(2))%0.
In particular, this means it is not true that we can take ¢=0 in (6.8) when all the
weights lie in the root lattice. Even larger powers of 2 are required for higher
dimensional cohomology groups in (6.8) as Example (2.6) shows: indeed, Theorem
(6.6) gives the best possible estimate for ¢ (taking t =1 as per (6.7d) after replacing
V by V(1)) in this case.

b) Assume G is simply connected and that V is a “minimal” module in the
(somewhat unfortunate) sense of [6]. Ignoring type C, in characteristic 2, we can
compute H,.,(G, V) from (7.1) and (3.11b). These results agree with those of [6];
moreover, the argument in [6] used to obtain lower bounds exactly parallels
(3.11b) and originally suggested this result.

c) Let G, V be as in b), but assume the high weight 4 does not lie in the root
lattice. If p%2, 3 then Hée,, (G, V)=0by (7.2) and (2.4) in agreement with Landazuri
[20]. Moreover, Landazuri refers to work of McLaughlin and others which shows
that H2 (G, V)#0 in many cases where 4 can be twisted into the root lattice and
p=2 or 3. We illustrate (7.2) by computing ngen(G, V) in one of these cases:

Suppose G=SL,(k),p=2,and V=S A S, where S is the 4-dimensional standard
module. Then V 1is irreducible of dimension 6, and ngen(G, V)= nge,,(G, V(1))
=~ H?(G, V(1)) by (7.2). One easily determines from the characteristic zero theory
that the Weyl module W associated to V(1) has dimension 20. The dominant
weights in W other than the high weight are 0 and the maximal root w. Also,
if p=2, the irreducible module M of high weight w has dimension 14. Since
dim V(1)=6, it follows that the maximal submodule of W is isomorphic to M.
Since M is self-dual, (3.10) yields H?(G, V(1))= H'(G, M) which has dimension 1
(say by [6] and (7.1), or by (3.10) again).



Rational and Generic Cohomology 163

References

19.
20.

21.
22.
23:
24.

25.

. Avrunin, G.: Second degree cohomology of groups of Lie type. University of Michigan thesis,

Ann Arbor (1976)

. Borel, A,, Springer, T.A.: Rationality properties of linear algebraic groups II. Tohoku Math. J. 20,

443-497 (1968)

. Borel, A, Tits,J.: Complements a I'article “Groupes réductifs”. Publ. Math. LH.E.S. no 41,

253-276 (1972)

. Carter, R., Cline, E.: The submodule structure of Weyl modules for groups of type A4,, Proc. of

the Conference on Finite Groups pp. 303-311. New York: Academic Press 1976

. Cline, E.: Ext for SL,. To appear
. Cline, E., Parshall, B., Scott, L.: Cohomology of finite groups of Lie type I. Publ. Math. LH.E.S.

45, 169-191 (1975)

. Cline, E., Parshall, B., Scott, L.: Cohomology of finite groups of Lie type II. J. Algebra, to appear
. Cline, E., Parshall, B., Scott, L.: Induced modules and affine quotients. To appear

. Curtis, C., Reiner, I.: Representation theory of finite groups. New York: Wiley 1962

. Demazure, M., Gabriel, P.: Groupes algébriques, Tome 1. Paris: Masson 1970

. Haboush, W.: Reductive groups are geometrically reductive: A proof of the Mumford conjecture.

Ann. Math. 102, 67-83 (1975)

. Haboush, W.: Linear algebraic groups and homogeneous vector bundles. To appear

. Hall, M. Jr.: The theory of groups. New York: Macmillan 1959

. Grothendieck, A.: Sur quelques points d’algebre homologique. Tohoku Math. J. 9, 119-221 (1957)
. Hilton, P., Stammbach, U.: A course in homological algebra. New York: Springer 1971

. Hochschild, G.: Cohomology of linear algebraic groups. Ill. J. Math. 5, 492-579 (1961)

. Humphreys, J.: The hyperalgebra of a semisimple group. To appear in Contributions to Algebra:

A Collection of Papers Dedicated to Ellis Kolchin, Academic Press

. Jantzen, J.: Darstellungen halbeinfacher Gruppen und kontravariante Formen. To appear in

J. Angew. Math.

Kempf, G.: Linear systems on homogeneous spaces. Ann. Math. 103, 557-591 (1976)
Landazuri, V.: The second degree cohomology for finite Chevalley groups, University of Michigan
thesis, Ann Arbor (1975)

MacLane, S.: Homology. New York: Springer 1963

Satzfeebler, H.: Legons sur les suites spectrales pour I'ingénieur. To appear

Steinberg, R.: Lectures on Chevalley groups. Yale University Lecture Notes, New Haven (1968)
Zeeman, E.: A proof of the comparison theorem for spectral sequences. Proc. Camb. Phil. Soc.
59, 57-62 (1957)

Wong, W.: Irreducible modular representations of finite Chevalley groups. J. Algebra 20(2),
355-367 (1972)

Received December 1, 1976






	Inventiones Mathematicae - 39
	Rational and Generic Cohomology


