Correction to "Injective Stability for K_{2} "

(From old file. Not dated.)
The proof of Proposition 5.21, case 2, is stated incorrectly. It should read as follows:

Case2: $v_{2}=0$. We apply inv and discuss instead:
Case 2 ': $w_{3}=0$. We may now assume $1+v_{1} q_{1} \in R^{*}$.
Via $\underline{\text { inv }}$ and Lemma 3.34 we see that $\mathcal{R}\left(x_{42}\left(-q_{2}\right) x_{43}\left(-q_{3}\right)\right) \circ \mathcal{R}\left(x_{1}\left(w_{2}, 0, w_{4}\right)\right)=$ $\mathcal{R}\left(x_{1}\left(w_{2}, 0, w_{4}+q_{2} w_{2}\right)\right) \circ \mathcal{R}\left(x_{42}\left(-q_{2}\right) x_{43}\left(-q_{3}\right)\right)$, so that we can get rid of q_{2}, q_{3}. Say $q_{2}=q_{3}=0$. Choose $\lambda \in R$ such that the top half of the first column of mat $\left(\mathcal{L}\left(x_{23}(\lambda)\right) \mathcal{L}\left(x_{4}(v)\right) \mathcal{R}\left(x_{1}(w)\right)\langle X, Y\rangle\right)$ is a unimodular row of length two. As $\operatorname{mat}\left(\mathcal{R}\left(x_{1}(w)\right)\langle X, Y\rangle\right)$ has a trivial third row, it is easy to see that $\mathcal{L}\left(x_{4}\left(v_{1}, v_{2}+\lambda v_{3}, 0\right) \mathcal{R}\left(x_{1}(w)\right)\langle X, Y\rangle\right.$ is defined. We may replace v by $\left(v_{1}, v_{2}+\right.$ $\left.\lambda v_{3}, v_{3}\right)$ provided that we replace $\langle X, Y\rangle$ by $\mathcal{L}\left(x_{23}(\lambda)\right) \mathcal{R}\left(x_{23}(-\lambda)\right)\langle X, Y\rangle$. In other words, we may assume that $\mathcal{L}\left(x_{4}\left(v_{1}, v_{2}, 0\right) \mathcal{R}\left(x_{1}(w)\right)\langle X, Y\rangle\right.$ is defined. Now $\mathcal{L}\left(x_{4}\left(v_{1}, v_{2}, 0\right)\right)\langle X, Y\rangle$ has the form $\left\langle P^{\prime}, Q^{\prime} Y\right\rangle$ with $P^{\prime} \in \operatorname{St}(\{1,2,4\} \times$ $\{1,2\}), Q^{\prime} \in \operatorname{St}(\{1,2,4\} \times\{2,4\})$. From this one sees that the maps $\mathcal{L}\left(x_{34}\left(v_{3}\right)\right)$, $\mathcal{R}\left(x_{1}(w)\right)$ behave at $\mathcal{L}\left(x_{4}\left(v_{1}, v_{2}, 0\right)\right)\langle X, Y\rangle$ as in the case $v_{1}=v_{2}=w_{3}=0$, which is Case 1 up to inv. So $\mathcal{R}\left(x_{1}(w)\right) \mathcal{L}\left(x_{4}(v)\right)\langle X, Y\rangle=$ $\mathcal{R}\left(x_{1}(w)\right) \mathcal{L}\left(x_{34}\left(v_{3}\right)\right) \mathcal{L}\left(x_{4}\left(v_{1}, v_{2}, 0\right)\right)\langle X, Y\rangle=$ $\mathcal{L}\left(x_{34}\left(v_{3}\right)\right) \mathcal{R}\left(x_{1}(w)\right) \mathcal{L}\left(x_{4}\left(v_{1}, v_{2}, 0\right)\right)\langle X, Y\rangle$. The result now follows from the squeezing principle with $i=3$.

