
THE MERKURJEV-SUSLIN THEOREM 

Wilberd van der Kallen 

SUMMARY. This paper reflects a talk given at the conference. We explain some of 

M ' ! " the ingredients of erkurjev s elementary" proof of the Merkurjev-Suslintheorem 

[14]. 

§I. THE MAIN THEOREM 

Let F be an arbitrary (commutative) field, n a positive integer with non-zero 

image in F. The K-theory of F forms a graded anti-conmutative ring ~ Ki(F) with 
i>~O 

K0(F) ~ Zg, KI(F.) ~ F* = GL(I,F) [16], [27]. 

We write {a} for the element of K I(F) that corresponds with a 6 F*, so that 

{a} + {b} = {ab}. Multiplying {a},{b} 6 KI(F) yields an element of K2(F) that is 

written as {a,b}. One calls Ca,b} a Steinberg symbol. It may also be described in 

terms of Schur multipliers and matrices [16]. 

Matsumoto's Theorem [16]. The homomorphism of additive groups KI(F)~KI(F) +K2(F) 

that sends {a} ~ {b} to {a,b} is surjective and its kernel is generated by the 

{a} ~ {l-a} with both a and 1-a invertible. 

The same theorem holds true for a (commutative) local ring whose residue field 

has more than six elements [12]. Matsumoto's theorem provides a presentation for 

K2(F) and therefore also for k2(F) = K2(F)/nK2(F)o Thus this group is in a sense 

known. 

We will give two descriptions of the main theorem of Merkurjev and Suslin, one 

with Galois cohomology, one with Brauer groups. Let W n denote the group of n-th 

roots of unity in an algebraic closure F of F and consider ~n as a module for the 

absolute Galois group GaI(FS:F), where F s is the separable closure of F in F. By 

the Hilbert 90 theorem the Galois cohomology group HI(F,~n ) is isomorphic with 

KI(F)/nKI(F). We now exploit the product structures in K-theory~_~ and in Galois 

cohomology to get up from degree I to degree 2. Writing ~2n for ~n~n (with 

diagonal action of the Galois group) we have a cup product 

HI(F,~n ) ~H1(F,~n ) ~ H2(F,~n2 ) 

and therefore a homomorphism 

(KI(F)/nKI(F)) ~ (KI(F)/nKI(F)) + H2(F,D? 2) 

Using the Matsumoto theorem one shows that this homomorphism factors through 
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k2(F) = K2(F)/nK2(F) and the resulting homomorphism 

~F~n: k2(F) ÷ H2(F'IJ~n2) 

is called the Galois symbol or the norm residue homomorphism. The Merkurjev- 

Suslin theorem now simply reads 

MAIN THEOREM OF MERKURJEV AND SUSLIN [15]. 

For all F,n as above, ~F,n is an isomorphism. 

As will be explained later, it is not difficult to see that the crucial case 

in the Main Theorem is the case where ~ c F so that ~j~2 is simply a cyclic 
n n 

group of order n on which the Galois group acts trivially. In this situation, 

choose a primitive ~n-th root of unity ~ in Dn = HO(F'~n ) and use cup product by 

to identify H2(F,~n<~ 2) with H2(F,Dn ) ~ nBr(F)' the n-torsion subgroup of the 

Brauer group. (If A is an abelian group, A denotes the kernel of multiplication 
n 

by n: A + A). One finds that 

~F,n: k2(F) ÷ n Br(F) 

sends the coset of the Steinberg symbol {a,b} to the similarity class of the 

cyclic algebra A (a,b), where A (a,b) is the central simple F algebra of dimension 
2 " " 

n , with linear basis {xlyJl0 ~ i < n, 0 ~ j < n} and algebra generators x, y, 
n n 

so that xy = ~yz, x = a, y = b [16]. Thus the following corollary expresses the 

surjectivity of ~F,n and gives some idea of the force of the main theorem. 

COROLLARY. Let ~ c F and let A be a central simple F algebra with [A] ~ Br(F). 
n n 

Then A is similar to a tensor product of cyclic algebras Aw(ai,bi), ai,b i C F*. 

Even for n = 2 this settles an old problem in the theory of Brauer groups. The 

case n = 2 is actually Merkurjev's theorem. 

MERKURJEV's THEOREM [3], [13], [25]. If F has characteristic different from 2, 

then ~F,2 is an isomorphism. 

For a discussion of how the situation was before this breakthrough, we refer to 

[2], [25]. The main theorem and some of the auxiliary results obtained in its 

proof (Hilbert 90 and reduced norm for K2,...) have had consequences in several 

areas. Apart from K-theory, Brauer groups and quadratic forms, let us mention 

L-theory (surgery groups) and Chow groups (intersection of cycles on a rational 

surface say). 
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§2. SEVERI-BRAUER VARIETIES 

One of the ingredients in the proof is the study of cohomology of sheaves of K- 

groups on Severi-Brauer varieties. Therefore we now turn to these varieties, 

starting with a simple example. 

EXAMPLE. Let F = ~, n = 2 and consider the conic I + y2 = 3Z 2. It is somewhat 

better to pass to the projective plane where our conit C is given by X 2 + y2 = 3Z 2 

in homogeneous coordinates. Now recall that a conic is isomorphic with a 

projective line via the following construction. 

Fix a point P on the conic and assign to a point Q on the conic the line PQ. This 

gives a I-I correspondence between the points on the conic C and the lines through 

P, hence between C and the projective line p1. Or does it? The conic C of our 

example is actually "empty". There are no rational solutions of I + y2 = 3Z 2. 

(To see this one may look at the 2-adic completion of ~.) We write C(@) = ~, 

where, for a field E containing F = ~ one denotes by C(E) the set of E rational 

points on C (= points with coordinates in E). Over ~ we can not choose P on the 

conic. But if we extend scalars suitably, then it all works: If E is a field 

containing Q and such that there is P 6 C(E), then the lines through P defined 

over E (i.e. with slopes in E) corresponds exactly with elements of C(E) and the 

isomorphism between the conic and ~I is defined over E. If we write C E for what 

one gets from C by extension of scalars F + E then we may summarize 

CE ~ PE 

To be precise one should view C E as a scheme over E, viz. the projective spectrum 

Proj(E[X,Y,Z]/(X2+y2-BZ2)), [9] 

I For example, This scheme is smooth over E. We say that E splits C if C E ~ ~E" 

@(i) splits C, because I + i 2 = 3.0 2. The conic C is closely related with the 

cyclic algebra A_I(-1,3). Over ~(i) this algebra is simply the matrix algebra 

M 2(Q(i)) with algebra generators x = (~ _~), y = (~ ~)satisfying the required 
2 y2 

relations x = -I, = 3, xy = -yx. Thus Q(i) is a splitting field [I] of 

A 1 ( - 1 , 3 ) .  

F o r  p , q , r , s  E F t h e  r e d u c e d  norm N r d ( p + q x + r y + s x y )  o f  p + qx  + r y  + s x y  i s  j u s t  

t h e  d e t e r m i n a n t  p2 + q2 _ 3 r  2 + 3s  2 o f  t h e  c o r r e s p o n d i n g  m a t r i x  i n  

M2(F) = F~AF -I (-1,3). Elements of reduced norm zero are zero divisors and 

conversely. Consider a field extension E of F = @. One sees: 

E splits A_I(-1,3) 

There is a two dimensional E linear subspace of zero divisors in E ~A_I(-1,3) 
F 2 2 3r 2 There is a non-zero solution of p + q - = 0 over E 

The "Severi-Brauer variety" C has an E rational point 
I 

CE ~ ~E" 
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Thus E splits the algebra if and only if it splits the conic. 

This example generalizes as follows [4]. Let A be a central simple algebra over 

the field F, dimFA = m 2. Let Gr be the Grassmannian of m dimensional linear 

subspaces of A and let X be the subvariety (or rather subscheme) of those linear 

subspaces that are invariant under right multiplication in A. Thus, if E is a 

field, we have 

X(E) : ~(E) = {L c ~IdimEL = m, LA E c L}, 

where A E is of course a notation for the central simple E algebra AGE. We call 
F 

X the Severi-Brauer variety of A. It is a smooth scheme over F. Again we get an 

equivalence between splitting of X and splitting of A: 

XE ~ ~Em-1 ~ X(E) # $ = [E splits A, i.e. A E ~ Mm(E)] = X E ~ PT I. 

In particular, the function field F(X) of X is a splitting field (of transcendence 

degree m - I over F) of A because XF(X) has an obvious F(X) rational point 

associated with the generic point of Xo In fact F(X) is a "generic splitting 

field" for A [2]. 

Another way to understand why the Severi-Brauer variety X and the central simple 

F algebra A are closely related is by descent theory [26]. Put L = F s, the 

separable closure of F in ~. The algebra A is a form of Mm(e), i.e. A L --~ Mm(e) , 

and the automorphism group of Mm(L) as an L-algebra, is PGL (L). Similarly 
' m 

m-1 
X is a form of projective space ]PL -I , i.eo XL -- PL , and the automorphism 

group of IPTI as a scheme over L is again PGLm(L). As the automorphism groups are ~-~ 
the same, the forms of Mm(L) and the forms of ]P are classified by the same 

HI(GaI(L:F), PGLm(L)). Indeed one checks that A and its Severi-Brauer scheme X 

correspond with the same cocycle. It is a good exercise to make this explicit 

for a cyclic algebra and to find the connection between F(X) and the reduced 

norm on A, as in the example at the beginning of this section. Compare also [16], 

[ 6 ] .  

§3. THE IMPORTANCE OF CYCLIC EXTENSIONS. 

Cyclic extensions of the field F are of course closely related with cyclic 

algebras over F [I], [10]. Let p be a prime that divides no Thus p is not the 

characteristic of F. First let E be a cyclic field extension of degree p of F. 

Choose a generator o of G = GaI(E:F). As in many theories we have restriction 

and corestriction maps such that res.cor acts as the element I + o + ... + ~p-1 

of the group ring~[G] and cor.res acts as (multiplication by) p = [E:F]. The 

restriction maps are the ordinary covariant maps that go for instance from 

Br(F) to Br(E), from K2(F) to K2(E) , from ker(~F, n) to ker~E,n ), from K2(R) to 
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K2(R E) when R is an F-algebra, .... The corestriction maps, also known as transfer 

or norm maps, go in the opposite direction. The relation cor.res = [E:F] holds 

for any finite field extension. It is a special case of the projection formula 

which also tells cor({x,res(a)}) = {cor(x),a} for x E E *, a E F *. 

The main theorem involves groups that are annihilated by n. They may be studied 

one p-primary component at a time. That is why one may fix p. If E is an extension 

of F of degree prime to p, we see from cor.res = [E:F] that res is injective on 

the p-primary component of relevant groups so that the extension F + E is 

"understood". This is why we may assume pp c F. (Adjoining pp defines an extension 

of degree prime to p). Similarly we could reduce to the case where F is perfect. 

When studying the p-primary components one may as well assume that n is a power 

of p and it is also easy to reduce further to the case n = p [23]. We further 

assume n = p, ~p c F, and write ~F for ~F,n" 

Now consider a Galois extension of F. We view it as a limit of finite Galois 

extensions. Choosinga p-Sylow subgroup we decompose a finite Galois extension 

into two steps, one step with degree prime to p, the other with a p-group as 

Galois group. The p-group is solvable so that the second step may be broken up 

into a chain of cyclic extensions of degree p. That is how often we end up 

studying cyclic extensions of degree p. 

'E §4. COHOMOLOGY OF SHEAVES OF K-GROUPS 

We now turn to the least elementary part, to wit K-cohomology. Quillen's 

constructions of algebraic K-groups are quite functorialand can therefore be 

sheafified. Let X be the Severi-Brauer variety of some non-split central simple 

F algebra A. (Note that F must be infinite, by Wedderburn, in order to have such 

A.) We set sheaves ~n of abelian groups on X with the stalk at x E X of ~n being 

Kn of the local ring 0X, x of x. In particular, the sheaf ~0 is the constant sheaf 

" ~I is the sheaf 0~ of invertible local sections in the structure sheaf, and 

~2 may be thought of as being obtained by sheafifyingthepresentationinMatsumoto's 

theorem: The sheaf map ~I~17z + ~2 is surjective and the stalk at x of the kernel 

is generated by the {u} ~1-u} with. u,l-u E 0$,x'~ (We have avoided pathologies 

by making sure that the ground field is infinite). 

We will be interested in HI(x,K2 ). (Sheaf cohomology with respect to the Zariski 

topology.) In the original proof [15] of the Merkurjev-Suslin theorem one also 

to understand HO(x,K2 ) and this required a long argument and very heavy needed 

machinery. But in Merkurjev's more elementary proof this part (and more) is 

avoided [14]. The cohomology of sheaves of K groups -also called K cohomology- is 

studied by means of the Brown-Gersten-Quillen spectral sequence 
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rs = Hr(X,K s) ~ K (X) 
E2 =- -r-s " 

Its E I term looks like this. 

s = 0 

s =-I 

S =--2 

S = -3 

o 

,L 

II II I! 

~4 

II 

e 

~+ 

o 

-+ • • 

O 
© 

The rows in the E I term are complexes, such as the following one in row s = -2 

(symbolized in the picture by * ~ * ~ *). 

0 + K2(F(X)) + IL KI(F(x)) ÷ Jl K0(F(x)) ~ 0 
xEX x6X 

codim{x}=1 codim{x}=2 

Here F(X) is the function field of X, F(x) denotes the residue field of 0X, x and 
.-2 

{x} the Zariski closure of the I point set {x}. To compute E 2 one must take 

homology of the above complex. In particular HI(x,~2 ) is the homology in the 

middle of the complex. (The maps in the complex can be made explicit and come from 

the localisation theorem.) The spectral sequence was studied by Quillen who also 

computed the abutment K.(X) in terms of the K-theory of the corresponding central 

simple algebra A [17]. Over a splitting field E the situation simplifies a lot. 
m 

For X E = ~E the spectral sequence degenerates and the E 2 term becomes simply the 

tensor product of the Chow ring of X E and the K theory of E [20], [8]. 

K,E © 
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Here we see a special case of Bloch's formula which links K-theory with Chow 

groups: 

Hr(X,~r ) ~ CHr(X). 

By Quillen [17] this formula is valid for X regular of finite type over a field. 

m the Chow ring is very easy. It simply encodes the notion Recall that for X E = YE 

of the degree of a subvariety and Bezout's theorem on the degree of an intersection, 
m 

Thus CHr(~  ) = ~ f o r  0 ~ r ~ d i m  ~E = m and CH*(~ ) i s  g e n e r a t e d  as  a ~ a l g e b r a  

by t h e  c l a s s  o f  t he  c o d i m e n s i o n  1 l l n e a r  h y p e r p l a n e .  In any case  t he  s p e c t r a l  

s e q u e n c e  i s  s u f f i c i e n t I y  u n d e r s t o o d  in  t he  s p l i t  c a s e .  Now l e t  A be a c y c l i c  
2 2 

a l g e b r a  o f  d i m e n s i o n  n = p ( c f .  §3) ,  E a maximal s u b f i e l d  o f  A, hence  a 

s p l i t t i n g  f i e l d .  One compares  the  s p e c t r a l  s eque n c e  f o r  X w i t h  the  one f o r  X E 

u s i n g  r e s t r i c t i o n  and c o r e s t r i c t i o n  maps and a l s o  b a s i c  p r o p e r t i e s  o f  

G r o t h e n d i e c k ' s  Chern c l a s s e s  f o r  K 0 " w i t h o u t  d e n o m i n a t o r s "  [ 1 1 ] ,  [ 9 ] ,  The r e s u l t  

HI(X,~2 ) r~s  HI(XE,K2 ) i s  s e e n  to  be i n j e c t i v e .  That  t r a n s l a t e s  i n t o  a i s  t h a t  

statement about the diagram 

K2(F(X)) ~ ]i KI(F(x)) ÷ I[ K0(F(x)) 
x... x... 

Sres Sres ~res 

K2(E(X)) + II KI(E(y)) + ]i K0(E(y)) 
y... y... 

and that statement is what is needed in the next section. 

§5. HILBERT 90 FOR K 2 

Again let E be a cyclic extension of degree n = p of F and let o denote the 

generator of GaI(E:F). The important theorem concerning cyclic extensions and 

K2, and a key step in the new proof of the main theorem,is: 

THEOREM (HILBERT 90 FOR K 2) [15], [22]. 

I-o cor 
The sequence K2E + K2E + K2F is exact. 

In [22] it is shown that the theorem holds for any cyclic extension but we will 

only be concerned with the case [E:F] = p, Hp c F, cf. §3. Of course the theorem 

gets its name from the fact that one obtains Hilbert's Theorem 90 when replacing 

K 2 by K I. Observe that the statement of the theorem involves nothing fancy like 

K cohomology. It would be very nice to have an elementary proo$ as this would 

also yield an elementary proof of the main theorem. (The map cor can be made quite 

explicit via the projection formula [18].) 



To prove the Hilbert 90 theorem one considers the homology H(L) of the complex 
cor 

K2(EL) I~ K2(EL) ÷ K2L as a functor of L for field extensions F + L. For 

instance, comparing H(F) with H(E) = 0 by restriction and corestriction one 

sees that H(F) is annihilated by p. If A is a non-split cyclic F alBebra of 
2 

dimension p and X is the corresponding Severi-Brauer variety, then H(F) + H(F(X)) 

is shown to be injective using the information obtained about the diagram at the 

end of §4. This is the place where K cohomology is used. Thus any non-trivial 

element of H(F) survives under F ÷ F(X). It also survives under a finite field 

extension of degree prime to p (§3). Combining these two facts transfinitely 

often one sees that if F has the property H(F) # O, one may preserve this property 

and enlarge F so that F has no finite extension of degree prime to p and all 
2 

cyclic algebras of dimension p over F split. (Recall F(X) splits A). But then F 

has become a very special kind of field (e.g. the norm cor: KIE + KIF must be 

surjective) and Hilbert 90 may be derived rather directly from Matsumoto's 

theorem in this special case. This contradicts H(F) # 0 and proves Hilbert 90 for 

K 2 • 

§6. THE PULL-BACK LE~IA 

We keep p,o,F,E as in §5. Using the equality I + o + ... + o p-! = (I-o) p-I in 

~[o] /p~[o] and some computation one deduces from the Hilbert 90 theorem the 

following artificial lemma 

k2F -+ 

Sres 

~E 

PULL-BACK LEMMA. If ~F is injective then 

~F 
Br(F) 

P 

Sres is a pull-back square. 

k2E --+ Br(E) 
P 

Observe that the main theorem tells that ~F,~ E are actually isomorphisms so that 

the square is obviously a pull-back. But we don't yet have the main theorem. The 

lemma implies 

PROPOSITION. If ~F is injective for all F, it is also surjective for all F. 

(All F of a fixed characteristic, distict from p.) 

Proof. We claim that res: coker(~F) + coker(~L) is injective for any Galois 

extension F ÷ L. By section 3 the critical case is the cyclic case discussed in 

the pull-back lerm~na. Indeed in a pull-back square the vertical map between 

cokernels is injective. Now take for L the separable closure of F in F. Then 

Br(L) = 0 and therefore coker(~L) = 0. 
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§7. SPECIALIZING FROM UNIVERSAL RELATIONS 

We still have to get injectivity of (~F for all F. Here the idea is the same as 

in Merkurjev's original paper [13], where he proved Merkurjev's Theorem. He 

finds manageable universal reasons for the vanishing of an element $ {~} in 
i 

k2(F) (or k2(E)). By clever manipulation of Matsumoto's theorem he shows that 

the only way E {~} can vanish in k2(F) is by a combination of the following 

two reasons. 

I) The obvious reason: If a or b is a p-th power in F*, then {~,b} vanishes in 

k2(F) 

2) The "Severi-Brauer reason": If X is the Severi-Brauer variety of a cyclic 
2 

algebra A (a,b) of dimension p over F, then {~,b} vanishes in k2(F(X)). 

Here one may also describe the field F(X) explicitly, without reference to X. 

This description involves the norm cot: KI(F(P~/a)) + KI(F). To understand why 

{-~b,b} vanishes in k2(F(X)) , recall that F(X) splits A (a,b) so that 

{a--~} E ker(~F(X)). But it is well known that zero is the only element in the 

kernel of the Galois symbol that can be expressed as the coset of a single 

Steinberg symbol [16]. The problems lie with cosets of sums of several Steinberg 

symbols only. Thus {-a~,b} vanishes in k2(F(X)). We may view the vanishing of {a--~} 

in k2(F(X)) as a consequence, by specialization, of a universal case where a,b 

aretranscendentals over the prime field. Thus we need specialization maps in K- 

theory that allow us to make substitution in transcendental variables. Indeed if 

x is a smooth point on a variety (scheme) X over a field L one has (unfortunately 

not canonical) specialization homomorphisms K.(L(X)) + Ki(L(x)) so that composition 
res i 

with Ki(0X,x) ÷ Ki(L(X)) is the ordinary res: Ki(0x, x) + Ki(L(x)) coming from 

the residue homomorphism 0X, x ÷ L(x) [8, Def.8.2]. For k 2 one may give a direct 

construction of such specialization maps, and this construction works for any 

field with valuation [24]. It is in the sense of specialization that Merkurjev 

finds universal reasons for vanishing. That is, he finds a countable family 

of universal cases, each involving a finite product of Severi-Brauer varieties, 

such that if E { ~ }  vanishes in k2(F) , it is obtained by specialization from 

one of the universal cases. (The number of Severi-Brauer varieties of which 

one has to take a product is simply the number of times a "Severi-Brauer reason" 

is applied.) 

§8. THE KERNEL OF k2F + k2E 

We take F as usual, E = F(P/a) a cyclic extension (a E F*, a not a p-th power). 

If we knew that ~F is injective, the pull-back lerma (§6) would tell that 

ker(k2F + k2E) corresponds in Br(F) with the similarity classes of central 

simple F algebras containing E as a maximal subfield, hence that ker(k2F + k2E) 

consists of the {a~,b} with b C F*. 
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That last statement Merkurjev proves by reduction to a universal case, using 

his universal reasons for vanishing. The case one reduces to is the case where F 

is a Galois extension, of degree a power of p, of a purelytranscendental extension 

of a global field. This situation is easily handled by a combination of the pull- 

back lemma and the earlier work of Tate and Bloch. Tate proved [23] that the 

Galois symbol is an isomorphism for global fields and Bloch [5], [7] showed that 

it then also is an isomorphism for purely transcendental extensions of global 

fields. 

§9. INJECTIVITY OF ~F 

The proof of the main theorem is finished like this. The previous section tells 

us for a cyclic extension E of F of degree p that ker(k2F ÷ k2E) consists of 

cosets of single Steinberg symbols. Therefore (compare §7) this kernel has zero 

intersection with ker ~F" In other words, res: ker(~ F) + ker(~ E) is inject ive for 

such cyclic extensions. But then res: ker(~ F) + ker(~L) is injective for all 

Galois extensions F * L, by the reductions of §3. We take for L the separable 

closure of F in F and observe that L* consists of p-th powers so that k2L = 0 

and ker(~ L) = 0. Done. 

REMARK. Merkurjev's new proof, as described here, is much shorter then the proof 

in [15]. It also establishes different logical connections so that there are now 

several ways to reach the main theorem. For instance, one may now reprove Tate's 

Theorem (saying that the Galois s~bol is an isomorphism for a global field) 

without using class field theory. (One would need higher Chern classes for K 

cohomology, etcetera, and a lot of work, so that I cannot recommend this approach.) 
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