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Homology Stability for Linear Groups

Wilberd van der Kallen
Rijksuniversiteit Utrecht, Mathematisch Instituut, Budapestlaan 6, 3508 TA Utrecht, Niederlande

Summary. Let R be a commutative finite dimensional noetherian ring or,
more generally, an associative ring which satisfies one of Bass’ stable range
conditions. We describe a modified version of H.Maazen’s work [18],
yielding stability for the homology of linear groups over R. Applying W.G.
Dwyer’s arguments (cf. [9]) we also get stability for homology with twisted
coefficients. For example, H,(GL,(R), R") takes on a stable value when n
becomes large.

§1. Introduction

1.1. Our motivation for this work has been to prove stability for algebraic K-
theory in BGL* context. Thanks to the recent work of Dwyer we actually get
much more general statements. These imply a result which seems to be of
interest to geometric topologists. Namely, we find that the twisted homology
groups H,(GL,(R), p,), considered by Dwyer in [9], stabilize with respect to n
not only when R is a PID, but also when R is the group ring Z[=] of a finite
group z. This fits in with work of W.G. Dwyer, Wu-Chung Hsiang and R.E.
Staffeldt on Waldhausen’s rational algebraic K-groups of a space.

1.2. Let us remind the reader what sort of families {p,} are considered by
Dwyer, leaving out all technicalities and using some suggestive but unexplained
terminology. A basic example is the family A={4,}, where A, denotes (the
standard representation of GL,(R) in) the right R-module R" of column vectors
of length n over R. This system A grows linearly with n. Note that the difference
between 4, ; and 4, is equal to R for all n, so that the system of differences is
constant in this case. More generally Dwyer considers systems that grow
polynomially with n, such as the system u={u,}, where u, denotes (the repre-
sentation by conjugation of GL,(R) in) the space of n by n matrices over R. The
system u grows quadratically with »n, which can be rephrased by saying that its
system of third iterated differences is zero, while its system of second iterated
differences is not zero. (To make sense of all this, one has to add more structure
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to the data, and one has to be careful about the way the system of differences of
a system p inherits its structure from p. See [9] and Sect. 5 below.) Now our
main result is as follows. Let R be a commutative noetherian ring of finite Krull
dimension or, more generally, an associative ring (with identity) which satisfies
one of Bass’ stable range conditions SR,, (cf. [2], Chap. V, Thm. 3.5). Let p={p,}
be a system as in Dwyer [9]. Then for fixed k the homology groups
H,(GL,(R), p,) assume a constant value when n becomes large. The proof also
works with GL,(R) replaced by its elementary subgroup E,(R) and this is how
we get stability for the “unstable” K-groups =, (BGL!(R)), with reasonable
estimates for the range of stability. (See Corollary 4.12 below.)

1.3. We now wish to discuss some preceding developments and start with
stability in classical algebraic K-theory. The underlying philosophy is explained
well in [16, Part IV] and in the introduction to [3]. For simplicity let us list the
results for the case of a commutative noetherian ring R of Krull dimension d.
The set of isomorphism classes of finitely generated projective R-modules of
constant rank n we denote by SK,(n, R). (We choose this notation because the
limit for n— oo of the SK,(n, R), with the usual stabilization maps, is what is
commonly called SK,(R).) Similarly we let K, (n, R), K,(n, R) denote unstable
versions of Bass’ K, and Milnor’s K, respectively (cf. [15] or [13]). We have:

SKy(n, R)— SKy(n+1, R) is surjective for n>d (Serre, cf. [25] Théoréme 1)
and injective for n>d +1 (Bass [3], Prop. 10.1).

K,(n,R)— K, (n+1, R) is surjective for n=d+1 (Bass [3], Prop. 11.2) and
injective for n>d +2 (Bass, Vaserstein [29], Theorem 3.2).

K,(n, R)— K,(n+1, R) is surjective for n=d+2 (Dennis, Vaserstein [31])
and injective for n=>d + 3 (Suslin and Tulenbayev [26], van der Kallen [13]. In
[26] one also finds nice proofs of the two preceding results).

1.4. The facts just listed suggest a stability conjecture of the following form:

K, (n,R)— K, (n+1, R) is surjective for n=m+d, injective for n=m+d+1.
(mz1)

To give this conjecture a meaning one has to define the K, (n, R) for all
m21. So one has to choose one of the approaches to higher algebraic K-theory
and see what the unstable K-groups K,,(n, R) would be in that approach. If the
conjecture is to have a fair chance, then the K, (n, R) should agree with those of
Bass and Milnor for n=1, 2 resp. This suggests a K-theory of Volodin type (see
[27]). However, one often proceeds differently and considers the unstable K-
groups =,(BGL}(R)) of Quillen’s BGL*-approach (n=3, m=1). The
n,(BGLY (R)) do not always agree with Milnor’s K, (s, R) and the conjecture, as
stated above, is false in BGL* context, as is shown by the classical examples R
=JF, and R=Z (m=2). (Compare [13], Sect. 8.) Of course the stable K-group
K,(R) of Quillen is the same as Milnor’s and in fact n,(BGL} (R)) agrees with
Milnor’s K,(n, R) for n>5. (Here we use that R is commutative. See [14] and
compare also with [15].) We may sum up the stability behaviour of the
n,(BGL! (R)) as follows.

n,(BGL} (R))— mn,(BGL} ,(R)) is surjective for n >max (4, d +2) and injective
for n=max (5, d +3).
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This description of the range of stability is supported by examples of non-
stability for many values of d. (See [13], Sect. 7.) At this moment it seems too
much to ask for a well motivated conjecture for the range of stability of
n,,(BGL} (R)) for all m=1, giving in a natural way the established range for m
=2. What we can offer is the following theorem:

n,,(BGL! (R))— =n,,(BGL} , {(R)) is surjective for n=2m+max(l,d)—1 and
injective for n=2m+max (1,d)+1 (m=1, n=3).

For a more general formulation, not restricted to finite dimensional com-
mutative noetherian rings, see Corollary 4.12 below. It is hoped that this
stability result will help in extending to higher dimensions Quillen’s theorem on
finite generation of K-groups of commutative finitely generated regular Z-
algebras of dimension one. (See [4], Sect. 9, and [22, 23].)

1.5. By way of a Hurewicz argument stability for the =, (BGL} (R)) follows from
stability for the H,(E,(R)) (m=2). (See 4.12 below.) As a first approximation to
stability for the H, (E,(R)) one may study the simpler problem of stability for the
H,(GL,(R)). Quillen (unpublished) has shown that, when R is a field different
from IF,, the map H,,(GL,(R))— H,(GL, ,(R)) is an isomorphism for n=2m+1.
As the present work follows the same general principles, let us sketch Quillen’s
approach, stressing features that are relevant to us. Suppose G is a group, H a
subgroup, and suppose there is a nice sort of geometry associated with the set of
right cosets G/H. (For example, when G=GL,(k) where k is a field, choose a
non-zero vector v in k" and let H be the stabilizer of v in G. The set G/H may be
identified with the orbit of v, which is almost the same as k", and in this case we
may associate with G/H the geometry of linear n-space k") Now construct a
simplicial complex T, based on combinatorial properties of the geometry, such
that G acts naturally on T and H is the stabilizer of some 0-simplex. When G
acts transitively on simplices of fixed dimension, for each dimension, and
moreover T is highly connected, one gets a spectral sequence relating the
homology of G with the homology of the stabilizers in G of simplices of T. This
spectral sequence may be useful in an inductive argument, e.g. when one wants
to show that in a certain range the homology of G is the same as the homology
of H. (Compare with the following situation which one meets when studying
homotopy groups of the Lie groups SO,(R): There is a fibration
SO,(R)— SO, (R)—S" and the fact that S" is (n— 1)-connected makes that
7,(8S0,(R))— n,(SO,_ ,(R)) is an isomorphism for i<n—2)

Quillen tried several simplicial complexes. One is the Tits building, which is
known to be highly connected by the Solomon-Tits theorem. Another one was
based on unimodular sequences of vectors. Quillen showed it to be highly
connected in the case of local rings and he conjectured a similar result for finite
dimensional noetherian rings. (See [33], Sect. 1.) The proof of this conjecture is
one of the goals of Sect. 2 below.

1.6. The same approach to stability of homology groups has since been followed
by J.B. Wagoner, Karen Vogtmann, R. Alperin, Ruth Charney, W.G. Dwyer and
H. Maazen. (For some different type of work see [5, 12] and the short survey
[6]) Wagoner modified Quillen’s treatment of H,(GL,(R)) when R is local
([33]); Vogtmann dealt with homology of orthogonal groups over a field of
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characteristic zero ([32]); Alperin discussed homology of the complex unitary
groups SU,([1]). Ruth Charney proved stability theorems for homology of linear
groups over Dedekind domains. She showed for instance, when R is a PID, that
H,(SL,,,(R), SL,(R);Z)=0 for n=3k, H,(SL,,(R), SL,(R); Z[4])=0 for
n22k (see [7]). She has since extended her work to the case of GL,(Z[Z,]). To
get around certain difficulties encountered by Quillen, Charney invented “split
buildings” and proved that they are highly connected. The point of split
buildings is that one gets stabilizer subgroups which are much easier to handle
than the ones arising from an ordinary Tits building. This was exploited further
by Dwyer in his work on homology with twisted coefficients [9]. Maazen,
working independently from Charney, found a different solution for the same
difficulties. In [18] he deals with all stabilizer subgroups that are encountered,
by inventing new simplicial complexes to let them act upon.

That leads again to more types of stabilizers, but the process stops. The
simplicial complexes in [18] are all analogous to the space built from uni-
modular sequences by Quillen. The modifications that are needed reflect the
differences between the geometries associated with the different types of groups.
Maazen shows that all his stabilizer subgroups have, in a certain range, the same
homology with constant coefficients as the full group. This fact doesn’t seem to
have an analogue with twisted coefficients and it fails for the stabilizers which
one meets with split buildings (or with “ordinary” buildings). This explains why
in these other contexts one argues with certain relative homology groups rather
than with the absolute ones (cf. [32, 7, 9]). We will describe both an inductive
procedure for relative groups (with twisted coefficients) and one for absolute
homology groups (with constant coefficients). See Sects. 5 and 4 respectively.

1.7. Maazen’s main result concerns stability for H,,(GL,(R)) when R is a subring
of @ (cf. [19]). He gets a better range of stability than Charney. To get a good
feeling for what the general technique should look like, he started with studying
the stability problem for the homology of the symmetric groups. (Recall that it
is often profitable to view the symmetric group S, as GL,(F), where F is the
hypothetical field with one element. More generally the Weyl group of a
reductive split algebraic group may be viewed in this way.) From the work of
Nakaoka [21] one knows what the range of stability is in the case of symmetric
groups. It is most simply described by saying that H,(S,)— H,(S,, ) is an
isomorphism for n=2m.

This is indeed what Maazen gets. (The “geometry” in the case of S, is just a
set of n distinct points.) Maazen proceeds by proving stability for H, (GL,(R))
when R is a field. The range is not as good as in Quillen’s result, but the
techniques are such that IF, need not be excluded and such that local rings can
be treated, to a large extent, just like fields. (The results in [33] are much
messier.) To generalize the arguments further, one needs to prove that the
simplicial complexes involved are still highly connected when R is a more
general ring. Maazen gets very sharp results of this type when R is a subring of
Q, and partial results when R is euclidean. For us his argument in the case of
fields is more important however. It is an inductive argument with a com-
binatorial flavor. Now replace the field by any ring which satisfies one of Bass’
stable range conditions. This author found that one can keep the induction
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going, in a rather unexpected way, by reorganizing it slightly and then inserting
a change of co-ordinates of the type that has been standard since the time that
Bass introduced his stable range conditions. (An earlier proof was not as tight as
the one presented here. It employed techniques from [28] to generalize
Maazen’s proof in a more straightforward manner. The resulting connectedness
statements were only half as good.) This paper is meant as an exposition of the
Maazen-Dwyer approach as it looks after our contribution. For simplicity we
avoid such notions as “systems of coefficients on a category”, although [18]
shows that using them can be illuminating.

Under normal circumstances the results which we describe in this paper would have been
presented jointly with H. Maazen. However Maazen has left mathematics and is now a student at
the Utrecht Divinity School.

§2. An Acyclicity Theorem

2.1. In this section we show that certain simplicial complexes are highly
connected.

2.2. Convention. Throughout this paper R denotes an associative ring with unit,
satisfying Bass’ stable range condition SRy, . ,(R), where sdim is a given non-
negative integer. In the terminology of [28] this means that we assume
s.I.(R)< o0 and fix an integer sdim with sdim>s.r.(R)—1.

Standard example. When R is finitely generated as a module over a central
subring S and S has a noetherian maximal spectrum of dimension d, Bass’ Stable
Range Theorem ([2], Chap. V., Thm. 3.5) tells us that we may take sdim=d.

2.3. Definition. When V is a set, O(V) denotes the poset (=partially ordered set)
of ordered sequences of distinct elements of V, the length of each sequence being
at least one. The partial ordering on @(V) is defined by refinement:
W4 0)S(Wy, ..., w,) if and only if there is a strictly increasing map
¢:{1,...,m}—{1, ..., n} such that v;=w,,. A subset F of O(V) is said to satisfy
the chain condition when it contains with any element (w,,...,w,) also the
vy ..., 0,) In OF) with (v, ...,v,) (W, ..., w,). We always view a subset of a
poset as a subposet with the induced partial ordering. When F is a subposet of
O(V) which satisfies the chain condition, F, denotes (the geometric realization of)
the (semi-) simplicial set whose (non-degenerate) d-simplices are the (v, ..., v, )
that are in F. Recall that the classifying space |F| of F (i.e. the geometric realiza-
tion of the nerve of the category associated with F) is the barycentric subdivision
of the space F, (cf. [22], p. 81=289).

24. Let R*™ denote the free right R-module on the countable basis e, e,, ...
and let R" denote the submodule generated by e,,...,e,. Let # denote the
subposet of O(R™™) consisting of unimodular sequences. (Recall that a sequence
of vectors (vy,...,v,) in a right R-module M is called unimodular when
Uyy...,0, is a basis of a free direct summand of M. Note that when
(g5 ..., v )EO(RY, it is the same to say that (v,,...,v,) is unimodular as a
sequence of vectors in R’ or as a sequence of vectors in R, We call an element
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of U a frame. A k-frame is a frame consisting of k vectors. When (v, ..., v,),
(wy, ..., w,) are frames, we call them transversal if (v,, ..., v,, W, ..., w,) is also a
frame. When (v, ..., v,) is a frame, we write %, for the set of frames that
are transversal to (v, ..., v,). More generally, when FE% and (v,,...,v,) is a
frame, we write F,  , for the set of frames (wy,...,w,) with (w;,...,w
Uy, ..., U,)EF. Note that

m>

(F,

(CIPITN vn))(m, vy W)

=F

(W1, oy W, 01,5000, Un)°

2.5. Recall that a space X is (—1)-connected when it is non-empty, O-connected
when it is non-empty and connected, 1-connected when it is non-empty and
simply connected. For k=1 it follows from the Hurewicz theorem that X is k-
connected if and only if it is 1-connected and the reduced homology groups
H,(X) vanish for 0<i<k. For k< —1 the condition of k-connectedness is void.
Let F=O(V) satisfy the chain condition. As usual we call F contractible (k-
connected etc.) when |F| has this property or, equivalently, when F, has this
property.

2.6. The main result of this section is:

Theorem. Let R satisfy Bass® stable range condition SR ;. , ,(R), cf. 2.2. Let 6 be
0orl.

(i) OR"+e,,,0)NU is (n—2—sdim)-connected.
(i) O(R"+e, 0)NUy,. ., is (n—2—sdim—k)-connected for all k-frames
(Vg5 .5 0) in U, k1.
(iii) O((R"+e,, ;0)U(R"+e,,0+e,, ))NU is (n—1—sdim)-connected.
@iv) O((R"+e,,,0)U(R"+e,,  0+e, )N is  (n—1—sdim—k)-
connected for all k-frames (v, ..., v,) in %, k=1.

(v1, .0y k)

2.7. Remarks. 1. Parts (i) and (ii) will be needed in later sections; parts (iii) and
(iv) have been added for the sake of the proof.

2. The theorem and its proof can easily be generalized by means of
Vaserstein’s theory of “big” modules ([30]).

For any right R-module M one then gets statements about subposets of a
poset of “frames in M @R™”. We leave the details to the interested reader.

3. The theorem is sometimes sharp. For instance, when R=IF, xIF, one
may take sdim=0 and O(R+e,)n% is indeed non-empty, but it is not con-
nected. Also, when R is commutative it is not difficult to see that O(R?)N% is
connected if and only if E,(R) acts transitively on unimodular columns of
length 2. (i.e. on 1-frames in O(R?).) There are many examples of 1-dimensional
rings for which this transitivity fails (cf. [8]). On the other hand [18] Chap. III
gives examples of d-connectedness with d higher than indicated in the theorem.
(Maazen does not worry about homotopy groups but just about homology,
because that is all he needs. We also do not need the homotopy groups in later
sections, but we wish to confirm the conjecture of Quillen which is mentioned in
[33]. Note that in fact we only prove part of this conjecture and have left the
rest as an exercise in Remark 2 above.)

4. The estimate of connectivity for O(R"+e,_ ;)N% in part (i) can usually be
improved upon, as one sees from:
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Proposition. Let R and d be as in the standard example in 2.2. Assume that
R/Rad(R) has no zero divisors or that R has no finite ring as a homomorphic
image (Rad =Jacobson radical). Then O(R*+e, | )NU is (n— 1 —d)-connected.

We only give an indication of the proof of this proposition, as we will not
need it. In the case that R/Rad(R) is free of zero divisors the idea is to modify
the proof of the theorem, using Theorem 2.6 of [29]. In the case that R has no
finite homomorphic image, it is more or less well known how to proceed. One
shows, by the method used in the proof of Bass’ Stable Range Theorem that the
following holds: When X is a finite set of (k+ 1)-frames, k=0, there is a vector v
in R¥**+14e, ., such that the 1-frame (v) is transversal to all frames in X. It
easily follows from this that any compact subspace of the k-skeleton of
F,=(0(R"+e,, )n%), is contained in a contractible subspace of F,, when
n=d+k+1. In fact this general position approach may be used to give a rather
direct proof of all of Theorem 2.6. in this case, with sdim=u. Thus Quillen’s
conjecture on the degree of connectivity of O(R")~% in [33] only presents
difficulties when R has a finite homomorphic image. (Incidentally, that is how
Quillen came to guessing (n — 2 —d)-connectedness.)

2.8. The remainder of Sect.2 is devoted to the proof of Theorem 2.6. and
contains no material that is needed for an understanding of the later sections.
Before extracting some technical lemmas from [18] we now introduce some
more conventions.

29. When k2 —1, we say that a space X is k-acyclic if it is non-empty and
H;(X)=0 for 0<i<k. When k< —1 the condition of k-acyclicity is void.

2.10. When F is a poset, S a subset of F, x an element of F, we write S*(x) for
{yeS:yz=x} and S~ (x) for {yeS: y<x}. Further Linkg(x) denotes the link of x
in S, ie.

Linkg(x)=Linkg (x)uLink{ (x)

where Linkg (x)={yeS: y<x} and Linkg (x)={yeS: y>x}. One has |Linkg(x)|
=|Linky (x)| * |Linkg (x)|, where * denotes the join, as usual.

Recall that the significance of Link is that, when x¢S, the space |Su{x}] is
obtained from |S| by adding a cone over |Linkg(x)|.

2.11. Lemma. Let F be a poset, S< F such that for each xeF the poset S~ (x) has
a supremum (in itself!) Then S is a deformation retract of F.

Proof. Define r: F— 8§ by r(x)=sup(S~(x)). So r(x)=x for xeS.

Let i: S— F denote the inclusion map. Then i, r are morphisms of posets and
i(r(x))<x for all xeF, so we have a natural transformation of functors ir—id,
and we may apply [24], Proposition 2.1.

Remark. Whenever we will say that a subposet of some poset is a deformation
retract, we will be applying this lemma.

2.12. Lemma. Let F<% satisfy the chain condition. Let d be an integer and
(vy, ..., v,)EF such that for all (w,,...,w)eF*((vy,...,v,)) the poset F, . is
(d—n)-acyclic. Then Link((v,, ..., v,,)) is (d —1)-acyclic.
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Proof. Using that for 0<k<m—2 there are natural 1—1 correspondences
between k-simplices of Linky ((vy, ..., v,)),, subsets of size k+1 of {1, ..., m}, k-
dimensional faces of the standard (m—1)-simplex, one easily sees that
|Linkg ((v4, --., ,,))| is the barycentric subdivision of the boundary of the stan-
dard (m— 1)-simplex, hence an (m — 2)-sphere. It follows that

ILink (@, ..., o)) =ILinkg (0, ..., v,))| * [Link; (05, ..., v,)
=8"~1|Link} ((v,, ..., v,))l.

Remains to show that Link} ((v,, ..., v,)) is (d —m)-acyclic.

We will prove this by induction on m. (Here F and d are allowed to vary.)
Put B={(w,, ..., w)eLink{ (v, ..., v,): w,=0,,}. Put P, ={(w,, ..., w)eF: for
some n with 1 <n<r one has (w,, ..., w,)eFy}. Then P, is a deformation retract
of P,. If m=1 then F, is isomorphic, as a poset, with F,, ,, which is (d — 1)-acyclic.
If m>1 then P, is isomorphic with Link;'(um)((vl, ooy U 1)), Which is (d—1)—(m
—1))-acyclic by induction hypothesis. (Use that (F, .. ... wo=Fowr. ... wn, ony 1
(d—1—n)-acyclic for (w,,...,w)eF, ((vy,...,0,_4).) So in any case P, is (d
—m)-acyclic. The complement of P, in Linky ((v,, ..., v,)) consists of the ele-
ments (vy, ..., Uy, 2y, .-+, Z,) in F with g=1. We will now add these elements to
P, first those with g=1, next those with g¢g=2, etcetera. Put Q,
=P u{(vy, ..., 0y, Zy,...,2)EF:1=5q=r}. We know that Q,=P, is (d—m)-
acyclic and we want to show that @, is (d—m)-acyclic for r=0. (As
Link} ((vy, ..., )= (J Q,, that will prove the lemma.) Because Q,,,\Q, is

rz0
discrete, one passes from |Q,| to |Q,, ;| by adding a cone over Link, (v, ..., 0,
Zyy.-.52,,,)) for each (v, ...,v,, z;,...,2,,,) in F. As in the beginning of the
proof we see that |Linky ((vy,...,0,, Zi,...,2,,)|=8"|Linkg ((vy, ..., Vps
Zyy o5 Z,44)). When m=1 the poset Linkj ((vy, zy,...,2,,,)) has as a defor-
mation retract the subposet

{(W1a eeey wsa Ul, 213 "-9Zr+1): (Wla cecy Ws)eEul,zl,...,zr+1)}'

As this subposet is isomorphic with F, . . . it is (d—r—2)-acyclic and
Link, ((vy, 24, -+, 2, 1)) is (d — 2)-acyclic. Similarly, when m>1, Link,, (v, ..., v,

Zy, -ees Zp4q)) i (d—m—1)-acyclic because Linkg (v, ..., v, z;, ..., 2,, ;) has a
deformation retract isomorphic with the poset Link;(v v ze 01 s V1))

which is ((d —r—2)—(m— 1))-acyclic by the induction hypothesis. All in all one
passes from |Q,| to |Q, ., ;| by adding cones over (d —m— 1)-acyclic links. As Q is
(d —m)-acyclic it follows from a Mayer-Vietoris sequence that Q, is (d—m)-
acyclic, as required.

2.13. Lemma. Let F =% satisfy the chain condition. Let X < R,

(i) Assume that O(X)NF is d-connected and that, for all frames (v, ...,v,) in
F\O(X), the poset O(X)NF,, . ., is(d—k)-connected. Then F is d-connected.

(ii) Assume that for all frames (vq,...,v,) in F\O(X), the poset
O(X)NF, ., is (d—k+1)-connected. Assume further that there is a 1-frame
(yo) in F with O(X)NF<F,,. Then F is (d+1)-connected.

yo)*
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Proof. Proof of (i):

Put P,={(v,, ..., v,)eF: at least one of the v; is in X}. Then B, has O(X)nF as a
deformation retract and is therefore d-connected. Put F,
=Ru{(w,...,w)eF:r<q}. We consider Linkp ((w,,..., w,, ) for some
Wi ooy W )ER  \B,. Put 0=0(X U{wy, ..., w,, {})NF. Then Linkpq((wl, ooy
w,, 1)) has Linky((w,, ..., w,, ;) as a deformation retract and this deformation
retract is (d — 1)-acyclic by the previous lemma.

So one passes from |B| to |F,, ;| by adding cones over (d — 1)-acyclic links. As
in the previous proof we find that F, is d-acyclic for all =0, and, when d 2 1, the
Van Kampen Theorem shows that P, is also simply connected. Now note that F

~Ue

q20

Proof of (ii): Note that O(X)nF=0(X)nF, is d-connected. (Clearly
Yo#X.) Define P, as in the proof of (i). Then F, is d-connected again. But now
Linkp (W, ...,w,.,)) is d-acyclic for (wy,...,w, ,)€F,, \F,. In particular
Link, ((vo)) is d-acyclic. Define : ¢(X)nF— Linkp ((vo)) by ¥((vy,...,v4))
=(vy, ..., ;, Vo). The image Im  of ¥ is isomorphic with O(X)nF and O(X)nF
is a deformation retract of P, via a retraction whose restriction to Im is inverse
to . It follows that Imy is a subposet of Link, (o)), homotopy equivalent with
F, via the inclusion map. Therefore H;(|Link, ((vo)))— H;(|F) is surjective for
i=0 and one sees from a Mayer-Vietoris sequence that Pyu {(yo)} is (d+1)-
acyclic. Also, when d =0, it follows from Van Kampen’s Theorem that Py u {(y,)}
is simply connected. So Pyu {(y,)} is (d + 1)-connected. To pass from |Fy U {(yo)}]
to |P|, or from |P| to |F,, ;| when g=1, one adds cones over d-acyclic links.
From a Mayer-Vietoris sequence (and, when d =0, the Van Kampen Theorem)
one sees that the P, are (d+1)-connected for g=1, so that O(X)nF is an
increasing union of (d + 1)-connected posets, hence (d + 1)-connected.

2.14. The proof of Theorem 2.6 will now proceed inductively in the following
way. For each of the posets in the theorem we either prove d-connectedness
directly (when d is small) or we reduce it to sufficient connectedness of smaller
posets by means of Lemma 2.13. To be on the safe side, let us introduce a param-
eter “size” by saying that the poset in part (i) of the theorem has size 2n, the poset in
part (ii) has size 2n —k, the poset in part (iii) has size 2n+ 1, the poset in part (iv)
has size 2n—k+ 1. When discussing one of these posets our induction hypothesis
will be that the theorem is correct for all posets of strictly smaller size. It is easy
to see that the theorem is correct for posets of negative size. Let us now discuss
the four cases in the theorem consecutively.

2.15. Case (i). Let F=0(R"+e,, ;0)n%, d=n—2—sdim. We have to show that
F is d-connected. When n=0 this is obvious. When n>0, choose X =(R""!
+e,,10)U(R" '+e,+e,,,0). Note that O(X)nF is d-connected by the in-
duction hypothesis, because X is the same as (R"~!+¢,8)U(R" ' +e,d+e,, 1)
up to a change of co-ordinates. In the same way one checks that all conditions
of part (i) of Lemma 2.13 are satisfied.

2.16. Case (ii). This case is similar to the previous one.
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2.17. Case (iii). Let F=0((R"+e,, ,0)U(R"+e,,,0+e, )NU, d=n—2—sdim.
We have to show that F is (d + 1)-connected. Choose X =R"+e,, 6, yo=e,,,9
+e,,,. Consider O(X)nF,,  ,, for some (v,,..., v )eF\O(X). Say v,¢X.
(Otherwise permute the v;). The (n+2)-nd co-ordinate of vy equals 1. For «;eR,
v;=v;—v,&;, we have %, . ., =%, o by an exercise in linear algebra
Choose o; such that the (n+2) nd co-ordinate of v; vanishes for 2 <i<k. Then
Q(X)ﬁle v =0X)" %, ., again by an exercise in linear algebra. By
the induction hypothesis the’ poset (D(X)noll(v ) is (d —k+1)-connected and
we may apply part (ii) of Lemma 2.13.

2.18. So far the arguments are essentially the same as in [18]. Now we are going
to apply the stable range condition SR;,,,(R). Case (iv). Let F
=0(Y)n%,, .., > Where Y=(R"te, 0)U(R"te,, d+e,, ;). Put d=n—1
—sdim —k. We have to show that F is d-connected. When n<sdim there is
nothing to prove. When n=sdim+ 1 the only interesting case is that k=1. Then
we need to show that F is non-empty. Now a standard application of SR y;. . »
(cf. [29], Thm. 2.3) tells us that there is ge GL(R'™) such that g(Y)=Y and such
that (g(v,), e, ,), is a 2-frame. Changing co-ordinates according to g we arrive at
the situation that (e,, ,)e F. Remains the case n>sdim +2. Again we change co-
ordinates. Now we do it so that the first co-ordinate of v; becomes equal to 1,
again without changing Y. (This is also a standard application of SRy, »-)
After the change we put X ={veY: the first co-ordinate of v vanishes}. By a
computation as in the earlier cases we see that part (i) of Lemma 2.13 applies.

§3. Some Spectral Sequences

3.1. In this section we introduce some groups, let them act on simplicial
complexes that have been studied in Sect. 2, and obtain spectral sequences for
homology groups.

3.2. Conventions. Let XL(R) denote a subgroup of the stable general linear
group GL(R), containing the elementary subgroup E(R). We have three exam-
ples in mind: XL(R) may be GL(R), E(R), SL(R). (In the last case assume R
commutative.) As usual GL,(R) is viewed as a subgroup of GL(R). (cf. [2],
Chap. V). Let P, Q be sets of integers with PuQ =[1, t] for some t=>0, and let
n2t. (By [a, b] we always mean {ieZ: a<i<b}.) We write GF2 for the subgroup
of GL,(R)n X L(R) consisting of the elements that fix the column vectors e; with
jeP and the row vectors e} with ieQ. Here e} denotes the transpose of e;, hence
an element of the dual basis (in the space of row vectors) of the basis e, e, ....
For instance, when P={1,2}, Q={1, 3} (hence t=3) and n=5, then G*< consists
of the matrices in GL5(R)nXL(R) of the form

0 00

*
1
*

(= I R =
* ¥ O * O

*
0
*
*

O O O -

*
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We have an “upper inclusion” map I: GF¢— GF¢,, compatible with the usual
stabilization map GL,(R)— GL,, (R). Whenever we have a group and a sub-
group, “inc” will stand for the inclusion map. Note that we view G?¢, GF2, as

subgroups of GL(R) in such a way that I: GF¢—GP¢, and inc: GF9— GF2,
stand for the same map. When P=Q=[1, t], we call GF2 a square group of size
n—t. Such a group is isomorphic with GL,_,(R)nXL(R), but, when t+0, it is
not identical with GL,_,(R)n X L(R). (In Sect. 5 the distinction between different
isomorphic subgroups of X L{R) will be important, but in Sect. 4 it will hardly
matter.) We write Sq(GF9) for the largest square group contained in GF2. (So

Sq(G*9)=GI" where T=PuUQ.)

3.3. For fixed n let &, denote the family of groups G¥2. It is a finite set, partially
ordered by containment. If G, H are in %, then H is called a predecessor of G
when H is maximal among the elements of %, that are strictly contained in G.
We say that it is a good predecessor when H contains the largest square element
K of Z, that is properly contained in G. Thus one can follow a descending route
from G to K by taking good predecessors repeatedly. Via such routes we will
compare each group in %, with a square one and the square ones amongst each
other.

3.4. Say G=G%? and H is a good predecessor. Let t be the size of PUQ again
and put d=n—t—2—sdim. Put ¢=0 when G is square and put ¢=1 otherwise.
We claim that Theorem 2.6 provides us with a d-connected simplicial complex
F, on which G acts, such that the following (and more) holds. For
0<k=<max(0,d+e+1) there is a non-degenerate k-simplex o, in F, so that
Stabg(g,), the stabilizer of ¢, in G, is an element of %,. Moreover the stabilizer
of 6, is H. Further, G acts transitively on non-degenerate k-simplices of F, for
0<k=<d+e (Given G and H this condition of transitivity will make the proper
choice of F, rather obvious.)

We could make a similar claim when H is an arbitrary predecessor of G, but
in the sequel we will not even need to consider all good predecessors of G. It will
suffice to have for each Ge Z,(G + {1}) a natural choice of one good predecessor H
such that F, exists. The case G¢={1} will often tacitly be excluded.

3.5. Examples. 1. Let P=Q=[1,t], n>t=0. Then G£¢ acts naturally from the
left on X =e,, ,R+...4+¢,R. We may view X as a copy of linear (n—t)-space
over R on which G2 acts as a group of linear transformations. Take F,
=(0(X)n%),, 0,=(e,, 1, ---, € +1)- (Compare [33]) Then F, is d-connected by
Theorem 2.6(i). (Take 6 =0.) The stabilizer of o, is G'®- ¢ with P(k)=Pu[t+1,t
+k+1]=[1, t+k+1]. The stabilizer of o, is a good predecessor of GF< It is a
well-known consequence of SR, .,(R) that GF? acts transitively on non-
degenerate k-simplices of F, for 0<k <d. (cf. [29], Theorem 2.3.)

2. Let P=[1,t—1], Q=[1,t], n=t=1. There is a natural transitive action
from the left of G?? on X=e,+e¢,,, R+...e,R. We may view X as a copy of
affine (n—t)-space over R on which GF2 acts as a group of affine transfor-
mations. Take F, =(0(X)n%),, o,=(e,, e,+e, .y, ..., e,+e ). Then F, is d-
connected by Theorem 2.6(i). (Take d=1) The stabilizer of ¢, is GF® ¢ with
P(ky=PuU[t, t+k]=[1,t+k]. Again the stabilizer of 6, is a good predecessor. It
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is a well-known consequence of SRy, »(R) that GF¢ acts transitively on non-
degenerate k-simplices of F, for 0Sk<d+1.

3. Let P=[1,t], Q=[1,s], n=t>s=0. There is a natural action from the
right of GF¢ on the set of row vectors X =e*+ Re, , +...+ Re*=e¥ +e* ; R®
+...+e¥ R°®. Here R°P denotes the opposite ring of R and the free left R-module
of row vectors over R is viewed as a free right R°*-module (R°)*) in the usual
way. Let F,=(0(X)n%°?),, where %°P denotes the poset of unimodular se-
quences in (R°?)®). As SR 4. 2(R) implies SR gim + 2 (R°P) (see [28], Thm. 2), it
follows from Theorem 2.6(i) that F, is d-connected. Take o, =(ef, eff +ef, 4, ...,
eX+ek ). The stabilizer of o, in G" 2 is GPo® with Q(k)=QuU[t, t+k]. The
stabilizer of o is a good predecessor of Gf ¢ and it follows from SRy, , (R°P)
that GF< acts transitively on non- degenerate k-simplices of F, for 0<k<d+1.

4 Let P=[1,s—1], Q=[p,t], 1 £p<s=<t<n. This generalizes example 2. Let
X denote the orbit of e, under the action (from the left) of G*2 on R". (One easily
checks that X =e4+V where V is the R-module generated by the e; with ie[1,p
—1Ju[t+1,n]) When p=1, put F =(0(X)n%),. When p>1, put F,
=(O0X)"U,, ... cp-)s- 10 elther case take o.=(e, e, +e,q,...,e,+€.,,). Asin
Example 2 the spaee F, is d-connected, GF? acts on F,, and the stabilizer of ¢, is
GP®.Q with P(k)= Pu[t t+k]. Again G” 2 acts trans1t1vely on non-degenerate
k-simplices for 0sk<d+1 and the stablhzer of g, is a good predecessor.

3.6. In general, when PuQ=[1, t], there is a permutation = of [1,t] such that
the pair n(P), n(Q) occurs among the four examples in 3.5. For each (P, Q) fix
such a permutation n and use it to transfer the construction from the relevant
example to G’2. When this leads to an action from the left on a simplicial
complex F,, insert the anti-homomorphism x+>x~' to make it into an action
from the right. (This doesn’t spoil anything; e.g. the stabilizers are not changed.)
Then we have for all Ge&,, G+{1}, an action from the right on a simplicial
complex F, and further simplices o, so that, among other things, Stabg(o,) is a
good predecessor of G (cf. 3.4). By choosing the permutation # to be independent
of n we arrange that the constructions are compatible with the stabilization
maps I: GF2— GF2,.

3.7. Let P,Q,t be as in 3.6. and let {1} +G=GF? Further let M be a left G-
module. Put d=n—t—2—sdim again and recall that e=0 when G is square, ¢
=1 otherwise. We choose F,, o, as indicated in 3.6.

Proposition. There is a first quadrant homology spectral sequence E(P, Q; n)=E],
converging to zero, with

E},;=H/(G,M) for s=0,
=H (Stabg(o,_,),M) for s=0,1=<r<d+e+1.

For $20,d+¢20, the differential E\,— E}; is the natural map from
H(Stabg (o), M) to H (G, M).

Proof. Rather than referring to [33], we give such a proof that it will be
straightforward to identify the differentials E},, ,—E;  for r>1. (See Sect. 4
below.) Let C, denote the free Z-module on a basis consisting of non-degenerate
k-simplices of F,. As F, is d-connected there is an exact sequence of right Z [G]-
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modules O0«Z—Cy«C,«—...«Cy,,<Z,, <0 Rewrite it as
O«Ly«L;«....(So Ly=Z, L, = C,, etc. When d< —2, the Proposition is not
very interesting; we then take L,=Z, L,;=0 for i>1.) Let R,—»M be a
resolution of M by free (left) Z[G]-modules. The bicomplex of abelian groups

b

0« EJ, «EY, «...
Lol

0 Eyy«ESy«...
Lo
0 0

with ES. =L )R, is exact in the horizontal direction, so that the homology of
Z[G]

its total complex vanishes. (We follow Grothendieck [10], or [11], in that we
use spectral sequences for bicomplexes whose horizontal differentials commute
with the vertical ones. So the total complex has a differential with signs in it, but
the bicomplex E2 itself is not contaminated by signs.) Taking homology of E2,
first in vertical direction yields a spectral sequence E!, converging to zero. We
now apply Shapiro’s Lemma: The homomorphism Z — C, which sends 1 to o,
induces a chain map f, from

Z & R, to C,XR,.
Z[Stabg (o] Z(Gl
For 0<k<d+¢ the group G acts transitively on the set of non-degenerate k-
simplices so that, by a little exercise, the chain map f, is an isomorphism.

As the complex R, may be viewed as a resolution of M by free
Z[Stabg(o,)]-modules, f, induces isomorphisms H(Stabg(s,), M)— E;_, ,, for
such k. We use these isomorphisms as identifications. The identification of EJ,
with H (G, M) is straightforward and the last statement in the Proposition is
also clear.

3.8. The remainder of Sect. 3 will not be used in Sect. 4. As in [33] we now wish
to give a relative version of the Proposition. First we recall some homological
machinery (cf. [9]). Let G, G’ be groups, ¢: G— G’ a homomorphism, M a left
G-module, M’ a left G'-module. A map f: M — M’ is called ¢-linear when it is Z-
linear and f(gm)=¢(g) f(m) for all geG, me M. We will need (doubly) relative
groups H,(G', G; M', M; ¢, f) which fit into a long exact sequence

(%) . H(G,M)y->H,(G,G;M',M; ¢,f)— Hy(G, M)— Hy(G', M)
~)H0(G,’ G; Mr, M; ¢9f)'—>09

and have suitable functorial properties. (The notation H,(G', G; M', M; ¢, f) is

rather unwieldy. We will use simplified forms such as H,(G',G) or

H,(G', G; M', M), but not H,(¢, f), because the latter is reserved for the map
H{(G,M)—H,(G,M).)
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3.9. To define the relative homology groups, let us introduce some further
notations. Rep denotes the category of pairs (G, M) where G is a group and M a
left G-module. A morphism (G, M)— (G, M) in Rep is a pair (¢, f) with
¢: G— G’ a homomorphism and f: M — M’ a ¢-linear map.

RelRep is the category whose objects are the morphisms of Rep. (A
morphism in RelRep from (¢, f) to (Y, g) is a pair of morphisms (p, h), (o, k) in
Rep so that (g, k)(d, f)=(, 2)(p, h).) Further Ab denotes the category of
abelian groups.

3.10. When G is a group, consider Z as a right G-module with trivial action.

Recall that the H,(G, M) are often computed by means of a standard resolution

(“bar resolution”) B, (G)—Z of Z, with B,(G) depending functorally on G.

(Take your favorite version.) For a left G-module M the H,(G, M) are then the

homology groups of the complex B, (G)X) M and this complex is functorial in
ZIG

@
(G,M). When (¢,/):(G,M)—(G',M’) in Rep, we define the
H,(G',G; M', M; ¢, f) to be the homology groups of the mapping cone (see [20],
p. 46) of the chain map B, (G) @M — B, (G') ) M'. It is clear that these relative
ZIG] Z[6')

groups fit into the long exact sequence (x) of 3.8. The relative H; are functors
from RelRep to Ab.

3.11. Standard arguments show:

Lemma (cf. [9]). Let ¢: G— G’ be a homomorphism of groups and

0—>M1—>M2—>M3—->0

Vool
0—>M’1—>M’2—>M'3—>0

a commutative diagram with the upper sequence an exact sequence of G-modules,
the lower sequence an exact sequence of G'-modules, the vertical maps ¢-linear.
Then there is a long exact sequence

.H (G, G; M3, M3)-5H(G,G; M\, M,)
— H(G', G; M, M,)— H,(G, G; M5, M,)...

3.12. We now describe a more flexible way to compute with relative homology
groups. Let (¢, f): (G, M)— (G, M') again. Choose a projective resolution
P, M and a projective resolution P,<>M'. (So P, consists of projective left
Z[G]-modules, P, of projective left Z[G']-modules). There is at least one ¢-
linear chain map t,: P,— F,, compatible with f. For such a z, we wish to

identify the homology groups of the mapping cone of 1Qt,:ZQP—-Z ) F,
Z[G] Z[G]
with the H,(G',G; M’, M). To this end we consider the total complex T,

=Tot(B,(G) X P,) of the double complex B, (G)X) P,. (Compare [20], Chap. V,
Z[G] Z[G]

Sect. 9, where Tot is suppressed in the notation.) The augmentation &: B, — M

induces a chain map T, — B, (G)(& M which induces isomorphisms in homology
Z[G]
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(cf. [20], Chap. V, Thm. 9.3.). Similarly ¢': P, — M’ induces a chain map from T
=Tot(B,(G') @ P,) to B,(G') X M'. Together these two chain maps yield a
Z[G'] Z[G']

chain map from the mapping cone of T,—T, to the mapping cone of
B, (G)®M — B, (G')®M', inducing isomorphisms in homology. (Compare the
long exact sequences for the two mapping cones and apply the Five Lemma.)
We use these isomorphisms as identifications. In the same way we get from the
augmentations B, (G)—Z and B,(G')—Z a chain map from the mapping cone
of T,— T, to the mapping cone of Z®P,—»ZR®PF,, again inducing isomor-
phisms in homology. Composing the isomorphisms we get the desired identifi-
cations.

Remark. 1t is not allowed to replace the chain map T,—>Z®F, by one
homotopic to it. Such a variation could easily lead to different identification
maps. That is why we have been so explicit.

3.13. Let
G, M) %2 (K, N)
(@, ) (x,
W', g")

(G',M)——(K', N')

be a commutative square in Rep, representing a morphism (g, f)—(y, h) in
RelRep. Suppose one has a commutative square of projective resolutions

P*#**’Q*

|

P*Z———HQ'*

compatible with these data. (So P, is a Z[G]-projective resolution of M, P, —Q,_
is a Y-linear chain map, etc.) The horizontal chain maps induce a chain map
from the mapping cone of Z®P,—-Z®PF, to the mapping cone of
Z®Q,—~Z®Q,, hence they induce maps g;: H(G,G; M',M)—H,(K', K;
N', N). As the relative H; are functors RelRep — Ab, one likes the g; to agree
with the functorial maps. Indeed a diagram chase shows:

Lemma. Under the identifications of 3.12, the q; agree with the image under the
relative H, functor of the morphism

(W, 8), W', 8)): (&, /)= (. ).

Remark. In the same vein one sees that Dwyer’s description of relative homology
agrees with ours. So the definition of relative homology groups by means of
standard resolutions only serves as a convenient unambiguous reference point.

3.14. In the situation of 3.7. put G'=G?, and let M’ be a left G'-module. Recall
that I: GF2— G2, is the stabilization map. Let f: M — M’ be I-linear and let F,
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denote the analogue of F, for GF?, instead of GF2. So F, is (d+ 1)-connected.
Note that our constructions have been chosen so that F, contains F,.

In particular, g, is also a k-simplex of F, and the action of G’ on F, leads to
a subgroup Stabg.(0,)eZ,,, containing I(Stabs(s,)). Let L., R, denote anal-
ogues for F,, M of the complexes L,, R, in the proof of 3.7, but with d not
replaced by d+1, i.e. with L ending with (d+ 1)-cycles, just like L. There is a
natural chain map L,— L, and we may also choose a chain map R,— R,
compatible with £, in an I-linear way. Together these chain maps yield a map of

double complexes L, X) R, =L, &) R,. Taking the mapping cone of L, X R,
Z[G) Z[G] Z[G]

—»L’pl@]R’* for each p we get a double complex EJ, which is exact in the

horizontal direction. Now take homology first in vertical direction. From the
proof of 3.7 we see (cf. 3.12, 3.13):

Proposition. There is a first quadrant homology spectral sequence E(P, Q; n+1, n)

=E,,, converging to zero, with

E(1)s=Hs(G,a G;M,, M) for 520,
EjS:Hs(StabG’ (a’— 1)’ StabG(ar— 1), M’, M) for ng,
1Sr<d+e+1.

For 520 the differential E} ,— E} is the natural map from
H(Stabg (0,), Stabg(o,); M', M) to H(G',G; M', M).

3.15. Remark. Using the (d + 1)-connectedness of F, and the transitivity of the G’
action on (d+e&+1)-simplices of F,, one checks that for r=d+¢+2 there is a
surjective map from H,(Stabg. (g, _,), Stabg(a,_,); M’, M) to E},.

§4. Stability for Constant Coefficients

4.1. In this section we analyse the spectral sequences of Proposition 3.7. in the
fashion of [18], to find that H,(G?9) is isomorphic with H,(XL(R)) in a certain
range. (Notations as in 3.2.) As a corollary we get stability for the =, (BGL} (R)).

4.2. Let us return to the situation of 3.7. and look at the differentials
E! , ,—E},. We have seen already that the differential E},— E} is (identified
with) the natural map from H(Stabg(o,), M) to H(G, M) for s=0. Now let
1<r<d+e. The differential E! , ,—~E] is induced by the map L, ,—L,

r+1

which is the map ), (—1)'*!9;: C,— C,_,, where 0, deletes the i-th vector from

i=1

an (r +1)-frame. Choose m,,€G so that 0,(¢,)=0,_, m;,. (This is possible because
G acts transitively on (r—1)-simplices.) For each left G-module we denote the
map n—m,n by Il(m;,). It is an Int(m,)-linear map, where Int(m,) is the
homomorphism grm,, gm;; . (By abuse of notation we will denote restrictions
of Int(m,,) also by Int(m,,).)
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Inspecting the identifications made in the proof of 3.7., we see that the chain
map E?, , ,— E?, which 9, induces is (identified with) the chain map which one

would use to compute
Iis(lnt (mir)9 l(mir)): Hs(StabG(o-r)’ M)—) Hs(StabG (O.r— 1)’ M)
with, viz. the chainmapZ & R,—Z (& R, induced by the chain map

Z[Stab(o,)] Z[Stab(a, -1)]

I(m,): R, —R,. It follows that the differential E; , ,—E; may be viewed as
r+1

the map Y (—1)'*' Hy(Int(m,,), I(m;)). To make this formula correct for r=0,
i=1
simply put m,;,=1€G. When G is square, so that e=0, the map

Hs(StabG(ad+ 1)’ M)_’E;+ 2,s

is not always an isomorphism, but it is clear from the above that its composition
with the differential E}, , - —E;] also leads to a map H(Stab(o,, ), M)
d+2

d+1,s
— H (Stab(a,), M) given by the formula Y (—1)*'H,(Int(m, 4, ), [(m; 4, )).
i=1
43. Now let M be an abelian group 4 on which G acts trivially. Then
H(Stabg(g,), A)=A and H,(Int(m,,)) is the identity. Thus we find:

Proposition. (i) EZ,=0 for 0<r<d+1.
r+1

(i) For 0<r<d+e, s=0, the differential E!,, .—~E}  equals Y (—1)*+!
i=1

r+1,s

- Hy(Int(m,,)). :

44. Say G=G*? is as in Example4 of 3.5. We have g,=(e,,e,+€,,, ..., €
+e,,,) and a reasonable choice for m;, seems to be as follows. When i>1 define
geGL,(R) by gle,)=¢e, for ke[l,t+i—2]ult+r+1,n], gle)=e,,., for t+i
—1<k<t+r—1,g(e,,,)=(—1y""*'e,, ,. Then geGE2 (compute the determi-
nant) and in terms of the left action we have go,_, =0;(0,). In terms of the right
action this means o,_, g~ '=0,(s,), so let us put m;,=g='. When i=1 define
geGL,(R) by gle,)=e¢, for ke[1,t—1]Jut+r+1,n], gle)=e,+e€,,,, gle) =€,y
—e,,, for t+1<k<t+r—1, gle,,,)=(—1"1e,,,. As g is now an element of
G?? with go,_,=0,(c,), we put m;,=g~'. Observe that with these choices
the m;, centralize Sq(Stabs(s,)=GL"*+"111+7 (Notation as in 3.2) Recall
that all inclusion maps are denoted inc and consider the composite of
H(inc): H(Sq(Stabg(s,)), A) > E}, , , with the differential E}, , (—E,  for
some r, s with s=0, 0<r<d+e¢ By Proposition 4.3 this composite equals
r+1

Y. (—1y*!'H/Int(m,,)), and, as the Int(m,,) coincide with inc on Sq(Stab(o,)),
i=1

all terms in the sum cancel when r is odd while one term H(inc) remains when

r is even. When moreover Hj(inc): Hy(Sq(Stabg(o,), 4)—E}, , , is surjective,

this implies that the differential E;, | ;—E; ; vanishes for r odd and equals

H(inc): H/(Stabg(c,), A)— H(Stabg(o,_,), A) for r even. We have derived this
crucial fact only for a special choice of G=GF2, but it holds more generally:

45. Lemma. In the situation of 43 let r, s be such that H(inc):
H(Sq(Stabg(s,)), A)— H(Stabg(a,), A) is surjective, s=0, 1<r<d+¢. When r
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is odd the differential E;,_, ;—E,  vanishes and when r is even it equals

H (inc): H (Stabg(o,), A)— H (Stabg(o,_,), 4).

Proof. We may assume that G*€ is as in one of the examples in 3.5. In case of the
fourth example, see 4.4. What we need to show in the other cases is that we may
choose the m;, within the centralizer of Sq(Stabg(s,)), just as in 4.4. For the third
example, compare with the fourth by taking transposes. The second example is
subsumed by the fourth and the first one is not difficult.

Remarks. 1. Note that we have used our explicit choice of the o,, among other
things to see that Stabg(s,) is contained in Stabg(o,_ ).

2. The map inc: Sq(K)— K is a split injection, for all Ke%,, in particular for
K =Stabg(a,). (Check the examples in 3.5.) So H(Sq(K), 4)— H (K, A) is always
injective.

4.6. Proof of Stability. Lemma 4.5 and Proposition 3.7 together force stability.
For, let m be such that for each P, Q as in 3.2 and each s with 0<s <m the map
H (inc): H,(G?2, A)— H(XL(R), A) is an isomorphism for n sufficiently large.
(Clearly m=0 is an example.) Fix some P, Q and consider the spectral sequence
E(P,Q;n) with M=A, cf. 3.7, 43. For 1<s<m, 0<r<m+2, r even and n
sufficiently large the maps H,(inc): H,(Sq(Stabg(a,)), 4)— H,(Stabs(a,), 4) and
H (inc): H (Stabg(o,), A) > H,(Stabg(o,_,), A) are isomorphisms. Also, d grows
with n, so that by 4.5 the E* term of E(P, Q;n) looks like Fig.1 when n is
sufficiently large.

2
ES me1 * *

0-

Fig. 1

We see from Fig. 1 that EJ ., ~E} ., for r=2. As E(P, Q; n) converges to
zero, it follows that Ej, . ,=0. But Ej ., is the cokernel of H,, (inc):
H, . ,(Stabg(o,), A)—H,,, (G, A), so this H,, ,(inc) is surjective. Varying
P, QO we get a lot of surjective maps this way and we see (cf. 3.3) that
H, . (Sq(GE9), A)—H,,, (G A) is surjective for n sufficiently large, with the
bound depending on P, Q, m. Now fix P, Q again and look back at the
spectral sequence E(P, Q; n). For n sufficiently large the E? term looks like
Fig.2, with E}, ., equal to the kernel of the surjective map H,,, (inc):
H,  (Stabg(o,), 4)—H,,, (G, A), by Lemma 4.5.

2
* EY iy * %

Fig. 2
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We see from Fig. 2 that E} . ~E} ., for r>2. As E(P, Q; n) converges to
zero, E} , ., must vanish and the map H, ,(inc) must also be injective.
Varying P, Q again and noting that a stabilization map I: GP®— G%% only
differs by a change of co-ordinates from a map inc: G}V - G298, we see that
for each P,Q as in 32 and n sufficiently large the map H,,(inc):
H,, (G A)—H,, (XL(R), A)=lim H,,, ,(G®?, A) is an isomorphism. Thus
stability holds by induction on m. *

4.7. Clearly the argument in 4.6 also gives a method for obtaining quantitative
results. One may try to improve a little on the ensuing bounds by means of an
ad hoc analysis of the stability problem for homology in very low degrees. How
much of an improvement one obtains depends on R, A and the effort made. The
proof of the following theorem provides an example of such an approach. For
other examples see [18], Chap. IV.

4.8. Conventions are as in 2.2, 3.2, 4.3.

Theorem. (Stability with constant coefficients).
Put e=max (1, sdim). The maps

H,(inc): H,(Sq(GF?), A)— H,(GF, A4)
and

H,(inc): H,(G}?, A)— H,(XL(R), A)

are surjective when the size of Sq(GF9) is at least 2m+e— 1, bijective when it is at
least 2m+e (m=0).

Proof. We will go through the argument of 4.6, making some assumptions in
order to guarantee that the induction step remains valid in the quantitative form
corresponding with the theorem. Thereafter we will take care of the situations
where one of the assumptions fails. So let m be a non-negative integer such that
for 0<s<m the maps Hy(inc): H(Sq(G’9, A)—» H(G’% 4) and
H (inc): H(GF2, A)— H (X L(R), A) are surjective when the size of Sq(GF9) is at
least 2s+e— 1, bijective when it is at least 2s+e. Our first task is to show that
H, . ,(Stabg(o,), A)— H,, ., (G, A) is surjective when Sq(Stabg(o,)) has size at
least 2m+e+1 (notations as in 3.7). Assumption 1 is that d is at least m+1. It
makes that Proposition 4.3 applies where we need it: We see that EZ, , ,=0. As
Sq(Stabg(co,)) is assumed to have size at least 2m+e+1, one checks that the
Sq(Stabg(c,)) have size at least 2m+e+1—r for 0<r<d+1. By Lemma 4.5 this
implies that the differentials E},; ;— E,}, are given by H,(inc) when r is even, r
+s=m+2, r=2, 1=<s<m. (Use that assumption 1 implies r<d+¢, and note
that 2m+e+1—r=2s+e—1). To see that the spectral sequence looks like Fig. 1
at the E? level, we observe that the differentials E}, ; ;— E} | are surjective when
ris even, 2sr<m+1, r+s=m+2, injective when r is even, 2<r<m, r+s=
m+1. (Note that E}, ~ H (X L(R), A) because 2m+e+2—r=2s+e). We find (cf.
4.6) that E? , ., vanishes, so that H, (Stabg(a,), A)—H,,, (G, A) is sur-
jective. Forget for a moment that we needed to make assumption 1. Varying
P,Q,n we get many surjective maps and find that indeed H,,, ,(Sq(G%9), A)
—H,, (G A) is surjective as soon as Sq(GF?) has size at least 2m+e+1
(cf. 3.3).
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We also see that H, ., ,(Sq(GF9), A)—H,  ;(XL(R), A) is surjective and
hence that H,,,(G'? A)—H,,, (XL(R), A) is surjective, when Sq(G*%) has
such size. Next consider the spectral sequence E(P, Q; n) when Sq(Stabg(o,)) has
size at least 2m+e+2. Now we make assumption 2, which says that d is at least
m+2. We find that EZ , , ,=0. The Sq(Stab(c,)) have size at least 2m+e+2—r
for 0Sr<d+1. The differential E} , ,—E} , equals H(inc) when r is even, r
+s<m+3,r=2, 1<s<m; and it vanishes when r=1, s=m+1. (Use that r<d
+¢ 2m+e+2—r=2s+e—1.) To see that the spectral sequence looks like Fig. 2
at the E? level, we note that the differentials E;,; ;— E} | are surjective when r
is even, r=2, r+s=m+3, 1 <s<m; injective when r is even, r22, r+s=m+2,
1<s<m. (Note that E! is isomorphic with H(XL(R), A) because 2m+e+3
—r>2s+e) We find that E? , vanishes (cf. 4.6) and that H,,, (inc):
H, . ((Stabg(o,), A)—H,,, (G, A) is injective. As we know already that this
H,, . ,(inc) is surjective it is an isomorphism. Forgetting that we used assump-
tion 2, and varying P, Q, n again we can finish the induction step. Remains to
consider the situations where assumption 1 or 2 fails.

49. Say assumption 1 fails, so that d <m. In the context in which we made this
assumption the size of Sq(Stabg(c,)) is at least 2m+e+ 1. The size of Sq(G) is n
—t and, when G is not square the size of Sq(Stabs(c,)) equals the size of Sq(G).
(Recall that Stabg(o,) is a good predecessor of G.) When G is square, the size of
Sq(Stabgs(o,)) is one less than the size of Sq(G). So in either case Sq(Stabg(o,))
has size n—t —1+¢, which should be at least 2m+e+1. We get m>d=n—t—2
—sdim>2m+ e —¢—sdim, hence m<sdim—e+¢=<e=<1,somis 1 or O (m is non-
negative integer). First say m=1. Then we must have e=1, d=1. Looking at the
spectral sequence E(P, Q; n) we find that we are saved because m is odd and ¢
=1: The differential E},— E}, is an isomorphism and the differential E}, — E},
is surjective, so the E? term is still described by Fig. 1. Next say m=0. Then we
have n—t=>2+e—¢, so when ¢=1 one sees that n—t=>2 and when ¢=0 one sees
that n —t 2max (2 +sdim, 3). We have to show that H,(Stabs (o), 4)— H,(G, 4)
is surjective. For any group K one has H, (K, A)=(K/[K, K])®A, so we may
z

assume A=Z. When n—t =2, an easy exercise, well-known in classical algebraic
K-theory, shows that H,(Sq(G))— H,(G) is surjective. As Sq(Stabg(s,)) con-
tains Sq(G) when ¢=1, we may now turn to the case ¢=0, n—t=max (2
+sdim, 3). Surjective stability for K, ([3], Thm. 4.2b, cf. 1.3) implies that G is
generated by Stabg(s,) and E(R)nG. But E(R)nG is its own commutator
subgroup, as n—t=3. Done.

4.10. Remains the case that assumption 2 fails, so that d<m+1. Now the
context tells that Sq(Stabg;(o,)) has size at least 2m+e+2 and we have to show
that H,,_ ,(Stabg(o,), A)— H,, ., (G, A) is injective. As in 4.9 we find m+1>d=n
—t—2—sdim=2m—¢+1, and m<e<1, so m=0 or m=1. If m=0 use stability
for K, again ([29], cf. 1.3). If m=1 then ¢é=1, d=2 and one checks that the
spectral sequence E(P,Q;n) has all the properties we need. (To see that EZ,
vanishes, use that the boundary map C,— C; factors over Z, =L, and compare
with 4.2). End of proof of Theorem 4.8.
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4.11. As a corollary to Theorem 4.8 we have

Theorem. Let e=max(l,sdim). Then H,(GL,(R)— H,(GL,_.,(R)) and
H,(E,(R)— H,(E,, (R)) are surjective for n=2m+e—1, injective for n=2m+e
(m=0).

Proof. We have put A=Z and P=Q=( 'in Theorem 4.8. Taking XL(R)
=GL(R) the statements for the H, (GL;(R)) follow directly from 4.8. Next take
XL(R)=E(R). By injective stability for K, ([29], ¢f. 1.3) the group G®? equals
E,(R) for n=sdim + 2. Therefore the statements follow from 4.8 for m > 2. But for
m=1 the behaviour of H,,(E,(R)) is rather simple: It vanishes for n = 3. Similarly
the case m=0 poses no problem.

4.12. For n>3 the plus construction may be applied to BGL,(R) with respect to
the normal closure of E,(R). (Under mild conditions E,(R) is its own normal
closure. For instance, when n>e+2 then E,(R) is the commutator subgroup of
GL,(R). See [29].)

Corollary. #,,(BGL} (R))— =, (BGL} | (R)) is surjective for n=max (3, 2m+e—1),
injective for n22m+e+1 (m=1).

Proof. This proof is well-known. For m=1 the result itself is classical (cf. 1.3).
For m=2, recall that BE] (R) is the universal covering space of BGL! (R), at
least for n=2m+e—1. (See [17], Prop. 1.1.7.) As H,(BE,} (R))=H,,(E,(R)), the
result follows from Theorem 4.11 by a Hurewicz argument.

4.13. Remarks. 1. Note that Corollary 4.12 is weaker than Theorem 4.11 in that
it does not give injectivity for n=2m+e. The reason is that the Hurewicz
argument requires the vanishing of relative homology groups. The relative
homology group corresponding with injectivity for the case n=2m+e would be
Hm+ I(E2m+e+ I(R)’ E2m+e(R))’ but in general Hm+ 1(E2m+e(R))
—H,  (Ejpn,e,1(R) is not surjective. (Example: R=Z, e=m=1). Thus the
vanishing of relative homology groups does not tell everything about the range
of stability for the absolute homology groups.

2. Using Vaserstein’s theory of “big” modules, our proof can be generalized
to yield stability for H,(GL(M ®R")— H,(GL(M @R"*1)), where M is a fixed
right R-module. (Compare 2.7, Remark 2.) One will get an isomorphism for n
beyond a certain bound which depends on m and sdim. One may also use a
better bound which depends on m, R and M. It is an easy consequence of such a
result that, when P is a finitely generated projective R-module, the maps
H,(GL(M ®@R")— H, (GL(M @R" ®P)) are isomorphisms for n beyond a certain
bound which depends on m and sdim (or a sharper bound depending on m, R, M
and M @P). In particular one can thus obtain something like the main result in
Charney [7].

§5. Stability for Twisted Coefficients

5.1. In this section we prove stability for homology with twisted coefficients,
when these twisted coefficients form a strongly central coefficient system of finite
degree. (This terminology is explained below.)
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5.2. Let us write G, for the square group GP®=GL,(R)nXL(R) (cf. 3.2). We
recall some notions from Dwyer [9]. A coefficient system p for {G,},5, is a
sequence of left G,-modules p, together with I-linear maps F,: p,— p, . ;, Where
I:G,— G, , denotes (upper) inclusion, as usual (cf. 3.2, 3.8). Fix ye{—1, 1} such
that ((1) g)er. (When XL(R)=GL(R) one may take y=1. This is Dwyer’s
choice.) For n=2 define s5,€G, by s,(e;)=¢; for 1<i<n—2, s,(e,_,)=e,, s,(e,)
=ye,_;. A coefficient system is called central when for each n the image of p,
under F, , F, is pointwise fixed by I(s,, ,): P42 Pns2- (Recall that, when M is
a G-module and geG, the map m—gm from M to M is denoted I(g).) We call a
coefficient system strongly central when for each n the image of p, under F,_  F,
is pointwise fixed by both I(s,,,) and Il(e,,, ,,,), Where e, , ,,, is the
elementary matrix which sends e, , to e, ,+e,., and fixes all other e,.

5.3. Put ¢,=s,s;...5,. Then c,(e)=e;,, for 1<5i<n—1, c,(e,)=te,. The map J
=Int(c,.,): G,—G,,, is called the lower inclusion map. (Int(c,,,)(g)
=C,,18¢n 1, cf. 4.2)) The lower inclusion map shifts a matrix one place down
the diagonal. (Check this.) Let p be a central coefficient system. We denote by
J*(p,. 1) the representation of G, which has the same underlying abelian group
as p,., and a G,-action obtained from the G, -action by “restriction” via J.
One defines a shifted coefficient system 2 p by (2 p),=J*(p, ), With the struc-
ture map (2 p),—(Zp),,,; equal to the structure map F,,, of p. We will use
notations such as F,, I(s,) in their original sense, not in a shifted sense. When
pu: p—p’ is a coefficient system map, then (Zpu),=p,,, defines a coefficient
system map X u from X p to X p'.

5.4. The map t,=I(c,, ,) F,: p,—J*(p,.) is G,-linear. (It is the composite of G,-
linear maps F,: p,—1*(p,., ) and I(c,, ,): I*(p, , ) >J*(p,,,)) We have 7, F,
=l(c,,1)1(s,4,) F,, 1 F,, which equals I(c,,,) F,,F, because p is central. So
Tn+1Fn=Fn+ll(cn+ 1)Fn=Fn+lrn’ hence:

Lemma (cf. [9]). When p is a central coefficient system then t,: p,—(Z p), are the
constituents of a coefficient system map t: p—Xp. Hence kernel(t) and
cokernel(t) are coefficient systems.

5.5. Often X p is the direct sum of two subsystems, one of which is isomorphic
with p via 1. (The other one is then isomorphic with cokernel(z), of course.)
When this is the case we say that X p splits and that cokernel(t) is the system of
differences of p, notation 4p. Now let us explain what we mean by saying that a
strongly central coefficient system p has degree k. The definition is inductive.
When k<0 we mean that p is the zero system. When k>0 we mean that Xp
splits and that 4p is a strongly central coefficient system of degree k—1.
Examples can be obtained as in ([9], Sect. 3) from a functor of finite degree. For

k
instance, when R is commutative one may take p,=®)(R"), the k-th tensor

power over R of the standard representation of G, in R". This p has degree k.
(Check this, and pay attention to the structure maps in order to appreciate the
definition of 7.)
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5.6. We are interested in the relative homology groups Rel (p)=H, (G, ;,G,;
Pni1> Py), based on I and F, (cf. 3.8).

Theorem. Let p be a strongly central coefficient system of degree k. Then
H,(G,.,G,; Pus1> P,) vanishes for n=2m~+sdim+k. (m=0).

Remark. One can often improve a little on the range given in the theorem. In
this respect the situation is similar to the one discussed in 4.7. In the other
direction, one may smoothen the proof when 2m+sdim+k is replaced by 2m
+sdim+ k+ 2. Then the ad hoc arguments for homology of degree zero may be
deleted. (In particular, the references to remark 3.15 become unnecessary.)

5.7. Dwyer uses a qualitative approach. He calls a system p stable when for each
m the Rel?(p) (cf. 5.6) vanish for n sufficiently large. Further he calls p strongly
stable when for each j=0 the system X/p is stable. In those terms we have
(compare [9], Thm. 2.2):

Theorem. Let p be a central coefficient system, t: p—Z p as in 5.4. When
kernel(t) and cokernel(t) are strongly stable, so is p.

5.8. First let us prove Theorem 5.7. (The proof will have a lot in common with
[9].) Let m be a non-negative integer so that for 0<s<m and all P, Q as in 3.2
the H(G??,, G*?; p, . 1, p,) vanish for n sufficiently large. Here p, is viewed as a
G*%-module via inc: G'2—G,, of course. And one uses I: GE2— GF?, together
with F,: p,—p,,, to define the relative homology groups. We will argue by
induction on m.

Claim. The map g": Rel”(p)— Rel’*!(p), induced by the lower inclusion maps
and T, is surjective for n sufficiently large.

Remark. The map Rel”(p)— Rel’*!(p) which is induced by upper inclusions
and the structure maps F; is always zero because it factors over H,,(G,. 1, G, 15
Pus1s Pnuv1)=0. This explains why g}, is defined the way it is. We will exploit the
similarity between g and the zero map in 5.10 (cf. [9]).

5.9. To prove the claim we will break up g, into a chain of maps, and prove
surjectivity for each of them. For n sufficiently large H,,_,(G,,,G,;
kernel(z,, ), kernel(z,)) and H,(G,,,, G,; cokernel(z,, ,), cokernel(r,)) vanish.
As in ([9], proof of lemma 2.8) we may plug this into two long exact sequences
for relative homology (see Lemma 3.11) to find that 7 induces a surjective map
Rel’ (p) — Rel%(Z p). Clearly the lower inclusion maps induce an isomorphism
from Rel"m(zp) to Hm(JGn+1’ JGn; Pn+2> Pn+ 1)=Hm(G£|1-£{21}’ anl-t)-(ll}; Pn+2> pn+1)‘
Now take P, Q as in 3.2, M=p,, M'=p,, , and consider the spectral sequence
E(P,Q; n+1,n) of 3.14. (So G=Gr2, G'=G!?, etc) For n sufficiently large its
E! term looks like Fig. 3. (Note that d grows with n.)

1 1
Eow Eim *

o
0

Fig. 3
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We see from Fig. 3 that E}, ~cokernel (E},, —E},) for r=2. As the spectral
sequence converges to zero, the differential E} — Ej, must be surjective. By
Proposition 3.14 this differential is the natural map from H,(Stabg (o),
Stabg(00); P15 P) 10 Hy(G', G5 py s Py)-

Varying P, Q we get a lot of surjective maps this way and we see in
particular (cf. 3.3) that H, (G}, G p, .5, p,.1)— Rel® 1 (p) is surjective
for n sufficiently large. All in all g% is indeed surjective for n sufficiently large.
The importance of this fact is explained by:

5.10. Lemma. When g" and g"~! are surjective then Rell,"(p) vanishes.

Proof. The surjective mapping g5 fits into a commutative diagram with exact
rows:
a az 1
oo Ho(G,,1,pns) —— Relt(p) —— H,_,(G,p) — ..
Jll J 8h le
Ly b b
—— H,(G,. 3, Pn+2) — Rel’ 1(9)—‘2_' H, (Gt Pusr)-

The map [, is induced by J and , the map I} by I and F,_,. So [, is obtained
from I{ by composition with the map H,(Int(c,,,), l(c,,,)) from H,(G,,,,
Pn.2) to itself. But it is well known that H,(Int(x), [(x)) always equals the
identity on H, (K, M), when xeK. (“Inner conjugation acts trivially on ho-
mology™.) So I, equals I} and, similarly, I, equals l,. It follows that b,g)=1,a,
=l,a,=0, and, as g, is surjective, b, equals 0. We find that b, is surjective.
Similarly a, is surjective. But gha,=b,l,=b,l)=0, so we get a map from
H,(G,,,Pn.1) to Reli 1 (p) which is both surjective and zero.

Remark. When m=0 the map a, is always surjective so that surjectivity of g
already implies the vanishing of Relj* (p).

5.11. We now know that Rel’ (p) vanishes for n sufficiently large. For 1=0 and n
sufficiently large X' 7: 2' p— X'* ! p induces a surjection Rel%,(2'p) - Rel” (Z** ! p),
for the same reasons as in 5.9, where we discussed the special case t=0.

So the Rel} (2" p) also vanish, for n sufficiently large with respect to m and .
This amounts to the same as the vanishing of the H,,(G1 T, 1, G, ppsis1s Pusd)
for large n, where T=[1,t]. Using the surjective maps obtained in 5.9 one
concludes (cf. 3.3) that for all P, Q the H,(GF?,,G??; p,.,,p,) vanish even-

tually. Thus Theorem 5.7 holds by induction on m.

5.12. To prove Theorem 5.6 we first take a closer look at the differential
E},—E!}, in the spectral sequence E(P,Q; n+1,n) when (P, Q) equals (J, &)
or ({1}, &). (When we would not take a closer look at this differential, but just
would mimic the proof of Theorem 5.7, the result would be a bound like 3m
+sdim + 2k, rather than 2m+sdim +k). As before we take M=p,, M'=p, ., in
3.14. Inspecting the proof of Proposition 4.3 we see that the differential
E},—E}, is the difference of two maps, one being induced by Int(m,,)
and I(m,;) (notations as in 4.2), the other by Int(m,,) and I(m,,). (Assume
d+e21) For a strongly central p it is easy to see that for any g in the
subgroup generated by e,, and s, the map I(g) fixes the image of p,_, under
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(Zr)n—2rn—2 =Tn— 1 Tn—Z = I(C") Fn— 1 l(cn— 1) Fn—l =l(cncn— l) Fn— IFn—Z' In particu'
lar this applies to g=m,, when the m;; are chosen sensibly (cf. proof of
Lemma 4.5). This suggests the following analogue of Lemma 4.5.

5.13. Lemma. Let (P,Q) equal (&, ) or ({1}, D), d+e=1. Let the map
Rel”~2(p)— H,,(Stabg.(6,), Stabg(0,); p,.1,p,), induced by JJ and (Z7)t, be
surjective. Then the differential E3, — E}, in the spectral sequence E(P, Q;n+1,n)
vanishes.

Proof. The composite of the given surjective map with the differential is the
difference of two maps, each of which is induced by the same morphism in
RelRep from (I, F,_,): (G,_5, Pn_2)—=(Gp_1s Pu_1) to (I, E): (%, p) = (%, Py 1)-

Remark. Of course there are similar statements for other differentials
E!,, ,—E!}, but we don’t need them.

r,s?

5.14. Just as in 5.8 we now replace Theorem 5.6 by a stronger statement, which
will then be proved by induction on m and k. Namely, we claim that for P, Q as
in 3.2 and s 20 the H(GY?,, G¥¢; p,, |, p,) vanish when Sq(G??) has size at least
2s+sdim+k (p as in 5.6). Choose non-negative integers m and k so that this
claim holds for systems of degree at most k—1 and also for p itself when s<
m—1. The group Rel’(Z'(4p)) may be viewed as H(G!T,, ,GIT,; (4p)usis1>
(4p),. o) with T=[1,t], so it vanishes for n=2s+sdim+k—1, (t=0). It follows
that X't: 3'p— X'*!p induces a surjection from Rel?(Z'p) to Rel’(Z'*!p) for
nz2s+sdim+k—1, t>=0. We may rewrite the target group as H (G!I,,,,
Gl 1 Pasiszs Prnsts1) Where T=[1,t+1]. For P, Q as usual we consider the
spectral sequence E(P,Q; n+1,n) again. (M, M’ as before, cf.59.) When
Sq(Stabg(a,)) has size at least 2m+sdim+k—1, we wish to show that the
spectral sequence looks like Fig.3 again so that the natural map from
H,(Stabg.(g,), Stabg(og); Pui1s Pw) to H,(G',G; p,. 1, p,) must be surjective.
When m =0 it is clear that this map is surjective for any coefficient system, so let
us look at the case m>0. When m+1<d+¢+1 all relevant E;; terms can be
interpreted by means of Proposition 3.14. Further Sq(Stabg(c,)) has size at least
2m+sdim+k—1—i so that our assumptions make that one gets Fig. 3 indeed.
In fact, by remark 3.15 it suffices to have m+1=d+¢+2. Now suppose m=d+¢
+2. The size of Sq(Stabg(oy)) is n—t—1+¢ where PuQ=[1,t], cf. 49, so
n—t—1+e=2m+sdim+k—1. We find m=d+e+2=n—t—sdim+e=2m
+k>=2m, in contradiction with the assumption m>0. Thus we have obtained
many surjective maps again.

5.15. We also like to have some injective maps. In particular, we wish to show
that there is an injective map from Rel”~'(p) to Rel%(p) for n22m+sdim+k
+1. As the Rel%(p) vanish for n sufficiently large (see Theorem 5.7 or its proof,
in particular Lemma 5.10) this will imply the vanishing of Rel},(p) for n=2m
+sdim+k. As in 5.11 we may then exploit the many surjective maps obtained in
5.14 to establish the claim in 5.14 for s=m (cf. 3.3). Thus induction on m will
apply and the theorem will follow by induction on k. Remains to get the
injective maps.

5.16. When m=0 we may use the remark in 5.10 and the surjective maps from
5.14 to see that Rel? (p) vanishes for n=2m+sdim+ k. So we may assume m=1.
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As p is a direct summand of Xp there is an injective map from Rel?~!(p) to
Rel’ ' (Zp)=H,,(GIT,,GI"; p,.1,p,), where T={1}. Remains to show that
the natural maps H,(G!T,,G'"; p...,p)—H,(GI®,GI® p. . .,p,) and
H,(GT®,GI%; p, . .,p)—Rel’(p) are injective for n=2m+sdim+k+1. In
other words we need to show that for such n the differential E{,,—E},, is injec-
tive in the spectral sequence E(P, Q;n+1, n) where P, Q are as in Lemma 5.13.
We have d+e=n—t—2—sdim+e=n—2—-sdim=2m+k—1=2m=1 and it is
easy to see from 5.14 that Lemma 5.13 applies. So E?,, is isomorphic with the
kernel of the differential which we wish to be injective. Note also that
m+2=<d+¢+2. Using Proposition 3.14 and Remark 3.15 we derive from the
inductive assumptions in 5.14 that the E' term looks like Fig. 4.

*Eim**

Fig. 4.

From Fig. 4 one sees that E}, ~E, for r=2. As the spectral sequence

1m=

converges to zero, E},, must vanish and we are through.
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