Continuation of point-to-cycle connections in 3D ODEs

Yuri A. Kuznetsov

joint work with E.J. Doedel, B.W. Kooi, and G.A.K. van Voorn
Contents

- Previous works
- Truncated BVP's with projection BC's
- The defining BVP in 3D
- Finding starting solutions with homopoty
- Examples
- Open questions
Previous works

2. Truncated BVP’s with projection BC’s

- Some notations
- Isolated families of connecting orbits
- Truncated BVP
- Error estimate
Consider the (local) flow φ^t generated by a smooth ODE

$$\frac{du}{dt} = f(u, \alpha), \quad f : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n.$$
Consider the (local) flow φ^t generated by a smooth ODE

$$\frac{du}{dt} = f(u, \alpha), \quad f : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n.$$

Let $O^- = \xi$ be a hyperbolic equilibrium with $\dim W_u^- = n_u^-$.

Consider the (local) flow φ^t generated by a smooth ODE

$$\frac{du}{dt} = f(u, \alpha), \quad f : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n.$$

Let $O^- = \xi$ be a hyperbolic equilibrium with $\dim W^-_u = n^-_u$.

Let O^+ be a hyperbolic limit cycle with $\dim W^+_s = m^+_s$.
Consider the (local) flow φ^t generated by a smooth ODE

$$\frac{du}{dt} = f(u, \alpha), \quad f : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n.$$

Let $O^- = \xi$ be a hyperbolic equilibrium with $\dim W^-_u = n^-_u$.

Let O^+ be a hyperbolic limit cycle with $\dim W^+_s = m^+_s$.

If $x^+(t)$ is a periodic solution (with minimal period T^+) corresponding to O^+, then $m^+_s = n^+_s + 1$, where n^+_s is the number of eigenvalues μ^+ of the monodromy matrix

$$M^+ = D_x \varphi^{T^+}(x) \bigg|_{x = x^+(0)},$$

satisfying $|\mu^+| < 1$.

Isolated families of connecting orbits

- Necessary condition: \(p = n - m_s^+ - n_u^- + 2 \) (Beyn, 1994).
Isolated families of connecting orbits

- Necessary condition: \(p = n - m_s^+ - n_u^- + 2 \) (Beyn, 1994).
- Two types of point-to-cycle connections in \(\mathbb{R}^3 \):

\[
\begin{align*}
&\text{(a) } \dim W_u^- = 1 \\
&\text{(b) } \dim W_u^- = 2
\end{align*}
\]
Truncated BVP

- The connecting solution \(u(t) \) is *truncated* to an interval \([\tau_-, \tau_+]\).
The connecting solution $u(t)$ is *truncated* to an interval $[\tau_-, \tau_+]$.

The points $u(\tau_-)$ and $u(\tau_+)$ are required to belong to the linear subspaces that are tangent to the unstable and stable invariant manifolds of O^- and O^+, respectively:

\[
\begin{cases}
L^{-}(u(\tau_-) - \xi) = 0, \\
L^{+}(u(\tau_+) - x^+(0)) = 0.
\end{cases}
\]
The connecting solution $u(t)$ is *truncated* to an interval $[\tau_-, \tau_+]$.

The points $u(\tau_-)$ and $u(\tau_+)$ are required to belong to the linear subspaces that are tangent to the unstable and stable invariant manifolds of O^- and O^+, respectively:

$$
\begin{align*}
L^-(u(\tau_-) - \xi) &= 0, \\
L^+(u(\tau_+) - x^+(0)) &= 0.
\end{align*}
$$

Generically, the truncated BVP composed of the ODE, the above *projection BC’s*, and a *phase condition* on u, has a unique solution family $(\hat{u}, \hat{\alpha})$, provided that the ODE has a connecting solution family satisfying the pahase condition and Beyn’s equality.
Error estimate

If \(u \) is a generic connecting solution to the ODE at parameter value \(\alpha \), then the following estimate holds:

\[
\| (u|_{[\tau_- , \tau_+]}, \alpha) - (\hat{u}, \hat{\alpha}) \| \leq Ce^{-2 \min(\mu_-|\tau_-|, \mu_+|\tau_+|)} ,
\]

where

- \(\| \cdot \| \) is an appropriate norm in the space \(C^1([\tau_- , \tau_+], \mathbb{R}^n) \times \mathbb{R}^p \),
- \(u|_{[\tau_- , \tau_+]} \) is the restriction of \(u \) to the truncation interval,
- \(\mu_{\pm} \) are determined by the eigenvalues of the Jacobian matrix \(D_u f \) at \(\xi \) and the monodromy matrix \(M^+ \).

(Pampel, 2001; Dieci and Rebaza, 2004)
3. The defining BVP in 3D

It has equilibrium-, cycle-, and connection-related parts.
If $n_u^- = 1$, we use $u(\tau_-) = \xi + \varepsilon v$, where

\[
\begin{align*}
 f(\xi, \alpha) &= 0, \\
 f_\xi(\xi, \alpha)v - \lambda_u v &= 0, \\
 \langle v, v \rangle - 1 &= 0.
\end{align*}
\]
Equilibrium-related equations

- If $n_u^- = 1$, we use $u(\tau_-) = \xi + \varepsilon v$, where

\[
\begin{aligned}
f(\xi, \alpha) &= 0, \\
f_\xi(\xi, \alpha)v - \lambda_u v &= 0, \\
\langle v, v \rangle - 1 &= 0.
\end{aligned}
\]

- If $n_u^- = 2$, we use $\langle v, u(\tau_-) - \xi \rangle = 0$, where

\[
\begin{aligned}
f(\xi, \alpha) &= 0, \\
f_\xi^T(\xi, \alpha)v - \lambda_s v &= 0, \\
\langle v, v \rangle - 1 &= 0,
\end{aligned}
\]

Together with $\langle u(\tau_-) - \xi, u(\tau_-) - \xi \rangle - \varepsilon^2 = 0$.
Cycle-related equations

- Periodic solution:

\[
\begin{align*}
\dot{x}^+ - f(x^+, \alpha) &= 0, \\
x^+(0) - x^+(T^+) &= 0.
\end{align*}
\]
Cycle-related equations

- Periodic solution:

\[
\begin{align*}
\dot{x}^+ - f(x^+, \alpha) &= 0, \\
 x^+(0) - x^+(T^+) &= 0.
\end{align*}
\]

- Adjoint eigenfunction: \(\mu = \frac{1}{\mu_u^+} \)

\[
\begin{align*}
\dot{w} + f_u^T(x^+, \alpha)w &= 0, \\
w(T^+) - \mu w(0) &= 0, \\
\langle w(0), w(0) \rangle - 1 &= 0.
\end{align*}
\]
Cycle-related equations

- Periodic solution:

\[
\begin{align*}
\dot{x}^+ - f(x^+, \alpha) &= 0, \\
x^+(0) - x^+(T^+) &= 0.
\end{align*}
\]

- Adjoint eigenfunction: \(\mu = \frac{1}{\mu_u^-} \)

\[
\begin{align*}
\dot{w} + f_T^-(x^+, \alpha)w &= 0, \\
w(T^-) - \mu w(0) &= 0, \\
\langle w(0), w(0) \rangle - 1 &= 0.
\end{align*}
\]

- Projection BC: \(\langle w(0), u(\tau^-) - x^+(0) \rangle = 0. \)
Connection-related equations

- We need a phase condition to select a unique periodic solution, \textit{i.e.}, to fix a \textit{base point}

\[x_0^+ = x^+(0) \]

on the cycle \(O^+ \).
Connection-related equations

- We need a phase condition to select a unique periodic solution, i.e., to fix a base point

$$x_0^+ = x^+(0)$$

on the cycle O^+.

- Usually, an integral phase condition is used.
Connection-related equations

- We need a phase condition to select a unique periodic solution, i.e., to fix a base point
 \[x_0^+ = x^+(0) \]
on the cycle \(O^+ \).

- Usually, an integral phase condition is used.

- For the point-to-cycle connection, we require the end point of the connection to belong to a plane orthogonal to the vector
 \[f_0^+ = f(x^+(0), \alpha) : \]

\[
\begin{align*}
\dot{u} - f(u, \alpha) &= 0, \\
\langle f(x^+(0), \alpha), u(\tau_+) - x^+(0) \rangle &= 0.
\end{align*}
\]
The defining BVP in 3D: \(\lambda = \ln |\mu|, \ s = \text{sign} \mu = \pm 1. \)
4. Finding starting solutions with homotopy

- Adjoint scaled eigenfunction.
- Homotopies to connecting orbits.

References to homotopy techniques for point-to-point connections:

For fixed α and any λ, $x^+(\tau) = x^{+}_{old}(\tau), w(\tau) \equiv 0$, and $h = 0$ satisfy

\[
\begin{align*}
\dot{x}^+ - f(x^+, \alpha) &= 0, \\
x^+(0) - x^+(T^+) &= 0, \\
\int_0^1 \langle \dot{x}^+_{old}(\tau), x^+(\tau) \rangle &= 0, \\
\dot{w} + T^+ f_u^T(x^+, \alpha)w + \lambda w &= 0, \\
w(1) - s w(0) &= 0, \\
\langle w(0), w(0) \rangle - h &= 0,
\end{align*}
\]
For fixed α and any λ, $x^+(\tau) = x^+_{old}(\tau)$, $w(\tau) \equiv 0$, and $h = 0$ satisfy

$$
\begin{align*}
\dot{x}^+ - f(x^+, \alpha) &= 0, \\
x^+(0) - x^+(T^+) &= 0, \\
\int_0^1 \langle \dot{x}^+_{old}(\tau), x^+(\tau) \rangle &= 0, \\
\dot{w} + T^+ f_u^T(x^+, \alpha) w + \lambda w &= 0, \\
w(1) - s w(0) &= 0, \\
\langle w(0), w(0) \rangle - h &= 0,
\end{align*}
$$

A branch point at λ_1 corresponds to the adjoint multiplier $\mu = se^{\lambda_1}$. Branch switching and continuation towards $h = 1$ gives the eigenfunction w.
Continuation in (T, h_1) for fixed α (dim $W_u = 1$)

\[
\begin{aligned}
\left\{ \begin{array}{l}
\dot{x}^+ - T^+ f(x^+, \alpha) = 0, \\
x^+(0) - x^+(1) = 0, \\
\Psi[x^+] = 0, \\
\dot{w} + T^+ f_u^T (x^+, \alpha) w + \lambda w = 0, \\
w(1) - s w(0) = 0, \\
\langle w(0), w(0) \rangle - 1 = 0, \\
\dot{u} - T f(u, \alpha) = 0, \\
\langle f(x^+(0), \alpha), u(1) - x^+(0) \rangle - h_1 = 0.
\end{array} \right.
\end{aligned}
\]

Here, e.g. $\Psi[x^+] = x_j^+ (0) - a_j$ and the initial connection $u(\tau) = \xi + \varepsilon v e^{\lambda_u T \tau}$.
Continuation in \((\alpha_1, h_2)\) for fixed \(T\) (\(\dim W_u = 1\))

\[
\begin{align*}
\dot{x}^+ - T^+ f(x^+, \alpha) &= 0, \\
x^+(0) - x^+(1) &= 0, \\
\langle w(0), u(1) - x^+(0) \rangle - h_2 &= 0, \\
\dot{w} + T^+ f_u^T(x^+, \alpha) w + \lambda w &= 0, \\
w(1) - s w(0) &= 0, \\
\langle w(0), w(0) \rangle - 1 &= 0, \\
\dot{u} - T f(u, \alpha) &= 0, \\
\langle f(x^+(0), \alpha), u(1) - x^+(0) \rangle &= 0.
\end{align*}
\]

When \(h_2 = 0\) is located, improve connection by the continuation in \((\alpha_1, T)\) and then continue in \((\alpha_1, \alpha_2)\) with fixed \(T\) (using the primary BVP).
Continuation in \((T, h_1)\) or \((c_1, c_2, h_k)\) \((\dim W_u = 2)\)

The equilibrium-related part is replaced by the explicit BC

\[
\begin{align*}
 u(0) - \xi - \varepsilon(c_1 v^{(1)} + c_2 v^{(2)}) &= 0, \\
 c_1^2 + c_2^2 - 1 &= 0, \\
 f(\xi, \alpha) &= 0, \\
 f_\xi(\xi, \alpha)v - \lambda_u v &= 0, \\
 \langle v, v \rangle - 1 &= 0,
\end{align*}
\]

where \(v^{(1)}\) and \(v^{(2)}\) are independent unit vectors tangent to \(W_u\) at \(\xi\).

The initial connection

\[
u(\tau) = \xi + \varepsilon e^{\tau T} f_u(\xi, \alpha) v^{(1)}, \quad c_1 = 1, \quad c_2 = 0.
\]
Implementation in AUTO

\[
\dot{U}(\tau) - F(U(\tau), \beta) = 0, \quad \tau \in [0, 1],
\]

\[
b(U(0), U(1), \beta) = 0,
\]

\[
\int_0^1 q(U(\tau), \beta) d\tau = 0,
\]

where

\[
U(\cdot), F(\cdot, \cdot) \in \mathbb{R}^{n_d}, \quad b(\cdot, \cdot) \in \mathbb{R}^{n_{bc}}, \quad q(\cdot, \cdot) \in \mathbb{R}^{n_{ic}}, \quad \beta \in \mathbb{R}^{n_{fp}},
\]

The number \(n_{fp} \) of free parameters \(\beta \) is

\[
n_{fp} = n_{bc} + n_{ic} - n_d + 1.
\]

In our primary BVPs: \(n_d = 9, \quad n_{ic} = 0, \) and \(n_{bc} = 19 \) or 18
Example: \(\dim W_u = 1 \)

- Lorenz system:

\[
\begin{align*}
\dot{x}_1 &= \sigma (x_2 - x_1), \\
\dot{x}_2 &= r x_1 - x_2 - x_1 x_3, \\
\dot{x}_3 &= x_1 x_2 - b x_3,
\end{align*}
\]

with the standard value \(b = \frac{8}{3} \).
Example: $\dim W^u = 1$

- Lorenz system:

\[
\begin{align*}
\dot{x}_1 &= \sigma(x_2 - x_1), \\
\dot{x}_2 &= rx_1 - x_2 - x_1x_3, \\
\dot{x}_3 &= x_1x_2 - bx_3,
\end{align*}
\]

with the standard value $b = \frac{8}{3}$.

- The bifurcation curve in the (r, σ)-plane corresponding to the point-to-cycle connection is first presented by L.P. Shilnikov (1980).
At \((r, \sigma) = (21, 10)\), there is a *saddle limit cycle* with

\[x^+(0) = (9.265335, 13.196014, 15.997250), \quad T^+ = 0.816222, \]

that has

\[\mu_s^+ = 0.0000113431, \quad \mu_u^+ = 1.26094. \]
Homotopy to eigenfunction

- At \((r, \sigma) = (21, 10)\), there is a saddle limit cycle with

 \[
 x^+(0) = (9.265335, 13.196014, 15.997250), \quad T^+ = 0.816222,
 \]

 that has

 \[
 \mu^+_s = 0.0000113431, \quad \mu^+_u = 1.26094.
 \]

- [Continuation] in \((\lambda, h)\) of the trivial solution of the BVP for the scaled adjoint eigenfunction \(w(\tau)\) detects a branch point at

 \[
 \lambda = \ln(\mu^+_u) = 0.231854.
 \]
Homotopy to eigenfunction

- At \((r, \sigma) = (21, 10)\), there is a saddle limit cycle with
 \[
x^+(0) = (9.265335, 13.196014, 15.997250), \quad T^+ = 0.816222,
 \]
 that has
 \[
 \mu_s^+ = 0.0000113431, \quad \mu_u^+ = 1.26094.
 \]

- Continuation in \((\lambda, h)\) of the trivial solution of the BVP for the scaled adjoint eigenfunction \(w(\tau)\) detects a branch point at
 \[
 \lambda = \ln(\mu_u^+) = 0.231854.
 \]

- From it a nontrivial branch is followed until the value \(h = 1\) is reached. This gives a nontrivial eigenfunction \(w(t)\) with
 \[
 w(0) = (0.168148, 0.877764, -0.448616)^T, \quad \|w(0)\| = 1.
 \]
Continue in \((T, h_1)\) until \(h_1 = 0:\)

\[(a) \quad T = 1.43924 \quad (b) \quad T = 1.54543 \quad (c) \quad T = 2.00352\]
Homotopy to connection

- **Continue** in \((T, h_1)\) until \(h_1 = 0\):

(a) \(T = 1.43924\)
(b) \(T = 1.54543\)
(c) \(T = 2.00352\)

- **Continue** in \((r, h_2)\) until \(h_2 = 0\), that occurs at \(r = 24.0720\).
Continuation of the connection

- Improve connection by the **continuation** in \((r, T)\):

\[
\begin{align*}
(a) \quad & (r, T) = (21.0, 2.00352); \\
(b) \quad & (r, T) = (24.0579, 3.0)
\end{align*}
\]
Continue the point-to-cycle bifurcation curve in \((r, \sigma)\):
Example: $\dim W^u = 2$

The standard tri-trophic food chain model:

\[
\begin{align*}
\dot{x}_1 &= x_1(1 - x_1) - \frac{a_1 x_1 x_2}{1 + b_1 x_1}, \\
\dot{x}_2 &= \frac{a_1 x_1 x_2}{1 + b_1 x_1} - \frac{a_2 x_2 x_3}{1 + b_1 x_2} - d_1 x_2, \\
\dot{x}_3 &= \frac{a_2 x_2 x_3}{1 + b_1 x_2} - d_2 x_3,
\end{align*}
\]

with $a_1 = 5$, $a_2 = 0.1$, $b_1 = 3$, and $b_2 = 2$.

Example: \(\dim W^u = 2 \)

- The standard tri-trophic food chain model:

\[
\begin{align*}
\dot{x}_1 &= x_1(1 - x_1) - \frac{a_1 x_1 x_2}{1 + b_1 x_1}, \\
\dot{x}_2 &= \frac{a_1 x_1 x_2}{1 + b_1 x_1} - \frac{a_2 x_2 x_3}{1 + b_1 x_2} - d_1 x_2, \\
\dot{x}_3 &= \frac{a_2 x_2 x_3}{1 + b_1 x_2} - d_2 x_3,
\end{align*}
\]

with \(a_1 = 5, \ a_2 = 0.1, \ b_1 = 3, \) and \(b_2 = 2. \)

At $d_1 = 0.25, d_2 = 0.0125$, we have an \textit{equilibrium}

$$\xi = (0.74158162, 0.16666666, 11.997732)$$

and a \textit{saddle limit cycle} with the period $T^+ = 24.282248$ and

$$x^+(0) = (0.839705, 0.125349, 10.55289)$$

Its nontrivial multipliers are $\mu_s^+ = 0.6440615, \mu_u^+ = 6.107464 \cdot 10^2$.
At $d_1 = 0.25$, $d_2 = 0.0125$, we have an equilibrium

$$\xi = (0.74158162, 0.16666666, 11.997732)$$

and a saddle limit cycle with the period $T^+ = 24.282248$ and

$$x^+(0) = (0.839705, 0.125349, 10.55289)$$

Its nontrivial multipliers are $\mu_s^+ = 0.6440615$, $\mu_u^+ = 6.107464 \cdot 10^2$.

Continuation in (λ, h) of the secondary branch from the branch point

$$\lambda = \ln(\mu_s^+) = -0.439961.$$

gives at $h = 1$ a nontrivial eigenfunction $w(t)$ with $\|w(0)\| = 1$:

$$w(0) = (0.09306, -0.87791, -4.69689)^T.$$
The initial solution \(u(\tau) \) is found by integration in CONTENT from a point in the plane tangent to \(W_u \) at distance \(\varepsilon = 0.001 \) to \(\xi \):

\[
u(0) = (0.742445, 0.166163, 11.997732).
\]

Integration interval \(T = 155.905 \).
The initial solution $u(\tau)$ is found by integration in CONTENT from a point in the plane tangent to W_u at distance $\varepsilon = 0.001$ to ξ:

$$u(0) = (0.742445, 0.166163, 11.997732).$$

Integration interval $T = 155.905$.

Continue in (T, h_1) towards a minimum of h_1.
Homotopy to connection

- The initial solution $u(\tau)$ is found by integration in CONTENT from a point in the plane tangent to W_u at distance $\varepsilon = 0.001$ to ξ:

$$u(0) = (0.742445, 0.166163, 11.997732).$$

Integration interval $T = 155.905$.

- Continue in (T, h_1) towards a minimum of h_1.

- Continue in (c_1, c_2, h_1) to get $h_1 = 0$;
The initial solution $u(\tau)$ is found by integration in CONTENT from a point in the plane tangent to W^u at distance $\varepsilon = 0.001$ to ξ:

$$u(0) = (0.742445, 0.166163, 11.997732).$$

Integration interval $T = 155.905$.

- **Continue** in (T, h_1) towards a minimum of h_1.
- **Continue** in (c_1, c_2, h_1) to get $h_1 = 0$;
- **Continue** in (c_1, c_2, h_2) to get $h_2 = 0$.
Continuation of the connection

- Improve connection by the continuations in T (and then in ε):

The connection with $T = 180.0$, $\varepsilon^2 = 10^{-5}$.
Continuation in $\alpha_1 = d_1$:

\[\begin{array}{c|c|c|c|c|c|c|c|c}
\hline
x_2 & 0.05 & 0.10 & 0.15 & 0.20 & 0.25 & 0.30 & 0.35 & 0.40 & 0.45 \\
\hline
dx_3 & 9.5 & 10.0 & 10.5 & 11.0 & 11.5 & 12.0 & 12.5 & \\
\hline
\end{array}\]

LP: $d_1 = 0.280913$ and $d_1 = 0.208045$ (LPC).
Continue the point-to-cycle LP-bifurcation curve T_{het} in (d_1, d_2):
Open questions

- Cycle-to-cycle connections?
Open questions

- **Cycle-to-cycle connections?**

- Should all this be integrated in AUTO?
To be continued