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Introduction 

In this paper all rings will be assumed to be commutat ive  and with identity 
element. A ring A is said to be K.-regular  if for all r one has 
K,(A) ~ K,(A [Ta, . . . ,  T~]). One of  our  main results is that  when A is a k-algebra of 
essentially finite type over a field k with d imA-< 1, A is K/- regular  implies A is 
regular. Since it is well known that for a ring A with dimA =0,  A is Kl - regular  
implies A is regular, we may now state the following conjecture. 

Conjecture. Let A be a k-algebra of essentially finite type over a field k with 
dimA =<n. Then A is K,+ 1-regular implies A is regular. 

As stated above this conjecture is true for n = 0, 1. But for higher n it is an open 
question. Fur ther  it is not  clear whether the assumption that A is of  essentially 
finite type over a field is necessary. 

For  affine curves over a field one can now say for every n > 0  what 
K,-regulari ty means in geometric terms using [2], [21] and an extension of  the 
above result. We have 

(i) A is K0-regular if and only if A is seminormal ([2]). 
(ii) A is Kl - regular  if and only if A is seminormal and for every point  x, the 

points x i of the normalizat ion above x give separable field extensions k(x)Ck(xl) 
([21]). 

And for n > 2 
(iii) A is K,-regular if and only if A is regular (Theorem 3.6). 
For  the last part  we need that K,-regulari ty implies K,,_ 1-regularity. This was 

a question of  Bass for n = 1. (See [3].) In Sect. 2 we shall show that the answer to 
the question is positive for all n. The above results suggest that  also in higher 
dimensions K,-regularity classifies singularities. 

One of  the main techniques we use to prove the above results is that  
NK,(A)=O for a reduced ring if and only if NK,(A.,)=O for all maximal ideals m 
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of A, extending Theorem 1.1 of [21] to higher K-functors. This is proved in Sect. 1, 
where we furthermore shall show that the cohomology of Spec(A) with coefficients 
in the sheaf ~A/'ff{', (i.e. a sheaf associated to the functor NK,) is trivial. Similar 
results are proved for the functors CvK ~ (curves on K,) of Bloch and EK, 
(K-theory of endomorphisms) of Grayson. 

1. NK. and Localization 

1.1. Notations. Let F : CRg-~Ab be a functor. (CRg is the category of commutative 
rings and Ab is the category of abelian groups.) If A is a commutative ring, we 
denote 

NF(A)=Ker(F(A[X]) x~o F(A)). 

Now let f be an element of A. Consider the ring homomorphism ~bf :A[X] ~A[X]  
with c~s(q(X))= q(fX). One easily sees that F(~bc) induces a group endomorphism 
F(~bl) :NF(A)-~NF(A). This enables us to give NF(A) a 2~[T]-module structure if 
we let T act on NF(A) via the endomorphism F(cbr ). But once we have this ~ [ T ] -  
module structure we can localize with respect to powers of T, which gives us a 
2g[T, T - l ] - m o d u l e  ~[T, T-1]®zmNF(A) which will be denoted by NF(A)~I ~. 

As usual one can see such a localization as a direct limit as follows. Take 
NF(A)"=NF(A) and q~}'NF(A)"~NF(A) "+l the holnomorphism F(chr). Then 
NF(A)m ~- lim (NF(A)", c~"y) as abelian groups. This description will be useful later. 

To a functor F :CRg--,Ab and a commutative ring A we can associate a 
presheaf F of abelian groups on X = Spec (A) by defining F(U) = F(F(U)) where U is 
an open subset of X and F(U)are the sections of the structure sheaf (9 x on U. (See 
[13], Chap. I, §1.1.) So for an f e A  we have HD(f))=F(AI). Now let fo .... ,.[r eA 
be a unimodular row of A. (This means that the ideal of A generated by f0, -.. ,fr is 
A itself.) Then D(fo) . . . . .  D(fr ) give an open covering of X. So we can form the Cech 
complex of this covering with coefficients in the presheaf F. 

0-~i~(A)-~ H F(As,) dl H F ( A j , j , )  ~ ~ ,...---~ F(Afo...f)--+O 
O ~ i ~ r  O<=io<ii <=r 

with 
P 

k = 0  

where (dv(e))io ..... i, denotes the component  of dp(C¢) in F(Af,o...A), and 
(c¢)~ ° ..... ?~ ..... ~, is the image in F(AAo...A) of the component of c¢ in 
F(A . . . .  ) under the canonical map between these two groups. 

• / I o "  ' '  J l k -  t d , l  t< + 1 '  . , , s i p  ~ . . 

Generalmes on the Cech complex associated to a covering can be found in 
([10], Chap. II, §5.1). Here we use the oriented version and have augmented the 
complex by F(A). 

We shall denote this Cech complex by F(A)j. ° ..... I~ or simply by F(A) if the 
elements fo . . . . .  fr are clear. 

Let fo, ..., £ be elements of A. 0__< i o < i t ... < ip < r be a set of natural numbers. 
By AAo...~ ...i," we mean AAo...A" ,A.~...~,/ 
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1.2. Theorem. Let F : CRg--*Ab be a functor, A a commutative ring, fo .. . .  , f r¢A a 
unimodular row, Assume that for all 0=<i0<i 1 < ... <ip<=r and s<p we have 

NF(Af,o... f , . . .  f,~ IX]) ~ NF(As,o... j~...f,p [X])Ef,, ] 

then the Cech complex NF(A):o ..... :r: 

O--*NF(A)-+ H NF(As,)~ [] NF(Af,o:,)-*..,--*NF(Afo...yr)~O 
O < i ~r  0 < i o < i 1  =<r 

is exact. 

Proof. If one of the fi (say fo) is a unit then the complex is exact ([10], Chap. II, 
§5.7) because we can find a contracting homotopy (i.e. a homotopy between the 
identity and zero map of the complex) as follows. 

d2 d~ , O--*NF(A)~ [I  NF(A:,)-~ H NF(Ar. : ) . . . . .  NF(Ayo y.)~O 

I Ok//z ~ I 1 0 1 0 

dl d2 d~ 
O--*NF(A) j ~  ~I  N F ( A f , ) - - +  H NF(Af ,of ,  ,) . . . . .  NF(A:o . , , f ) -*O 

O<~r O<=io<il <=r 

with 

{~)0 , i  ...... ip , if i 0 # 0  
(sp(°O)io ..... i.=l= - if i o = 0 ,  

and so(a) = (a)o. 
Now we go to the general case. 
For every a~A we can define a map g , : A [ X ] ~ A [ X , Y ]  by g~(q(X)) 

=q(X+aY).  This defines then a map tG:F(A[X])-~F(A[X, Y]) between com- 
plexes. In particular we can take the difference ~ G - ~ o  which then induces a map  
between the following complexes 

o--+ NF(A) ~ [I NF(Ar,) -+ [I NF(A:,o:, ,) . . . . .  NF(A:o.. f) -+0 
. . . . . .  o t =r 

O ~  NF(A[X])- -~  H NF(Au , [X]) - - ,  H NF(Aj ,o f , , [X])  . . . .  --+ N F ( A f o . . . f f X ] ) - - * O  
O<igr O<_io<tl <=r 

where 

NF(Af,o... j. IX]) = Ker (F(A:,,,...:,[X, Y]) r~*o F(Af,,,..../.,~[X])). 

Let H~NF(A) and H~NF(A[X]) be the cohomology groups of these complexes, 
and ~ the induced maps between the cohomology groups. If a(X)~ H ~ NF(A) 
then we shall denote by ~(X + a Y) -a (X)  its image in H ~ NF(A[X]) under ~q;,- q~o- 
(:¢(X) is not a polynomial or something like that. We only use it for notational 
convenience, because it enables us to write ~(aX +bY), by which we mean the 
image of a(X) under a homomorphism which we get by applying a functor, for 
instance cohomology, to the ring homomorphism g:A[X]-~A[X,  Y] with g(q(X)) 
=q(aX +bY).) 
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We have to prove that e(X)=0. Write l={aeAJcc(X+aY)-e(X)=O}.  One 
easily checks that this is an ideal of A. (This kind of ideal is also used in a proof of 
the Serre problem by Vagerstein ([9], p. 204)). If we can show that I = A then we 
can put a = t  and Y = - X  which shows that c~(X)=cc(X-X)=o~(O)=l. So it is 

enough to show for every O<_i<_r that Jle ~ .  We shall do this for ofo* 
If we denote by ~:o(X) the image of e(X) in HiN.F(Afo) then we have proved 

above that e:o(X)=0. So o~:o(X + Y)-~:o(X)=0 in H'NF(A:o[X]). By assumption 
we know that 

N F( A fof ,o... :,p [3/]) ~ N F(A f ,o... :~ [X])tyol. 

But since localization commutes with taking homology we also have 

( H' N F ( A [X]))t:ol = H' N F( A [X])t:ol 

where NF(A[X])t:ol is the localized complex. So it follows that the image of 
e(X+ Y)-c~(X) in (H'NF(A[X]))t:o I is zero. But since such a localization can be 
viewed as a direct limit (beginning of this section) it follows that there exists an s 

such that offX+f~Y)-o~(X)=O in HiNF(A[X]). So foe 1~, and we are finished. 

1.3. The conditions 

NF(A f ,o... f ,~ [X])-~ NF(A f ,o... f , ... f ,, [X])tf ,, l 

seem rather strange. But it will be shown in the next part that if F = K n for some n, 
then this condition always holds if for example A is reduced. We have stated this 
theorem in such a general form because we will derive some nice results from it for 
the NK,-functors. Probably one can prove similar results for other functors by 
showing that the above conditions hold for these functors. To prove these 
conditions for K,  the main things we need are that Kn commutes with direct limits 
and an excision property ((.) in the proof of the lemma). 

1.4. Lemma. Let f ~ A. I f  there exists a g~ A such that fg = 0 and f + g is a non-zero 
divisor, then we have for all n that 

NK,(A:) '~ NK,(A)tfl .  

Proof. Consider the following diagram. 

0 , K,,(A[X],XA[X]) ~. K~(A[X])----~K,,(A)-----,O 

1 i t 
, K , , (A[X] ,XA[X]) . . ,  K,,(A[X]) , K,,(A)-----,O 

t t 1 
where 

Kn(A[X ],XA[X]) = Ker (K,(A[X]) 
\ 

x~70-. Kn(A))=NKn(A) 

and the vertical maps are defined by X ~ f X  for the lefthand side and middle maps 
and the identity for the righthand side maps. As described in the beginning of this 
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section we can view NKn(A)Lzj as the direct limit of the lefthand side. But if we take 

the direct limit over the maps A[X] x ~ z x  A[X] we get the ring A +XAII,X] and 
since K,  commutes with direct limits (I-19], p. 20) we see that the direct limit of the 
middle maps is K,(A +XAyl,X]). The direct limit of the righthand side is of course 
Kn(A). So we get NKn(A)tlj=Ker(Kn(A +XAI[X])--.Kn(A) ). This kernel will be 
denoted by K,(A +XAII ,X],XAI[X]) ,  a relative Kn-group. So it is enough to prove 
the following excision property 

K,(A +XAII ,X] ,XAI[X])  - -~  Kn(AI[X],XAI[X]) .  (.) 

To prove this we state the following proposition which will also be used in Sect. 3 
and is an immediate corollary of the work of Karoubi and Grayson. 

1.5. Proposition. Let j "B~B '  be a ring homomorphism, SC B a multiplicatively 
closed set of non-zero divisors, such that j(S) are also non-zero divisors. I f  
B/sB ~-B'/j(s)B' for all s~S then we have two long exact sequences 

K.(H(B)s) ~ K.(B) , Kn(Bs) , K._~(H(B)s ) 

1-- 1 1 ! 
t ~ K,(H(B')i(s~ ) ~ K,(B') ~ Kn(B~(s) ) ~ Kn_I(H(B')~(s)) ~ 

where for all n the maps Kn(H(B)s)~Kn(tt(B')j(s)) are isomorphisms. (H(B)s is the 
category of  B-modules with homological dimension < 1 and S-torsion.) 

Proof. The proposition is an immediate consequence of the long exact localization 
sequences (see Grayson [11], p. 233) for B with respect to S and B' with respect toj(S) 
and a lemma of Karoubi (l,16], Appendix 5) which states that under the conditions of 
the proposition the categories H(B)s and H(B')~(s ~ are equivalent. 

Now we can continue with the proof of 1.4 and shall prove the excision 
property (,) in two cases. First consider the case that f is a non-zero divisor. Then 
we can apply Proposition 1.5 with B = A + X A z [ X ] ,  B ' = A  and S=(f")n>=O. 
Because now the maps B ~ B '  and Bs~B)(s~ split, we have that the kernels of the 
two other vertical maps are isomorphic which means exactly that (,) holds. 

The second case is that in which f is idempotent. Then we have 
A =A I x A(I_II is a direct product and since Kn commutes with direct products 
the excision property (,) is also evident in this case. 

These two cases combine to yield the general case as follows. Using the 
conditions on f we see that Az=(A~I+ol) ~ (i.e. two localizations after each 

other), f ~ an idempotent element of A(z+g ) and f + g  is a non-zero divisor. 

Hence we have 

~ ( N Kn( A )lf + ol)[7~+ q] - N Kn( A )Ifl " 
[~ . - j  

The last isomorphism can be proved by viewing NK,(A)  as a 7/[T, U ] / ( T U -  U2) - 
module where T acts through the map X ~ ( f + g ~  and U acts through the map 
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X ~ f X .  Then it follows from commutative algebra that 

+0 I[ 1 = = N K . ( A ) T v  = N K . ( A ) v 2  
l*+oJ T 

= NK,(A)ts] , 

where for example NK,(A)Tv means localization of NK,(A)  with respect to the 
multiplicativety closed set (TU)",~. So we have finished the proof of Lemma 1.4. 

The following lemma shows that the condition in Lemma 1.4 is not a very 
strong condition. 

1.6. Lemma. Let A be a reduced noetherian ring. Let f ~ A. Then there exist a gc A 
such that 9f = 0 and g + f is a non-zero divisor. 

Pro@ Let Pl, ..., Pr be the minimal prime ideals of A which contain the element f .  
Let %, ..,, qs be the other minimal prime ideals. (Because A is noetherian there are 
only finitely many minimal prime ideals.) plc~ ...c~prc~ql~ . . . n q ~=0  and for 
every 1 _<i_<r we can find a giCP~ but contained in all other minimal prime ideals. 

Therefore g =  ~ g l e q l n  ... nqs and gCplw ... wp~. Hence 
i = l  

g . f e p l ~  ... n p ~ n q x n  ... ~q~ 

and g + f  is not contained in any minimal prime ideal, so f + g  is a non-zero 
divisor. 

1.7. Corollary. Let A be a reduced ring, n >= O. 
(i) I f  f cA  then we have NK, (A f )~NK, (A)[ I r  

(ii) U'f0 . . . .  ,f~eA is a unimodular row then we have that the complex 

O-*NK,(A)---, [ I  NK,(AI,)--* [I  NK,,(Af,o.G)~ ...--*NK,(Ayo...y.)--*O 
O<i<=r O < i o < i l < r  

is exact. 

N ~ T Proof (i) In the proof of Lemma 1.4 we have shown that K , ( A f ) = N K , ( A ) m  is 
equivalent to the excision property 

Kn(A +XAf[X] ,XAy[X])  ~ , K, (Ay[X] ,XA/[X]) .  (,) 

A is the direct limit of its finitely generated subrings which contain the element f 
Since K,  commutes with direct limits it is enough to prove that (,) holds for finitely 
generated rings over 7Z. So we may assume that A is noetherian. But then we can 
use 1.6 and 1.4 and we are done. 

(ii) Follows directly from (i) and Theorem 1.2. 

1.8. Remark. We can give another proof of Corollary 1.7(ii) which doesn't use 
Theorem 1.2, but only Corollary 1.7(i). 

Let Big W(A)=(1 + TA~T~)* be the big Witt vectors on A. (For the notations 
and calculations we use, see [4], I, § 1). In ([5], § 2) Bloch states that NK,(A)  can be 
given a Big W(A)-module structure. The multiplication by co(1 - f T )  on NK,(A)  is 
induced by the map which sends T to fT.  (See Stienstra, [20].) So this shows that 
NK,(A)Ey I in our notation is in fact the module NK,(A)~,~I -yrJ (i.e. localization of 
NK,(A)  with respect to powers of co(1- fT) . )  Hence i f f e A  fulfils the condition of 
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1.4 we have 

NK,(Af )  ~ NK,(A),a( I _ fT)" (**) 

The alternative proof of Corollary 1.7 now goes as follows. Let ]A/gf~(Ai be the 
quasi-coherent sheaf on Spec(Big W(A)) associated to the Big W(A)-module 
NK,(A)  (see [13], Chap. I, §1.3). If we can show that ~o(1-f0T ), 
~o(1-.fiT) ..... o~(1- f~T) form a unimodular row in Big W(A), we know that the 
D(o)(1 - f T ) )  0 =<i=< ~ give an open covering of Spec (Big W(A)). Then it is known that 
the cohomology of the (~ech-complex associated to this covering with coefficients 
in :A/gff,(A) is trivial ([14], Chap. III, 1.2.4). But this Cech-complex is exactly the 
complex of the corollary by using (**). 

So we only have to prove that oo((1- foT)- t ) , . . . ,a ) ( (1- f~T)  -1) form a 
unimodular row, because these are the negatives of the co(I-f iT) .  Hence it is 
enough to prove that we can find g~j with 0_< i <_ r and 1 =<j < ~ such that for all n 
we have 

~ ( ~ (o((l - fiT)- l).co((1-gijTJ)-l)) =a)(1-- T+ T"+ l(a.+ l + ...)). (***) 
i = 0  j = l  

So assume we have found gij for 1 < j < n  such that (***) holds. Then for gi, .+leA 
with 0-< i-< r we must have 

n+ 1 

. r .+  I)-I)  = t o ( l _ T + T . + l a . + l + T . + Z ( a . + 2 +  ...))+ ~ ( ( l _ j i ,+  I9i~,+ 1} 
i = 0  

=co(1 - T+ T "+ i a.+ 1 + T"+ 2(a.+ 2 + ...)) 

+ ~ o~(1 + Jl "+ '9i(.+ ,) T"+ ' + T"+ 2(...)) 
i = 0  

=co 1 - T + T  "+t a.+ l + J i  gi(.+ ~) 
i = 0  

=coo - T+  T"+ 2(...)). 

Then we have to solve the equation a,+l+ ~ fi "+ lgi(,+ 1)=0. But this is always 
i - 0  

possible, because f~+ 1, .. . ,ff+ z form a unimodular sequence in A. 

1.9. Corollary. Let A be a commutative ring. Then for all n >=0 we have 
(i) I f  S C A is a muhiplicatively closed set of non-zero divisors then NK. (A)=  0 

implies N K.(As)=O. 
I f  moreover A is reduced we have 
(ii) NK.(A)  = 0 implies NK.(Ap) = 0 for every prime ideal p C A. 

(iii) The map NK.(A)-* [I  NK.(A~) is injective. 
i ncA 

m max ima l  ideal 

Proof. (i) Take f ~ S  then NK.(A)=O implies NK.(A)tj.I=O. So the statement 
follows from 1.4 and the fact that K-theory commutes with direct limits. 
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(ii) as (i). 
(iii) Take c~ENK,(A) such that for every maximal ideal m C A we have that e~, 

the image o f e  in NK,(A~,), is zero. Again using the direct limit argument it follows 
that for every maximal ideal m one can find an fern such that e l  is zero. But one 
can take finitely many of these f in such a way that they form a unimodular row. 
Now use the injectivity of the map N K , ( A ) ~ I ~  NK,(Af)  from Corollary 1.7(ii) to 
show that e is zero. 

1.10. The remaining part of this section will not be used in the rest of this paper. 
In the following we assume that A is reduced. Let NK, be the presheaf 

associated with N K ,  as described in the beginning of this section. Let JV'~, be the 
sheafification of NK,. Then using Corollary 1.7(ii) it follows that 

.A/ ~,(D(f))  = NK,(D(f)) = N K,(A f). 

Now let Hq(A,/f.gd,) be the cohomology of Spec (A) with coefficients in o,g'~f~ and 
/4q (A, , /~ , )  the corresponding Cech-cohomology (see [10], Chap. II, § 5). Quilten 
([19], p. 53) has shown that for a regular scheme X of finite type over a field 
Hv(X, ~fp)= AP(X) (i.e. the cycles of codimension p modulo rational equivalence). 
We shall show that for a reduced ring the ~ ,~ - sheaves  give trivial cohomology. 

1.11. Corollary. I f  A is a reduced ring, then for all n>O and q > l  we have 
Hq( A, Y ~ , )  = 14q( A, .A/X,)= O. 

Proof If f0, . . . ,freA form a unimodular row, then 

Spec (A) = D(fo)w D(.f 1)U . . . v D(f,) . 

So we have an open covering of Spec (A). But by Corollary 1.7(ii) for this covering 
the Cech-cohomology with coefficients in Yd{',  is trivial. Further, coverings of this 
kind form a cofinal subsystem of all open coverings. Hence Itq(A, J|/"Y{'n)= 0 for all 
q=>l. 

Let tI be the family of all open subsets D(f) of Spec (A). This is a covering of 
Spec(A) with D(f)c~D(g)=D(fg). For every open set UCSpec(A) and point pe U 
we can find an f with pe D(f) C U. Further we have 
I2Iq(D(f), Jf'dd,) =/4q(A~, Jg'.;f~) = 0 for all f Hence we can apply a theorem of H. 
Cartan ([10], Chap. II, 5.9.2), which says that Hq(A, ,A/'~Yt",)_~ Hq(A, .IV'Jag'n)= O. 

1.12. Remark. For N K  n with n=0 ,1 ,2  one can prove Lemma 1.4 without any 
restriction on f This can be seen as follows. One has to prove the excision property 

K.( A + X A +[X ],X A +[X] ) ~- K.( A +[X],X A +[X ]) . 

For K o this is true because Ko-excision always holds ([2]). For  K~ one can use 
([21], 2.5) which says that it is enough to show that f2a+ta = 0. But this follows from 

o(a) , = - f~Da-  ~a2,Df"=0 For  K z it will be proved by Van der KalIen in the 7; f 
appendix. In fact a slightly more general excision property can be proved for K 1 and 
K z (see appendix, the cases proved there for K z also hold for K1). 
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From this it follows that for n=0 ,  1 or 2 the Corollaries 1.7, 1.9 and 1.11 also 
hold in the non-reduced case. in particular in this form it shows that 
Corollary 1.9(ii), (iii) is an extension of ([21], 1.1). 

1.13. Now we shall give similar results for other functors related with algebraic 
K-theory. 

For every p > 0  one can define the functors 

CpK. :CRg~Ab by 

C;K.(A) = Ker (K.(A[X]/X p+ 1) x~o K.(A)). 

Bloch (see [4], II, § 1) has introduced these functors and called them curves on K,,. 
Let f ~ A .  As at the beginning of Sect. 1, we can use the ring homomorphism 

~c:A[X]/XV+I~A[X]/XP+~ with ~y(q(X))=q(fX) to give CpK,,(A) a 
7/[T]-module structure. And again we define CpK.(A)m to be the localization of 
CpKn(A ) with respect to (T").~ o. 

By going through the proof of Lemma 1.4 one easily sees that this lemma also 
holds if we replace N K .  by CpK.. As in Remark 1.8 we can also give CeK.(A ) a 
Big W(A)-module structure (see [4], II, § 2) and then Lemma 1.4 can be restated as 
follows. 

I f f ~ A  is such that there exists a y e A  with fg =0  and f + g  a non-zero divisor, 
then for all n > 0  and p = 0  we have 

C;K,~(Af) ~- CvK,~(A)~( 1 _ ST)" 

Corollaries 1.7(ii) and 1.9 also hold for the functor CpK,, For 1.9 this is immediate 
from the CpK,-versions of 1.4 and 1.7(ii). A proof of 1.7(ii) can be given similar to 
the proof of the statement of Theorem 1.2. In that proof,q~, :A IX] ~ A IX, Y] has to 
be replaced by g'~:A[X]/X p+ I ~ A [ X ,  Y]/(X, Y)P+ ~ with g'.(q(X))=q(X +aY) and 
one has to use that 

Ker (K,(AyoY,o.. y,[X, Y]/(X, Y)P + 1) r ~o~ K,(AyoY,o.. ' y ,[X]/X p + 1)) 

_~Ker(K,,(Ay,o...r,fX, Y]/(X, YF + l) r ~ o  K,(Af,o...I,[X]/Xp+ 1))rio 1 

where as before the last group is again a localization induced by the map Y--+fo Y. 
The rest of the proof is a straightforward inspection. 

We can give an alternative proof of 1.7(ii) by using that A[X]/X p + 1 is a graded 

ring. More generally let B = ( ~  B i be a graded ring. Let g be the projection on the 
i>O 

zero-th component. Define 

N+ K.(B) =Ker(K,,(B) K.(~) K.(Bo)). 

Let Jo,... ,fr e Bo be a unimodular row. Then again we can form a (~ech-complex 

O~N+K.(B)  -+ [I N+K.(Bf,) 
O<i<r 

--~ H N + g n ( B f , o f ,  , ) . . . .  ~N+g,,(Bfo...y) --tO. 
O<io<i l<r  
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Denote this complex by N+K,(B). We shall prove that N*K,(B) is a direct 
summand of the complex NK,(B). For this we use the following ring homomor- 
phism introduced by Weibel ([22], 1.8). 

~:B~B[T] with O(ao +a~ + ... +a,,)=ao +a~ T+a2T2 + ... +a,,T" 

if aieB i is the i-th component. This clearly induces a map 
~ : N - ~ K , ( B ' ) ~ N k - ~ - , ( B )  between complexes. Now define O:B[T]~B by 
O(f(T)) = f(1). Then we get the map K,(O) - K,(i o ~z o O): K,(B[ T])--. K,(B) between 
complexes, where i :BomB is the natural injection. One easily sees that this induces 
a map g : ~ ~ - ' ~ , ( ~  such that g o ~ , ( o ) = l d .  So N-~-K,(B)is a direct 
s u m m a n d ~ B ) .  Now we can apply this to B =  A[X]/X r+ 1 This is a graded 
ring and N*K,(B)=C'~,(X)). For 1.7(ii) we may assume that A is reduced. Let 
fo .. . . .  f~eA be unimodular. The complex CpK,(A)I ..... ~ is a direct summand of 
NK,(B)Io ..... s." So it is enough to show that the latter complex is exact. As in the 
proof of 1.7(i) we may assume that A is noetherian. By Lemma 1.4 it is enough to 
show that we can find for every f e A  a geB such that fg =0  and f + g  is a non-zero 
divisor. By Lemma 1.5 such a g can be found in A and f + 9  a non-zero divisor in A 
implies f + g  a non-zero divisor in B. Hence we are finished. 

1.14. Next we consider the functors EK, (see [12]) defined by Grayson. Let A be a 
commutative ring. A* the units of A, Define A{X}=S-XA[X] where 
S =  {A* +XA[X]}. Sending X to zero gives a split ringhomomorphism A{X}--*A. 
This induces a split homomorphism K,(A{X})--*K,(A). Now define EK,(A) to be 
the kernel of this map. Grayson ([12]) has shown that these functors are related to 
the K-theory of the category of endomorphisms over the ring A. Also for these 
functors 1.4, 1.7 and 1.9 hold. The proofs are similar to those for NK,. 

2. On some Questions of Bass 

A ring A is called K,-regular if for all r we have K,(A)~ Kn(A[7 ~ ..... T~]). Bass ([3], 
problem III) has raised the following three related questions. 

(a) Does Kl-regularity imply Ko-regularity? 
(b) Does NKI(A)=O imply NKo(A)=O? 
(c) Define 

f:Ko(AET])~KI(AET, T -  13) 

by f=(-T)~,K0(b ) where 6 :A[T] ~A[T,  T -  1] is the natural inclusion and 

(. T):Ko(A[T, T-  1])~K,(A[T,  T -  1]) 

is the multiplication by TeKI(A[T, T- 1]). The question is whether f is injective. 
It is clear that a positive answer to (b) implies a positive answer to (a). Bass 

([3], problem III) has also shown that a positive answer to (c) implies a positive 
answer to (b). So these questions are strongly related. 

Now we can state that question (a) has a positive answer as can be seen from 
the following more general corollary of 1.9. 
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2.1. Corollary (Van der Kallen). For all n> 1 we have 
(i) NK.(A[T])=0 implies NK._ a(A)=0. 

(ii) K.-regularity implies K._ ~-regularity. 

Proof. (ii) immediately follows from (i). So it is enough to prove (i). Consider the 
following exact localization sequence 

O~NK,(A)- .NK,(A[T])@NK,(A[T-  ~])~NK,(A[T, T-  1])-, NK,,_ I(A)~0. 

One finds this NK,-sequence as the kernel of the corresponding K,-sequences for 
A[X] and A ( [ t l ] ,  p. 237). But using Corollary 1.9(i) we see that NK,(A[7])=O 
implies NK,(A [ T, T-  ~ ]) = 0 and the exact sequence shows that 
NK,_t(A)=O. q.e,d, 

Concerning question (c) we shall now give an example which shows that f is 
not always injective. 

2.2. Counterexample, Let IF 2 be the field of two elements. Let A be the pullback in 
the following diagram. 

A i~ , IF 2IX] 

i.e, A = {(a,b)~lF2[X ] x 1F2[X]la=bmod(X3)}, Jl,J2 are the canonical projection 
maps, i 1 is the projection onto the first coordinate and i 2 is the projection onto the 
second coordinate. 

In ([18], § 3 and § 6) it is proved that there exists a Mayer-Vietoris sequence for 
this diagram and for the diagram which we get by adding to each ring a 
polynomial variable. So we get a Mayer-Vietoris sequence 

NK2(IF2[X])ONKE(IF2[X])__~NKa(IF2[X]/XS) e~ , NKI(A) 

--*NKt(IF2[X])@NKt(IF2[X])--,,.NKI(IF2[X]/X 3) ~o , NKo(A) 

~ N Ko(IF2[X])@ N Ko(IF2[X ])~ N Ko(IF2[X]/X 3) . 

We shall use notations and constructions of ([18]) without any further reference. 
Let x~IF2[X]/X 3 be the residue class of X. Take (I+x2T)~NKi(IF2[X]/X3). 
Clearly 1 + x 2 T4= 0. Now we can calculate 00(1 + x 2 T) = [P] - [A [T]]  where 

P =  M ( ~ 2 [ X  , T] ,  IF2[X , TJ, 1 + x 2 T ) .  

Take 

Q = M(~'z[X , T], IF2[X, T], 1 - x2T) .  

Take 

~ = (  I+x2T0 1 +02T)~GL2(IF2[X'T]/X3) 
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and 

1 +X2T 
0~= X3 T 

X3T2 I 
1 +XZTWX4T2] E GLz(IF2[X'  T])  

a lifting of g. Then we can form the following commutative diagram: 

POQ 

(A[T-J) 

/ 
(~2[x, T1) 2 

, (IV2[x, T]) 2 

' OVd~X' T]): i 

1 ~  (~:2[x, ~/x~) ~ 
) (]F2[X , ~7/X3) 2 

(,) 

Consider the Steinberg symbol {1 +x2T, T}EK2(IF2[-X, T, T-1]/X3). We claim 
that 0~'{1 + x2T, T} = f([P])f([a[T]])-  l, where 

0 F : K2(IF2[X, T, T-  1]/X3)~KI(A[T , T-  1]) 

is the boundary map of the Mayer-Vietoris sequence. First consider the boundary 
map 

C 3 : K2(IF2[X, T, T- I]/X3)-~KI(~2[X , T, T -  1],X3) 

(i.e. the relative K 0. A description of this map is given on p. 54 in Milnor's book. 
If one uses the canonical splitting of the ring homomorphism 

IF2[X, T, T-  ']~IFz[X, T, T-  ']IX 3 

(o 

where 4) is an isomorphism of A[T]-modules. 
Since IF2[X ] is regular we have that NK,(IF2[X])=O. Hence 0 o and 01 are 

isomorphisms. Therefore ¢~o(1 + x2T)4=0 and so [P] 4= [A[7]] .  
Our counterexample will be the ring A and the element 

([P]-[A[T]])~Ko(A[T]). We can tensor diagram (*) with 1Fz[T,T -1] over 
1F2[T]. We shall denote the new modules and homomorphisms by a tilde. Then we 
have 

Because A[T, T- 1] C IF2[X] [T, T-  5] x IF2[X ] [T, T-  1] we can split each entry of 
the matrix f ( [P])  and then split the matrix into two components, which gives 

0 .  

Similarly we can calculate f([A[T, T-  1]]) and we get 
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one easily shows that ~?{1 +x2T, T} is given by the matrix 

(1 + X2T+X4T 2 +X6T 3 
\ X4T 2 

But since 

1 +X2T+X4T 2 +X6T 3 
X4T 2 

X4T2 
I+X2T]' (T ~)]EGL2(IF2[X, T, T-1],X3).  

X4T2 
1 -l-X27"J 

45 

(I +X2T X3T 2 ~-1 
' \  x 3 r  l + X 2 V + x 4 r  ~] eGL:(~'2[X'T'Wq,X~)' 

it follows that 

[{I +X2T X3T 2 [r 
~{1 +x2T, T}= 

[\ X3T I+X2T+X'T2] ' ~0 1]] 

From this it easily follows ([18], p. 55) that 

~3" { 1 + x 2 T, T-  ' } = f ( [P ] ) f ( [A  [ 73 ]) -  1 

So to finish our example it is enough to show that {1 +x2T, T}=0.  In the 
Dennis-Stein notation ([7], §1) we have {1 +x2T, T} = ( x  2, T). But 

(x 2, T) -1 =(T, x2)=(xT, x)2 =(xT, x + x + x3T)=(xT, x3T)=O 

(see [7], [17]). q.e.d. 
Unfortunately we haven't found an answer to question (b). 

3. N K  2 of 1-Dimensional Rings 

3.I. Let B be a ring, S CB a multiplicatively closed set of non-zero divisors. 
Consider the following diagram of rings and homomorphisms. 

B 

i 
where B = ~ B / s B ,  Bs=S-IB, j : B ~ B  the natural ring homomorphism and 

f~s =j (s ) -  1 f~. 
Karoubi ([16]) introduced this kind of diagrams and one easily sees that for 

this homomorphism j:B-~B and SCB the conditions of Proposition 1.5 hold. 
Hence we have the following diagram with long exact sequences 

...--~ Kn(H(B)s ) ~ K.(B) -~ K.(Bs) -~ K._ ,(H(B)s) . . . .  

? 1 1 l ,*, 
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From this diagram one easily gets a long exact Mayer-Vietoris sequence 

... Kn(B)--~ Kn(I~)O Kn(Bs)--* K . ( B s ) ~  K._  I(B)---~... 
This sequence gives a solution to a problem of Bak ([1]). 

In this section we shall use the diagram (.) in the following three cases. 

Case 1. Let B = A be a 1-dimensional noetherian local ring with maximal ideal m. 
Take s~ m a non-zero divisor. Let S = {s"},~ N. Since m is the only prime ideal which 
contains s, there exists an r such that mrCsA. Hence A -~limA/s*A =~limA/mtA. So 
~] is the m-adic completion of A. 

Case 2. Let A, S and m be as in Case 1. Take B = A [ T  1 . . . . .  Tp] a polynomial 
extension of A. So / } = / ] [ T  1, ..., Tp], /}s=~]s[T1 . . . . .  Tp]. Hence we also have a 
diagram (.) in this case. 

If one furthermore supposes that the ring A and its m-adic completion ~] are 
reduced, one sees that A s and ~]s are 0-dimensional reduced rings. Hence A s and 
A s are products of fields. Therefore we can combine Case 1 and Case 2 as follows. 

Let NvKn(A)=Ker(K, (A[T 1 . . . . .  Tp])~K,(A)). The diagrams of Case 1 and 
Case 2 give rise to a diagram for  NpK,, and since NpK,(As)=NpK,( f ls)=O one 
easily sees that NpK,(A)=NpK,(A)  for all p >  1 and n>0 .  

Case 3. Let k be a field and K = 12I k i be a product of finite field extensions of k. 
i = 1  

Let B =  {feK[X][f(O)ek} .  Take S=(X"),~N. Then B={UeK[X~]f(O)ek}.  As in 
Case 2 we can adjoin polynomial  variables to B and then get a diagram for NpK,,. 
Since both B s and B s are regular we again have as in Case 2 that NpK,(B) 
= NpK,(/3). 

3.2. Let A be a 1-dimensional noetherian local ring. As remarked after Case 2 we 
have that NpKn(A)=NpKn(ft ) if both A and A are reduced (A is then called 
analytically reduced). If  A is universellement japonnais we even know that A is 
reduced implies that A is reduced ([15], 7.6.4 and 7.7.2). 

In the next proposition we shall show that if A is a reduced seminormal 
1-dimensional local ring such that J. (i.e. the normalization of A) is a finite 
A-module, then A is analytically reduced. For the definition of seminormal 
t-dimensional local rings see for example [21]. 

3.3. Proposition. Let A be a t-dimensional noetherian reduced seminormal local ring 
such that 7t is a finite A-module. Then for all n>O and p > l  we have 
N pK,( A ) "~ N pKn( ft ). 

Proof. It is enough to show that / ]  is reduced. Let ml, .. . ,  m s be the maximal ideals 
of A and J = m l c ~  ... c~m s the Jacobson radical of A. So J = m .  Hence v/e have 
injections A/m"--*A/J", which implies that f imA/m"%lim~l/J" is injective. But A is 
regular semilocal and so , l im.4 /J" fs  a product of regular complete local rings. 
From this we see that l imA/m"= A has no nilpotents. 

3.4. Theorem. Let A be a 1-dimensional reduced noetherian local ring, such that 7t is 
a finite A-module. Assume that A is seminormal and equicharacteristic. Then A is 
K2-regular implies A is regular. 
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Proof. A is regular if and only if ,4 is regular. A is seminormal if and only if ,,] is 
seminormal (see e.g. [6]). Since also the finiteness condition o n / t  still holds after 
completion we may assume by Proposition 3.3 that A is complete. But then Davis 
([6], §3) has proved that A= { f  eK~X~If(O)ek} where K = f l / J = l ~ k  ~ with 
k~=7t/m i are finite field extensions of k=A/m. We know by Case 3 of 3.1 that 
NpKz(A)=NpK2(B ) if B =  {feK[X]tf(O)ek}. Hence it is easy to see that we may 
assume that A'~ {feK[X]lf(O)ek}. Therefore it is enough to show that A is not 
Kz-regular in the following three cases. 

I. ,4 has more than one maximal ideal. 
II. ,4 has one maximal ideal m p  but k~k  I is an inseparable field extension. 

III. ~] has one maximal ideal ml,  but k~k  1 is a separable field extension. 

Case I. A = ( I  ki[~i] and 
i = 1  

A = {(J; . . . . .  L ) e  ALL(0) . . . . .  L(0)e  k}. 

Let L 3 k be a finite extension field of k such that k i C L for all i. Let 

B =  {(gl . . . . .  gs) ~ f i  L[Xl]lgl(O)= ... =gs(0)} • 
i - 1  

Hence B_~L[X 1 . . . . .  Xs]/(XiXjli+j). Now we can use a result of Dennis and 
Krusemeyer ([8], §4) which says that if R is a regular ring and 

BR= R[X ~ . . . . .  X ,]/tX.~ jli 4=j) 

then 

K2(B e) ~- K 2(R )@(R + ), 

where R + is the additive group of R and n = ( ; ) t h e  binomial coefficient. This 

isomorphism can be arranged in such a way that (a, 0 , . . . ,  0)e(R +)" corresponds 
with the Dennis-Stein symbol ( a X p X 2 ) .  

We apply this to R = LIT] .  Clearly we have an injection A ~ B. This induces a 
map NK2(A)-~NK2(B ), Take the symbol (TXpX2)eNK2(A) .  Its image in 
NKz(B)CKz(B[T]) corresponds with (T,0 . . . .  , 0 )e (L[T]+)  ". So (TXI,X2)=t=O 
and we have that NKe(A)4=O. 

Case II. If k~k  I is an inseparable extension and A is Kz-regular we have by 
Corollary 2.1(ii) that A is Kl-regular  which gives a contradiction with ([21], 
Lemma 4.4). So A cannot be K2-regular. 

Case III. We assume/1 = k l [ X  ] and A = {fekl[X]lf(O)ek } where k~k 1 is a finite 
separable field extension. 

Now it is possible to find a field k 2 such that k~k~ c k  2 and k 2 is a finite Galois 
extension of k, So k2=k(%)  where % is a primitive element, If f (Y )=Y"  
+ a ,  ~ y , - l +  ... + a  ° is the monic minimum polynomial of % over k we know 
that n = [k 2 :k] and .f(Y)= ( Y - % ) . . .  ( Y - % )  splits into linear factors over k 2. Let 
h(Y) be the monic minimum polynomial of % over k 1. Then f(Y)=g(Y)h(Y) with 
deg(h(Y)) < n. 
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Consider the following commutative diagram 

NK2(k2®kA)  t,, i, ' N K 2 ( A  ) ' N K 2 ( k  2 Qa A) 

NK2(k2®k(k+kxe ) )  t,2 , N K 2 ( k + k l ~ )  i~ , NK2(k2®k(k  +kle)) 

The notation in this diagram will now be explained. First k + k l ~  is the ring 
A/(XZkl[X]). One easily sees that k 2 ® k A ~ - A [ Y ] / f ( Y )  and that kz®kA is a free 
A-module. So ([18], §14) shows there exists a transfer map for K 2 ; hence by using 
polynomial extensions and taking kernels, there exists also a transfer for N K  2. We 
call this transfer map tr r Similar arguments give us a second transfer map tr z. The 
other maps are all induced by natural morphisms of rings. 

If we can find an element rlENKz(kz®kA ) such that (i2 "tr2 "Jl)(t/) :~0 we know 
that trl(rl)#:O in N K 2 ( A  ) and we are done. 

Let h(Y) = Y" + b m_ 1 ym-  1 + ... + bo and g(Y) = YP + Cp_ 1 Y v -  l + ... + co with 

bi, cie k 1. Then we can consider for every o)~ k 2 the elements co~ ®b,X T and 
r 

P 

~ ~ ®ceg in (k2®kA)[T] .  We can calculate the product of these elements 
s = 0  

So the Dennis-Stein symbol 

~o~®b~Y T, ~ ® c  3 ~K2( (k2QkA)[T] )  
r s = O  

is well-defined ([7], §1) and is even an element of N K 2 ( k 2 ® k A  ). 
Let 

tl, ~ = ~0~ 1 ®bre T, ~1 ®c~e 
\ \ r = O  / s = O  

be the image under j t  of this element in NK2(k2®k(k+klC)) .  Let al, ..., o-, be the 
k-automorphisms of k 2 such that a~(al)= % By applying the calculations of Bloch 

(see [5], proof of Lemma 3.5.3) we see that (i2 °tr2)(t/~o)= [1 a~(r/o) where 
i = 1  

Furthermore (k2®k(k + k~e))[T] can be viewed as the ring with underlying abelian 
group k 2 [ T ] O ( k 2 [ T ] ® k k l e )  and zero multiplication on the ideal k2[T]®kk~r.. So 
we have a natural split surjection 

K2(k2 [ T-J G(k2 [ T] ®kkl~))--~ K2(kz[T]). 
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Let F:(k2[T]®kkle, ) denote the kernel of this map. Dennis and Krusemeyer ([8], 
p. 6.4) describe a homomorphism of abelian groups 

0 :F2(k2[T]@kkle,)--~A2(k2[T]@kkl e) 

(i.e. the second exterior power of the kz[T]-module  k2[T]Qkkle ). So it is enough 

to ~how that ther~ exi~t~ an ~ k ~  suc~ t~at 0 ( ~ , ~ , ~ , ) , 0 .  ~ow coosid~r 

Assume that there exist 21,2:zek:z[T ] such that 

\ r = O  s =  

We have a k2[T]-linear map 6 :k2[7~J®kkl(:--'k2[ T] with 

4~ : f ( T ) ® w ~ - ~ v f ( T ) .  

So we have 

O=O(21(r=~o°:~ T®br~') + 22(s~=o~ ®c~)) 

= 2~h(%)T + 229(% ) = 229(% ) . 

But g(cq)+0, so 22---0. Hence we see that 2a =0.  We can conclude that 0 (q0+0 .  
Let e ~ . . . . .  e~ be a basis of k 1 over k. Then the (1 ® e~e)/x (1 ® e~e) with 1 __< i < j  < s 

form a basis of A2(k2[T]®kklC) over k2[T]. Now we can order these 

(l®eie)/x (l®ese), and call them Jl, such that 0(q~)= ~ QtTf~ with ~otEk 2 and 
/ = 1  

~o1#0. 
Now we have 

i i = 1  l = 1  

/=I i=i 

But since the cri's are linearly independent we can find an (oek  2 such that 

~ ~ , ~ , , ~ o .  ~o ~o~ thi~ ~ we Uave,hat 0 ( ~  ~ , )  ~0. q.e.d. 
i = l  i 

3.5. Remark. Let A ={f  ~kl[X][fo~k } where k~k 1 is a separable field extension. 
We have shown that NK2(A)#O. But the Dennis-Stein symbols are not re- 
sponsible for this result because one can easily show that all (a, b )~  K2(A[T]) are 
in fact elements of K2(A ), So K2(A[T]) contains more than only symbols. 

We now come to the main theorem of this section. 
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3.6. Theo rem.  Let  k be a field. A a k-algebra essentially o f  f ini te  type over k. 
Assume d i m A  =< 1. Then the following conditions are equivalent. 

(i) A is K,-regular for  some n > 2. 
(ii) A is regular. 

(iii) A is K,,-regular for  all n > O. 

Proof.  ( i i )~( i i i )  (see [19] ,  p. 38), ( i i i )~( i )  is tr ivial .  

( i )~( i i ) .  Let  A be  K ,  regu la r  for s o m e  n > 2. By C o r o l l a r y  2. l(ii) we h a v e  t h a t  A 

is K 2- and  K l - r e g u l a r .  So A is reduced .  By C o r o l l a r y  1.9 we m a y  a s sume  tha t  A is 

local.  But  the a s s u m p t i o n s  say tha t  ,4 is a finite A - m o d u l e  and  A is equ i cha rac t e r i s -  
tic. T h e n  A is K t - r e g u l a r  impl ies  tha t  A is s e m i n o r m a l  by ( [ 2 i ] ,  T h e o r e m  A). But  

t hen  we can  use T h e o r e m  3.4 wh ich  says tha t  A is regular .  Th is  f inishes the  proof .  
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Appendix 

Wilberd van der Kallen 

A1. Let R be an associative ring with unit, I a two-sided ideal in R, f a central 
element of R such that multiplication by f gives a bijection from I onto I. Then / 
can be identified with the ideal R s / o f  Rj. 

Example. Take R = A  + X A I [ X  ], I = X A I [ X  ] as in 1.3(,). 

A2. Let K2(R,I  ) denote the relative K-group which occurs in the tong exact 
sequence 

... ~K3(R)--*K3(R/I)~Kz(R,  I)- ,Ke(R)--*Kz(R/I) . . .  

We will use the characterization of K2(R, I) given by Keune and Loday. (See [2] 
and [3]. For definiteness we will use [2].) So K2(R,1 ) is the kernel of a map 
S t (R , t )~GL(R) ,  where St(R,/) is a certain relative Steinberg group. By giving 
another presentation of St(R,/), in the spirit of [1], we will be able to establish the 
following excision property. 

A3. Theorem. Let R, I, f be as in A 1. Then the natural map K 2( R , I)-~ K 2(R I, I) is an 
isomorphism. 

Remark. If the ring homomorphism R ~ R / I  splits then K2(R,I) is simply the 
kernel of K2(R)~K2(R/ I  ). 

A4. Let A be an associative ring with unit, J a two-sided ideal in A, M a right 
A-module, N a left A-module, B a bilinear map N × M - ~ A  (i.e. B(n,m) is left 
A-linear in n and right A-linear in m). We will write nm for B(n, m). 

Definition. St(M, J, N) is the group defined by the following presentation. 
Generators:  X(m,j,n) with m~M, j~J,  neN,  nm=O. 
Relations : 
1. X(m, aj, n) =X(ma,j, n) 
2. X(m,ja, n) =X(m,j, an) 
3. X(m,jt  +J2, n) =X(m,jl  , nlX(m,j> n) 
4. X(m 1 +m>j,  n)=X(ml, j ,  n)X(mz,j, n) 
5. X(m,j, n 1 + nz)=X(m,j,  n l~(m,.], nz) 
6. X(v, i, w)X(m,j, n~(v, i, w)- 1 =X(m + viwm,j, n - nviw). 

(We always assume that both sides are defined; e.g. one needs mieM , j~J ,  n6N,  
nm i = 0 in 4.) 

A5. Remarks. (1) Note that we have suppressed A and B in the notation 
St(M, J, N). 

(2) If J = A, everything can be expressed in terms of the X(m, 1, n). But the rule 
X(ma, l, n) =X(m, 1, an) does only follow ifX(m, a, n) is defined, i.e. one needs nm =0 
and not just anm = nma=O. So one has to take a little care when expressing the 
relations in terms of the X(m, 1, n). 

A6. Let A ~ )  denote the free two-sided A-module on the countable basis ex, e z . . . . .  
We have a bilinear map B : A ~ )  x A(~)-~A given by the rule B(e,, e,) = c5. (5~ = 1 if 
r = s ; 6~s = 0 otherwise.) 
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Proposition. St(A) -~ St(A (~), A, A (~)) via xr~(a)~-~X(er, a, es). 

Proof. This is easier than what we did in [1], as we are dealing with the stable case 
N 

now. The inverse map St(A (~), A, A(~))~St(A) is defined as follows. If m = ~. eiai, 
i=1  

N 

n= ~, biel, with nm=O, choose r , s>N,  r#s ,  and send X(m,c,n) to [x,[y,z]] 
i = l  

N N 

where x =  1-I xi,(ai), y=x~(c), z= [-I x~j(bj). As nm=O we have Ix, z] = 1 and 
i = 1  j = l  

[[x, y], [y , z -1]]= l, from which it follows, by a formal computation, that 
Ix, [y, z]] = [Ix, y], z]. From this one easily sees that the image does not depend 
on r and not on s. It also follows that our prescription is consistent with relations 1 
and 2 in A4. One checks the other relations as in [1], §3. (Or use [1] Theorem 2 
with n = oo 3 

A7. Let J be a two-sided ideal in A. 

Lemma. I f  the ring homomorphism A-*A/J  splits, then St(A,J)~-St(A~°°),J, A(~), 
where St(A, J) is as in [2]. 

Proof. Let s : A/J--*A be the splitting homomorphism of rings. We let St(A/J) act 
on St(A ~°), J, A ¢~)) as follows. The element Xpq(~) acts by sending X(m,j, n) to 

X(m + e fi(~)e qm,j, n - ne fi(~)e q) =X  (e pq(s(~))m,j, nepq( - s(~))), 

where in the right hand side we refer to the left and right actions, respectively, of 
E(A) on A ~ .  Form the semi-direct product 

St (A~), J, A ~°°)) xl St(A/J) 

and consider the diagram 

1 , St(A, J) St(A) ~ St(A/J)-~ I 

oi T0 H 
1-~ St(A(~),J,A(~°))-* St(A(~),J,A (°°)) >~ St(A/J)--* St (A/J)~ I 

(The top row is exact because the homomorphism A--*A/J splits.) 
To define Q, send St(A (~), J, A (~)) into St(A (~), A, A (~)) in the natural way, send 

St(A/J) into St(A) using s, and apply Proposition A6. 
To define a, send xi~(a ) to the product ofX(el, a - s(a/J), e~) in St(A (~), J, A (~)) 

and xij(a/J ) in St(A/J). It is easy to see that Q and a are inverse to each other. 

A8. Theorem. St(A, J) - St(A (~), J, A (~)) ~_ St(A (~), A, JA(~)). 

Proof. In [2] a description of St(A,J) is given using a group 
Ker(S t (A(J) I ) -~ ,S t (A) ) ,  where Pl, is induced by a ring homomorphism 

Pl : A(Jh --,A which splits. Using Lemma A7 the first isomorphism in the theorem 
can be established by inspection of this description of Keune, Similarly one can 
find the second isomorphism by first proving an analogue of A7. Or one can prove 
the theorem using homomorphisms 

St(A, J)-* St (A (~), J, A(~))--* St (A (~), A, JA(~))--,St(A, J) 
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and checking their composi t ions.  Namely ,  recall that  St(A, J) is a St(A)-group with 
generators  (as a St(A)-group) which are called Yrs0"), Send them to X(er,j, es) and 
note that  St(AI~),J,A ~)) is also a St(A)-group via the rule 

xrs(a ).X(m,j, n) =X(ers(a)m,j, nG~ ( - a)). 

(Compare  previous proof.) 
One easily checks the necessary relations. (See [2], Theorem 12.) To  go f rom 

St(A {°°), J,  A {~°)) to St(A ~°°~, A, JA~°}), simply send X(m,j, n) to X(m, 1,in). Finally, to 
go f rom St(A~'),A, JA ~°°~) to St(A,J),  send X(m,c,n) to [x,[y,z]] where 

N N N N 

x = I] xis(ai), Y =x~(c),  z = l-I y~j(bj), if m = Z eiai, n = Z bjej, and the com-  
i = 1  j = l  i = 1  j = l  

muta to r s  are to be computed  in St(A,J)>4 St(A). So [x, [y , z ] ]  is the same as 

(x. ((y. z)z- ~))((y. z)z- ~)- 

C o m p a r e  with A6. 

A9. To  prove Theorem A3 one checks that  St(R, I)mSt(R:,I)  under  the given 
conditions. The inverse of the m a p  

St(R (~), R, IRI~I)--> S t ( R ~  ~), R f, IRCf °°) ) 

is given by sending X(mf-",af-~,n) to X(m,a,f-~-Sn) for m~R (~), aeR, 
ne lR (~ )=IR~  ~). (One has to check, a m o n g  other  things, that  if m f - r - f n f  t 
af-~=g~f - ' ,  one has X(m,a,f-~-Sn)=X(Fn,&f-t-"n).  Even if f is a zero divisor 
such checks are straightforward.)  
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