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Abstract
Kreck and Yang Su recently gave counterexamples to a version of the Torelli theorem for
hyperkählerian manifolds as stated by Verbitsky. We extract the correct statement and give
a short proof of it. We also revisit a few of its consequences, some of which are given new
(shorter) proofs, and ask some questions.

1 Introduction

Kreck andYang Su [18] recently noticed that the Torelli theorem as stated byVerbitsky in [31]
cannot hold. This led Verbitsky to post an erratum [32] which purports to resolve the issue.
Sincemany subsequent papers have used his theorem, we thought it worthwhile to offer, what
we hope is, a complete account, which starts out from the basics. This led us to set up things
a little differently than in the primary sources, as this turns out to have the merit of giving
shorter, more transparent proofs. Among this is our definition of the Teichmüller space T of
hyperkählerian complexmanifold structures given up to isotopy on a fixed compact manifold
M and its separated quotient (T is almost never separated). This should be distinguished from
the Teichmüller space THK of hyperkähler structures, which is always separated and helps
to understand the former. We found it also worthwhile to introduce the Teichmüller space
TH of Einstein metrics on M , as some properties of interest here are at the end of the day
properties of that space. This also made it relatively straightforward to construct universal
families over the Teichmüller spaces in question, thereby recovering a recent theorem of
Markman [23]. Apart from this, we believe that what distinguishes this paper from other
accounts are: the more prominent role of the twistor families, our Proposition 3.3 (which
is a key to our definition of the Teichmüller spaces), and the half page proof of the Torelli
theorem that is essentially Lemma 4.6.
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We here treat a twistor deformation as if its base (a projective line) were a Shimura variety
(which it certainly is not), as this not only is helpful in deriving the Torelli theorem, but also
yields a simple way to formulate—and leads to a short way to obtain—a recent result of
Soldatenkov [29] (qualified by him as ‘folklore’) and Green–Kim–Laza–Robles [9] on the
period map for the full cohomology of a hyperkählerian manifold. Strictly speaking this last
application is independent of the Torelli theorem, but we included it, because this merely
comes as a bonus after the ground work done here. Let us mention in this context recent work
of Bakker–Lehn [3], who in a sense take the opposite approach: they obtain a proof of the
Torelli theoremwhich avoids twistor families altogether (and which allows mild singularities
on the objects that are parametrized).

We close this introduction with a brief glance backwards along the road traveled so far.
Shortly after the Calabi conjecture became Yau’s theorem, it was realized by a number
of people that this could be a tool for investigating the period map for K3 surfaces. The
first successful application was independently due to Siu [28] and the author [20], who, by
making use of connected chains of twistor conics, proved that the periodmap for kählerian K3
surfaces is surjective. There were no other irreducible hyperkählerian manifolds known at the
time, but it was clear that these proofs would extend to that case, once one had some control
on the possible Kähler classes. For general hyperkählerian manifolds this was eventually
supplied by the work of Huybrechts [13] (which used the Demailly–Păun criterion [6] for
the Kähler property as an essential tool). Verbitsky was probably the first to have a clear
strategy for using twistor conics to prove injectivity as well. In either case, the earlier use of
chains of twistor conics served as a template for establishing properties of the period map.
But the proof of Lemma 4.6 now shows that this path is somewhat roundabout in more ways
than one, and that this has prevented us from recognizing the utter simplicity of the situation.
Since for K3 surfaces the Demailly–Păun criterion amounts to a classical fact, we can, with
this bit of additional hindsight (and ensuing change of the year count), evenmore concur with
Huybrechts, who wrote at the end of his 2011 survey [16] of Verbitsky’s work “To conclude,
the Global Torelli theorem for K3 surfaces could have been proved along the lines presented
here some thirty years ago”.

2 Hyperkählerianmanifolds and the twistor construction

2.1 The twistor construction

A holomorphically symplectic manifold is (in this paper) a simply-connected compact com-
plexmanifold X which admits an everywhere nondegenerate holomorphic 2-form.A theorem
of Yau asserts that every Kähler form on such a manifold contains in its cohomology class a
unique Kähler-Einstein metric (which here means that the Ricci form of the metric is zero).
This has important consequences for the deformation theory of such X .

Let us first remember that on a finite-dimensional real inner product space V , an endomor-
phism E ∈ End(V ) is infinitesimally orthogonal if and only if the form (v, v′) ∈ V × V �→
〈v, E(v′)〉 is antisymmetric, and that this identifies such endomorphisms with ∧2V ∗. So the
Kähler form, the real and the imaginary part of a symplectic holomorphic 2-form, give three
infinitesimal orthogonal transformations of the real tangent bundle. The former reproduces
the given complex structure (which is always flat), but the vanishing of the Ricci tensor
ensures that the other two are flat as well. The real span of these three transformations is then
closed under the Lie bracket, yielding a copy of the Lie algebra of SO(3) (which is also that
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of the unit quaternions H
1). If we also add the identity, then their span is even closed under

composition and the resulting algebra is a copy HX of the quaternions. So HX = R ⊕ H
pure
X ,

withH
pure
X being the Lie algebra just mentioned. Since the holonomy group of the underlying

Riemann manifold will centralize HX , that group must be contained in a unitary group over
the quaternions.

The intersectionH
1
X ∩H

pure
X (a 2-sphere) is the set of square roots of−1 inHX . It contains

the given complex structure, but we now observe that this is one of many, for every element
of this 2-sphere defines a (new) integrable complex structure for which the metric is Kähler.
We refer to this family of complex structures as a twistor deformation of X . It also explains
why X is called a hyperkähler manifold when it is endowed with a Kähler-Einstein metric.
If merely a Kähler-Einstein metric exists, then we will say that X is hyperkählerian. We
say that a hyperkähler manifold X is irreducible if it does not decompose nontrivially as
the product of two holomorphically symplectic manifolds; this is known to be equivalent
to dimC H2,0(X) = 1 or (by Berger’s classification of holonomy groups) that every flat
endomorphism of its tangent bundle is contained in the copy of the quaternions defined
above.

The twistor construction is best understood by starting out with the underlying Riemann
manifold with a metric (that we shall denote by N ; the metric is denoted by g) of which we
assume that the flat endomorphisms of the tangent bundle form a copyHN ⊂ End(T N ) of the
quaternions. The last property ensures that we are in the irreducible case. The multiplicative
group H

×
N has center R

× and its commutator subgroup consists of the unit quaternions
H

1
N ⊂ H

×
N (a copy of Spin(3)). These two meet of course in the center of H

1
N , which is

μ2 = {±1}. The Lie algebra of H
1
N is H

pure
N and SN := H

1
N ∩ H

pure
N is the set of square roots

of −1 in HN and is a round 2-sphere.
The group H

×
N of HN acts on the tangent bundle of N . Hence we have a contra-gradient

action of H
×
N on the cotangent bundle and therefore on the space of C∞-forms. The flat-

ness ensures that this action commutes with exterior derivation and its adjoint, so that this
action preserves the space of harmonic forms. We identify this space with H •(N ; R), so
that H •(N ; R) becomes a H

×
N -representation. Note that by these conventions, the subgroup

R
× ⊂ H

×
N defines the opposite grading of H •(N ; R) in the sense that t ∈ R

× ⊂ H
×
N acts

on Hd(N ; R) as multiplication by t−d . The action of u ∈ H
×
N on H4m(N ; R) is scalar mul-

tiplication with (uu)−2m and the linear map H •(N ; R) ⊗R H •(N ; R) → H •(N ; R) defined
by the cup product is one of H

×
N representations.

Via the above correspondence, any element of H
pure
N determines a 2-form on N . This

2-form is harmonic and we thus obtain an embedding of H
pure
N in H2(N ; R). We shall denote

its image by PN . Since H
pure
N is naturally oriented, so will be PN . We shall see that in some

sense, this oriented 3-dimensional subspace of H2(N ; R) is almost a complete invariant of
the metric g. It is clear that PN is invariant under the action ofH

×
N . If we restrict that action to

H
1
N , then PN is essentially the adjoint representation. We transport the norm on H

pure
N to PN

to obtain a positive quadratic form on PN . This positive quadratic form defines a conic in the
projective plane P(C ⊗R PN ) that we shall denote—for reasons that become clear later—by
D(PN ).

Each J ∈ SN defines an integrable complex structure that turns N into a Kähler-Einstein
manifold X J . The elementsω ∈ C⊗R PN that satisfy ω(Ja, b) = ω(a, Jb) = √−1ω(a, b)

make up a complex line inC⊗R PN . Indeed, this is just H0(X J ,�2
X J

). Since we have J ∗ω =
−ω, and J ∗ respects the above quadratic form, it follows that the line H0(X J ,�2

X J
) defines

a point ofD(PN ). It is an easy exercise to verify that the map J ∈ SN �→ [H0(X J ,�2
X J

)] ∈
D(PN ) is a diffeomorphism which is even conformal.
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2.2 The associated variation of Hodge structure

We now can state a fundamental theorem of Hitchin–Karlhede–Lindström–Roček (Thm. 3.3
of [12]) in a form that suits our purpose best. It states that there exists a complex structure
on N × D(PN ) making it a complex manifold XN such that the projection onto D(PN ) is
holomorphic and if z ∈ D(PN ) corresponds to J ∈ SN , then the fiber over z is just X J .
The product metric yields in every fiber a Kähler metric, but as Hitchin [11] has shown, XN

does not admit a Kähler metric. It is a remarkable fact that the fibers of the other projection
onto N define holomorphic sections of XN → D(PN ) (called by this community twistor
lines), but with normal bundle isomorphic to a direct sum of 1

2 dim N copies of OD(PN )(1).
(Its underlying C∞ vector bundle is indeed trivial: 1

2 dim N is even, and OP1(1)
2 is C∞-

isomorphic to OP1(1) ⊕ OP1(−1) ∼= O2
P1
.) So such a section cannot appear as a fiber of a

holomorphic map (1).
For any J ∈ SN , the centralizer of J in H

×
N is the intersection of H

×
N with R + RJ

and so is naturally identified with C
×. Via this identification, ζ ∈ C

× acts on H p,q(X J ) as
multiplication with ζ−p ζ̄−q . So we thus recover the Hodge decomposition as an eigenspace
decomposition. If we regard H

×
N as the group of real points of an algebraic group defined

over R, then this copy of C
× should also be thus understood, namely as S(R), where S :=

ResC|R Gm . This is what is called the Deligne torus, whose raison d’être is indeed the
observation that a finite-dimensional representation of S(R) on a real vector space endows
(the complexification of) that vector space with a Hodge structure. Here is then a way to sum
this up:

Proposition 2.1 Let f : XN → D(PN ) be the projection. Then f is holomorphic and
R• f∗RXN is a constant local system which comes with a natural action of H

×
N . The action

of H
×
N on D(PN ) is transitive and the stabilizer of any z ∈ D(PN ) in H

×
N is a Deligne torus

whose representation on the stalk over z defines the Hodge structure on H •(Xz; C).

SoD(PN ) not only plays here the role of a period space, but also parametrizes the elements
of a conjugacy class of homomorphisms S(R) → H

×. This is reminiscent of the data that
go into the definition of a Shimura variety.

Remark 2.2 Every η ∈ PN � {0} is the Kähler class for some hyperkähler structure on N and
so we have a representation ρη of the Lie algebra sl2(C) on H •(N ; C) for which ( 0 0

1 0 ) goes to
the cup product with η and ( 1 0

0 −1 ) acts as on Hk(N ; C) a multiplication by 2m −k. Verbitsky
observed in 1990 [30] that the span of the images of the ρη’s generate in the endomorphism
Lie algebra of H •(N ; C) a graded Lie subalgebra isomorphic to so5(C). This graded Lie
algebra is of course defined over R and as such isomorphic to so(4, 1). The part in degree
zero is reductive and has H

pure
N as its the semisimple part and the span of ( 1 0

0 −1 ) as its center.

We close this section with:

Lemma 2.3 The group of automorphisms of a holomorphically symplectic manifold X which
fix a given Kähler class, is finite. This is in particular so for the group Aut0(X) of automor-
phisms that are isotopic to the identity. If N is an Einstein manifold as above, then its group
of isometries that are isotopic to the identity, Aut0(N ), coincides with the Aut0 of every fiber
of the associated twistor deformation.

1 This counterpoint between two familiar voices—one holomorphic, the other differential-geometric—has
been exploited in mathematical physics to great effect.
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Proof For the first assertion, just note that the elements of Aut0(X) will fix the Kähler-
Einstein metric associated with this Kähler class and since the automorphism group of a
Riemann manifold is a compact Lie group, so is Aut0(X). But a one-parameter subgroup
of Aut0(X) determines a nontrivial holomorphic vector field on X , whose contraction with
the symplectic form then produces a nontrivial holomorphic 1-form. On a simply-connected
complex Kähler manifold, these do not exist. The other assertions are obvious from the
preceding discussion. ��

3 Teichmüller spaces and periodmaps

From now on, we fix a compact simply-connected manifold M of dimension 4m which
admits an irreducible hyperkählerian structure. This structure determines an orientation of
M and an oriented 3-plane Po in H2(M; R). Since M is simply-connected, H := H2(M; Z)

is free abelian. According to Bogomolov, Beauville and Fujiki there exists a nondegenerate
quadratic form q : H → Z such that for some positive rational number c, the identity
q(a)m = c

∫
M a2m holds for all a ∈ H and for which qR is positive on the oriented 3-

plane in Po. They prove that the form qR has signature (3, n), with n := b2(M) − 3. The
Grassmannian of positive 3-planes is contractible—it is the symmetric space of O(qR)—so
that the tautological 3-plane bundle over it is trivial. Hence the orientation of Po orients the
whole bundle, which means that every positive 3-plane in HR now comes with an orientation.
We shall refer to this as a spin orientation on H .

We make both the orientation on M and spin orientation on H as part of our initial data
and so we shall only consider hyperkählerian structures that induce the given orientation (but
as Soldatenkov [29] has noted, this is in fact automatically the case) and spin orientation (for
which the same property might hold—by a theorem of Donaldson this is the case for K3
surfaces). This spin orientation determines for every positive oriented 2-plane � in HR, a
positive cone: �⊥ has signature (1, n) and so the set of positive vectors in �⊥ make up an
antipodal pair of open cones and the spin orientation singles out one of them.

We denote by hq : HC× HC → C the hermitian extension of the symmetric bilinear form
associated with qR.

3.1 The periodmanifold

Ahyperkählerian structure on M turns M into a complexmanifold X , so that we have aHodge
decomposition HC = H2,0(X) ⊕ H1,1(X) ⊕ H0,2(X) with H2,0(X) of dimension 1. Since
the cup product preserves the Hodge structure on X , the Hodge type of q will be (−2,−2).
The above characterization of q then shows that the Hodge decomposition is orthogonal for
hq , with hq positive on H2,0(X)⊕H0,2(X) and of signature (1, n) on H1,1(X). It also follows

that H2,0(X) is isotropic for qC. Since H0,2(X) = H2,0(X), the Hodge decomposition is
then completely given by the complex line H2,0(X), which, as we just observed, is isotropic
for qC and positive for hq . So such Hodge structures are parametrized by an open subset

D(HR) of the nonsingular quadric Ď(HR) (of complex dimension n + 1) in P(HC) defined
by qC, namely the locus which parametrizes the lines that are hq -positive. (The quadric

Ď(HR) is homogenous under its O(qC)-action and D(HR) is an open O(qR)-orbit in this
quadric.) It is clear that such a period manifold D(V ) is defined for any real vector space
V equipped with a nondegenerate quadratic form of signature (p, dim V − p) (but we need
p ≥ 2 to make it nonempty).
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Note that a point z ∈ D determines an oriented positive 2-plane �z in HR: for the
associated Hodge decomposition, the sum H2,0

z + H0,2
z is the complexification of a 2-plane

�z in HR, which is indeed canonically oriented (and hence determines a positive cone). So
the positive cone we have associated to �z is an open subset of the real part of H1,1

z ; we
refer to it as the positive cone defined by z. Conversely, an oriented positive 2-plane in HR

determines a point of D.

Question 3.1 If P ⊂ HR is a positive 3-plane, then D(P) = D(HR) ∩ P(PC) = Ď(HR) ∩
P(PC) is a conic. We prefer to call this a twistor conic rather than twistor line, since that
name had already been taken (in the early literature of the subject a twistor line is a section
of a twistor deformation). A twistor conic is a maximal irreducible compact subspace of
D. Its Douady space is identified with the Grassmannian Gr+3 (HC) of hq -positive complex
3-planes in HC, where one should note that the projective plane defined by such a 3-plane
meetsD in a nonsingular conic. This is a bounded symmetric domain for U(hq) whose real
part is the symmetric space Gr+3 (HR) of O(q) which parametrizes the twistor conics. Does
this space parametrize geometric structures on M (in a manner that for real 3-planes gives
us the structure of an Einstein metric)?

3.2 The ‘main proposition’

The Teichmüller space T(M) of M is for the moment just a set, namely the set of hyperkäh-
lerian structures on M given up to C∞-isotopy. By assigning to a hyperkählerian complex
structure on M the associated Hodge decomposition on H , we obtain the period map

P : T(M) → D(M).

The Kodaira–Spencer theory suggests that T(M) has the structure of a (perhaps non-
separated) complex manifold and the local Torelli theorem would then tell us that P is a
local isomorphism. We will establish this when we have at our disposal Proposition 3.3
below. Let us first observe that for a twistor family this gives us the period map discussed
earlier. More precisely, if M is endowed with an Einstein metric and the resulting Riemann
manifold is denoted by N , so that we then have defined a twistor familyXN → D(PN ), then:

Lemma 3.2 The action of the group H
1
N of unit quaternions on HR leaves qR invariant. We

haveD(PN ) = D(HR)∩P(PC) and the tautological mapD(PN ) → T(M) composed withP
is the inclusion D(PN ) ⊂ D(HR). �

The proof is left as an exercise. Since we have fixed M , we shall from now on writeD for
D(HR) and T for T(M).

Parts of the following proposition appear in somewhat different incarnations (at least
implicitly) in various places in the literature (and then with somewhat different proofs),
which makes it hard to give it a proper attribution. The archetypical version is certainly the
Main Lemma of Burns–Rapoport [5], which it amplifies and generalizes. We here replace
their use of Bishop’s analyticity theorem by a properness theorem of Fujiki (which was not
available at the time). Part (iv) is due to Hassett–Tschinkel [10, Thm. 2.1].

Proposition 3.3 Let π : X → U and π ′ : X ′ → U be proper holomorphic families of
hyperkählerian manifolds over the same simply-connected complex manifold U. Suppose we
are given an isomorphism between the associated variations of Hodge structure in degree two:
φ : R2π ′∗ZX ′ ∼= R2π∗ZX . If for some o ∈ U, φo is induced by isomorphism fo : Xo ∼= X ′

o,
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then there exist a proper generically finite morphism Û → U, a closed analytic subspace
Z ⊂ X ×Û X ′ flat over Û , and a closed analytic, proper subset K � Û , such that

(i) if û ∈ Û � K lies over u ∈ U, then Zû is the graph of an isomorphism fû : Xu ∼= X ′
u

which is isotopic to fo and induces φu; moreover fo appears in this manner: for some
ô ∈ Û � K over o, we have fô = fo,

(ii) for every u ∈ U, Xu and X ′
u are bimeromorphically equivalent,

(iii) if there exist κ ∈ H0(U , R2π∗R) and κ ′ ∈ H0(U , R2π ′∗R) which restrict to a Kähler
class in every fiber of π resp. π ′ and φo(κ

′(o)) = κ(o), then we can take Û = U and Z
will be the graph of an U-isomorphism X ∼= X ′,

(iv) the groupAut0(X/U ) of automorphisms ofX/U that are fiberwise isotopic to the identity
is finite, specializes for every u ∈ U to the group Aut0(Xu) of automorphisms of Xu

isotopic to the identity, and is via fo naturally identified with Aut0(X ′/U ). Its also acts
on the U-morphism Z → Û and has the property that the action transitive on the generic
fiber of Û/U.

Proof Let D := DX×UX ′/U be the relative Douady space which parametrizes the compact
analytic subspaces of X ×U X ′ contained in a fiber ofX ×U X ′/U . This exists as an analytic
space by a theorem of Pourcin [27], and comes with a universal familyZD ⊂ X ×U X ′ ×U D
that is proper and flat over D. Let Û be the irreducible component of D which contains the
graph of fo : Xo ∼= X ′

o and put Z := ZÛ . The map X ×U X ′ → U is a weakly Kähler
morphism, which means that there exists a 2-form on the source whose restriction to every
fiber is a Kähler form. It follows from work of Fujiki (see the last paragraph of §1 of [7]) that
the projection r : Û → U is proper (he actually assumes that we have in Kähler morphism,
meaning that the putative 2-form is closed, but for this conclusion, the weaker assumption
will do). In particular, r(Û ) is a closed subvariety of U . We show that it is all of U .

The local Torelli theorem implies that there exists a neighborhood V of o in U such that
fo extends to V -isomorphism XV → X ′

V . The graph of this isomorphism appears in Z and
so V lies in the image of r . A closed subvariety of U which contains a nonempty open set
equals U and so r(Û ) = U . It also follows that the locus K of û ∈ Û for which Zû is not the
graph of an isomorphism is a proper closed analytic subset of Û and that r(K ) is a closed
analytic proper subset of U .

The proof of (ii) follows a standard argument [5]: if û ∈ Û lies over u, then the algebraic
cycle Zû on Xu × X ′

u is of pure complex dimension 2n and contains a unique irreducible
component with multiplicity one which projects with degree one on both Xu and X ′

u . That
component therefore establishes a bimeromorphic equivalence between the two factors.

In the situation of (iii), each fiber of either family comes with a the Kähler class. So if
we give each fiber the associated Einstein metric, then Zû will be the graph of an isometry
whenever it is the graph of an isomorphism. But the fiber metric depends continuously on
the base point and so even when û ∈ K , the correspondence Zû will then implement an
isometry of an open-dense subsets of Xu onto one of X ′

u . As it will take a Cauchy sequence
to a Cauchy sequence, this implies that Zû is in fact the graph of an isometry and hence of an
isomorphism. In other words, K = ∅. So Û now parametrizes isometries in the same isotopy
class. The local Torelli theorem then implies that Û → U is an unramified covering. But as
U is simply connected and Û irreducible, Û → U must be an isomorphism.

We now prove (iv). Let u ∈ U . Since Aut0(Xu) acts as the identity on H2(Xu; R), it
fixes a Kähler class. This class is uniquely represented by a Kähler-Einstein metric, which
is then also preserved by the finite group Aut0(Xu). Let fu ∈ Aut0(Xu), and assume it has
finite order, d say. If we apply part (iii) to two copies of X/U with φ the identity and (o, fo)

replaced by (u, fu), then we find that fu extends to an automorphism F of X/U which will
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have that same order d in every fiber. This also applies toX ′/U , and as their restrictions over
Û � K are the same, (iv) follows.

It is clear that the groupAut0(X/U ) acts (byprecomposition) on theU -morphismZ → Û .
Let û1, û2 ∈ Û � K lie over the same point u ∈ U . We claim that they then lie in the same
Aut0(X/U )-orbit. Our assumption means that fû1 and fû2 differ by an automorphism fu of
Xu . Since Û � K is connected, fu must be isotopic to the identity. By (iv), fu is then the
specialization of an F ∈ Aut0(X/U ). So precomposition with F defines an automorphism
of Û/U which takes û1 to û2. In particular, Aut0(X/U ) acts transitively on the generic fiber
of Û/U . ��

We do not know whether the morphism Û → U appearing in this proposition is always
an isomorphism.

Remark 3.4 As is well-known, any bimeromorphic equivalence f : X ��� X ′ between
compact complexmanifolds is amorphismon the complement of a closed analytic subsetY ⊂
X of complex codimension ≥ 2 and hence takes a holomorphic p-form on X ′ to one on X .
Assuming now that both X and X ′ are hyperkählerian, then for a nondegenerate holomorphic
2-form α′ on X ′, f ∗α′ will be a nondegenerate 2-form on X , so that f |X � Y must be a local
isomorphism (in otherwords, there is no contraction in codimension one). The same argument
applied to f −1 proves that we can arrange that there exist closed analytic subsets Y ⊂ X and
Y ′ ⊂ X ′ of complex codimension ≥ 2 such that f maps X � Y isomorphically onto X ′

� Y ′.
In particular, f induces an isomorphism H2(X ′; Z) → H2(X; Z) of Hodge structures. A
theorem of Huybrechts (Thm. 2.5 in [15]) asserts that f can arise as the specialization for a
situation as in Proposition 3.3, with U the complex unit disk and Z being over U � {0} the
graph of an (U � {0})-isomorphism. This implies that f determines an isotopy class [ f ] of
diffeomorphisms between the underlying manifolds of X and X ′ which induces on H2 the
above map: it makes f a limit of graphs of diffeomorphisms of X onto X ′.

Question 3.5 It is possible to reconstruct [ f ] from f without recourse to one-parameter
deformations as above? For example, if the underlying manifold of both X and X ′ is M , how
can we tell whether [ f ] is in the isotopy class of the identity?

3.3 Teichmüller spaces

We are now ready to give T the structure of a possibly nonseparated complex manifold (and
hence with a topology) by endowing T with an atlas whose charts are of the following type.
Given an open subset U of D, then let us agree that a basic chart for T with domain U is
given by a complex structure on M × U for which the resulting complex manifold X has the
property that

(i) the projection X → U is holomorphic,
(ii) the fibers of X → U are hyperkählerian manifolds and
(iii) its period map is given by the inclusion of U in D.

It is clear that such an object defines an injection ofU inT. By the local Torelli theorem, every
hyperkählerian complex structure on M appears as amember of such a family. In other words,
the basic charts cover all of T. We give T the quotient topology, that is, the finest topology,
for which all the basic charts are continuous. It follows from Proposition 3.3 (with φ the
identity and fo isotopic to the identity) that the locus where two basic charts with domains U
and U ′ of D agree, is the complement of a closed (analytic) subset of U ∩ U ′. This implies
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that each basic chart is an open map. It is now obvious that our atlas is complex-analytic and
that it gives T the structure of a (non-separated) complex manifold for which P is a local
isomorphism.

This also suggests that we define separated Teichmüller space Ts as follows: identify two
members of our atlas with the same domain if the hypotheses of Proposition 3.3 are satisfied
withφ the identity and fo isotopic to the identity. In other words, two hyperkählerian complex
structures on M which give complex manifolds X and X ′, define the same point of Ts if and
only if there exist basic charts X/U , X ′/U containing X resp. X ′ over the same open subset
U ⊂ D, and a sequence (zi ∈ U )∞i=1 converging to some o ∈ U such that Xzi and X ′

zi
differ

by a C∞-isotopy and Xo = X and X ′
o = X ′, or equivalently, if there exists a bimeromorphic

equivalence f : X ��� X ′ whose associated isotopy class [ f ] is that of the identity of M
(this motivated our Question 3.5). The space Ts is indeed a separated complex manifold and
the period map factors through the separated period map

Ps : Ts → D,

which of course is still a local isomorphism.

Remark 3.6 (Comparison with Verbitsky’s Teichmüller space) Verbitsky defines in [31] his
Teichmüller space Teich as the orbit space of the space of hyperkählerian structures on M
with respect to the action of the group of diffeomorphisms isotopic to the identity. Our atlas
consists of certain sections to orbits, and so we have a priori a map T → Teich for which
Teich has the quotient topology. Since this map is a bijection, it must be homeomorphism.
Def. 1.13 of op. cit. introduces a notion of inseparability: two points of a topological space
are said to be inseparable if every neighborhood of one meets every neighborhood of the
other. As Verbitsky observes, this relation fails in general to be transitive, and indeed, much
work in [31] goes into proving that this is an equivalence relation for Teich (as pointed out
by Matthias Kreck, the proof is distributed all over the paper and seems entangled with the
proof of the Torelli theorem). It is however clear from the preceding that for T this is just
the relation that says that the two points lie in the same fiber of T → Ts . Hence it is an
equivalence relation, so that our T → Ts can be identified with Verbitsky’s Teich → Teichb.

3.4 Other moduli spaces

There is a good reason to consider also two related Teichmüller spaces, if only to better
understand the formation of the separated quotient above.One is the spaceTHK of hyperkähler
structures on M givenup toC∞-isotopy andwith themetric givenup to a scalar (or normalized
such that M has unit volume). In view of the discussion above this amounts to specifying in
addition a ray in HR (or rather, in H1,1(X; R)) spanned by a Kähler class. In particular, if
DHK denotes the space of pairs (z, r) with z ∈ P and r a ray in the positive cone defined by
z, then in an evident manner we have defined a hyperkähler period map PHK : THK → DHK.
Note that the projection DHK → D is a locally trivial fiber bundle with fibers having the
structure of a hyperbolic n-space.

Corollary 3.7 The moduli space THK is a separated manifold of dimension 3n + 2 such that
PHK is a local diffeomorphism. The natural map πHK : THK → T is open, with each fiber
having the structure of a convex open set in an n-dimensional hyperbolic space.

Proof The first assertion follows from Property (iii) of Proposition 3.3. The openness and
convexity properties are general facts, which hark back to Kodaira. In our case, the rays in
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the positive cone of X make up a real hyperbolic space of dimension n, and so the space of
rays spanned by Kähler classes make up an open convex subset this space. ��

So the composite THK → T → Ts is a submersion of separable manifolds. Its fibers
are disjoint unions of convex open sets in a hyperbolic n-space and the factorization can be
understood as a topological Stein factorization. PerhapsT is best understood via the following
characterization.

Corollary 3.8 A section of T → Ts over an open subset U ⊂ Ts is given by a continuous
section of THK → Ts given up to homotopy.

Proof This is merely the observation that each homotopy class of sections over U has a
natural convex structure, hence is canonically contractible. ��

If we only retain (apart our initial data) the Einstein metric (and so do not single out a
complex structure for which the metric is Kähler), then we obtain another Teichmüller space
TH (2) of Einstein metrics on M for which M has unit volume, again given up to isotopy.
We have a natural projection THK → TH and we give TH the quotient topology. The twistor
constructionmakes it clear that the evident projectionTHK → TH is a locally trivial S2-bundle
and that the ‘period map’

PH : TH → Gr+3 (HR),

which assigns to an Einstein metric g on M the subspace P(M,g), is a local diffeomorphism.
Note that its target Gr+3 (HR) is the symmetric space of O(qR), so that the arithmetic group
O(q) acts properly discretely on it.

Summing up, we have a commutative diagram

TH ←−−−− THK −−−−→ T

PH

⏐
⏐
� PHK

⏐
⏐
� P

⏐
⏐
�

Gr+(HR) ←−−−− DHK −−−−→ D

(†)

in which the horizontal maps are forgetful and the vertical ones are period maps. All spaces
are manifolds, and all but T are Hausdorff. The left square is cartesian (the left pointing maps
are 2-sphere bundles) and the right pointing maps have contractible fibers.

4 A Torelli type theorem

In this paper, we stipulate that the mapping class group Mod(M) of M is the connected
component group of the group of diffeomorphisms of M which preserve the initial data, i.e.,
the orientation on M and the spin orientation on H2(M; R). It is clear that this group acts
naturally on all the Teichmüller spaces that we introduced.

Let ρ be the representation ofMod(M) on H2(M) and denote by�M ⊂ GL(H) its image.
It is clear that �M ⊂ O(q), but with our definition of Mod(M) we land in fact in an index 2
subgroup of O(q), namely the kernel O#(−q) of the spinor norm for −q . As Verbitsky had
noticed, a theorem of Sullivan implies that �M is of finite index in O(q).

Theorem 4.1 (ATorelli theorem for hyperkählerianmanifolds)The period mapPs : Ts → D

maps every connected component of Ts isomorphically onto D. In particular, the Mod(M)-
stabilizer of a component acts with finite kernel on H2(M; Z).

2 This subscript is intended to honor Hamilton and does not stand for anything hyper.
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Remark 4.2 Verbitsky [31] claimed in addition that Ps is a finite covering, but as Kreck and
Yang Su [18] have shown, this is not always the case. They invoke a general theorem of Sul-
livan, which implies that the kernel of the representation of Mod(M) on the full cohomology
H •(M; Z) has a finitely generated torsion free unipotent group as a subgroup of finite index
(provided that m ≥ 2), and show that this unipotent group is nontrivial when M is the man-
ifold underlying a Kummer 4-fold (a projective Kummer 2m-fold is obtained by taking for
an abelian surface the Hilbert scheme of its length (m + 1)-subschemes of which the image
under the sum map is the origin). So T has then infinitely many connected components and
there exist elements in Ker(ρ) of which no nontrivial power can appear in the monodromy
group of a connected (holomorphic) family of hyperkähler manifolds.

Theorem 4.1 can be considered as a global Torelli theorem for a single component of the
Teichmüller space of M . A (weak) version of a global Torelli theorem for the full Teichmüller
space is then obtained by combining it with a finiteness result of Huybrechts [14], which
implies that Ker(ρ) acts properly on the connected component set π0T of T and has in π0T

only finitely many orbits. The orbit space M := Ker(ρ)\T may be considered as a moduli
space of marked hyperkählerian manifolds whose separated quotient Ms is just Ker(ρ)\Ts .
The period map clearly factors through a morphismMs → D and the finiteness property and
the Torelli theorem above imply that this is a finite (trivial) covering map. By construction,
this covering map comes with a faithful action of �M . It also follows that the image under
ρ of the Mod(M)-stabilizer of a connected component of T is of finite index in �M and is
hence of finite index in O(q). We thus find:

Corollary 4.3 (A weak global Torelli theorem) The set of hyperkählerian complex structures
on M with a prescribed Hodge structure on H2(M; Z) is nonempty and decomposes into a
finite number of complete bimeromorphic equivalence classes. �

Problem 4.4 Find an invariant for Einstein metrics on M that is locally constant under defor-
mation and which separates the connected components of TH, at least up to finite ambiguity.

Remark 4.5 It often happens that the action of Mod(M) on π0(T) is transitive so that M is
connected. This is for example so for K3 surfaces: by a famous result of Piatetski–Shapiro
and Shafarevich, a K3 surface which contains 16 pairwise disjoint smooth rational curves
is a (resolved) Kummer surface and such surfaces are dense in T(K3). On the other hand
these resolved Kummer surfaces can be parametrized by the (connected) space of complex
structures on the 4-torus R

4/Z
4, i.e., SL4(R)/U2. It seems unknown whether T(K3) itself

is connected, or what amounts to the same, whether Mod(K3) acts faithfully on the second
cohomology. (This in contrast to its topological counterpart: for every closed simply con-
nected 4-manifold S, a self-homeomorphism of S which acts trivially on the homology is by
a theorem of Kreck [17] pseudo-isotopic to the identity and then a theorem of Perron [25]
implies that such a homeomorphism is isotopic to the identity through homeomorphisms.)

A similar argument might apply to the case when M underlies the Hilbert scheme of
subschemes of a K3 surface of length m or underlies a Kummer (2m)-fold, so that M is
then also connected. This is perhaps the reason that some authors prefer to work with moduli
spaces of marked hyperkählerian manifolds instead of Teichmüller spaces. This amounts to
starting with an abstract lattice 
 endowed with a nondegenerate quadratic form q
 that is
isometric to H and to consider hyperkählerianmanifolds X endowedwith an isomorphism of
lattices H2(X; Z) ∼= 
. But this approach can be too coarse in that it ignores too much of the
underlying topology. For example, such a moduli space has at least as many components as
the index of�M in O(q
) and this is at least two (due to the spinor orientation). But even if we
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specify such an orientation for q
 and demand that the marking respects spinor orientation,
then �M need not map onto O#(−q
): there might exist two hyperkählerian structures on
M , such that an isometry of their Hodge structures is not induced by a bimeromorphic
equivalence. Such phenomena are sometimes eliminated by insisting that the Hodge isometry
preserves a bitmore thanwhatmeets the eye, the ‘more’ being of a topological nature. Itwould
then be somewhat misleading to claim that therefore the Torelli theorem fails. For example,
Markman proved in [22] that if M underlies the Hilbert scheme of length m subschemes
of a K3 surface, then �M is a proper subgroup of O#(−q) unless m − 1 is a prime power
and so then such additional components will come up. But as this is merely a reflection
of a topological property of M , namely that Mod(M) must preserve certain invariants that
are defined on a finite quotient of H2(M; Z), these connected components are in a sense
extraneous—or put differently, some markings are better than others.

Since D is simply connected, Theorem 4.1 is equivalent to saying that Ps is a covering
map. This is in fact what we will prove and indeed, it is implied by:

Lemma 4.6 Let U ⊂ D be a neighborhood of P(t) isomorphic to the open unit ball in C
n+1.

If t ∈ Ts lies over the center of this ball, then there exists a unique section σ of P over U
which takes Ps(t) to t .

The proof of this lemma involves little more than twistor deformations and the following
theorem of Huybrechts (that is based on work of Demailly–Păun [6]) which ensures that
there are enough of these.

Proposition 4.7 (Huybrechts [13]) Let X be a hyperkählerian manifold for which H1,1(X)∩
H2(X; Z) = {0} (in other words, if �⊥

z ∩ H = {0}). Then every element of the positive cone
of X represents a Kähler class. �

Let V be a real vector space defined over Q. For a linear subspace W of V , we define its
rational closure to be the smallest linear subspace of V defined over Q which contains W .
If this is all of V , then we say that W is fully irrational. It is clear that in the Grassmannian
of all linear subspaces of V that are not fully irrational form a countable union of proper
subvarieties defined over Q. In particular, the fully irrational subspaces are dense.

Proposition 4.7 and Lemma 3.2 imply:

Corollary 4.8 Let P be a fully irrational, positive 3-plane in HR. Then Ps maps every con-
nected component of P−1

s D(P) isomorphically onto D(P).

The proof of Lemma 4.6 below re-arranges and simplifies the corresponding treatment in
[31] and [16].

Proof of Lemma 4.6 We can identify U with the open unit ball B<1 in C
n+1. Let r be the

supremum of the a ∈ (0, 1] for which there exists a section over the open ball B<a defined
by ρ < a that takes Ps(t) to t . Then r > 0 and we must show that r = 1. Suppose r < 1.
Since Ps is a local homeomorphism between separated spaces, two sections defined on the
same connected subset ofD are equal when they are equal at some point. So if Br denotes the
ball ρ ≤ r , then we have a section σ defined over its interior B<r . Let z ∈ ∂ Br . A positive line
� in�⊥

z determines a twistor conicD(�+�z). We can (and will) take � such thatD(�+�z)

is transversal to the tangent space of ∂ Br at z (an open, nonempty condition) and � is fully
irrational (this condition is dense). Then � + �z is fully irrational and Br ∩ D(� + �z) is
near z a manifold with boundary, with z being a boundary point. It follows from Corollary
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4.8 that B<r ∩ D(� + �z) is nonempty and that the restriction of σ to this subset extends
across z. So we have a section σz on an open ball neighborhood Uz of z in U such that σ and
σz take the same value in some point of Uz ∩ B<r . Since Uz ∩ B<r is connected, it follows
that σ and σz coincide on Uz ∩ B<r . A useful feature of taking the Uz to be open balls is that
if Uz and U ′

z meet (with z, z′ ∈ ∂ Br ), then both Uz ∩ U ′
z and Uz ∩ U ′

z ∩ B<r are connected.
For it then follows that σ and the collection {σz}z∈∂ Br together define a section of Ps on a
neighborhood of Br . Since such a neighborhood contains an open ball of radius > r , we get
a contradiction. ��

5 Refinements and other consequences

5.1 The other two periodmaps

Let C be a connected component of TH. Its preimage CHK under the projection THK → TH is
then a connected component of THK and the image of CHK in T is a connected component of
T. Since the Torelli theorem asserts that the period map identifies the separated quotient of
the latter withD, it follows that the other period maps define open embeddings CHK ↪→ DHK

and C ↪→ DH. Our goal is to say something about their images and to prove that these
components come with universal families.

We begin with stating a stronger form of Proposition 4.7. Let us say that a linear form
δ : H → Z is negative if its kernel has signature (3, n − 1). This of course equivalent to the
quadratic form q∨ : H∨ → Q that is inverse to q , taking a negative value on δ. We shall
write Hδ for the kernel of δ : H → Z. We need the following the two theorems.

Proposition 5.1 (Boucksom [4, Thme. 1.2]) Let X be hyperkählerian manifold. Then the
set of Kähler classes in the positive cone in H1,1(X; R) is the intersection of the positive
cone with the open half spaces defined by the fundamental classes of the irreducible rational
curves C on X that are negative (defined by

∫
C > 0). �

We also need the following result, due to Amerik–Verbitsky (see alsoMongardi [24, Thm.
1.3]).

Proposition 5.2 (Amerik–Verbitsky [2, Thm. 5.15 (i)] ⇔ (v)) For an Einstein metric g on
M, the set of negative vectors in H∨ whose kernel does not contain the associated 3-plane
Pg only depends on the connected component of the image of (M, g) in TH. �

This suggests that we define�C ⊂ H∨ as the set of indivisible negative linear forms H →
Z, which for some Kähler-Einstein metric associated with an element of C, are representable
by an irreducible rational curve.

Wenowneed some elementary properties of arrangements on theGrassmannianGr+3 (HR).
If δ ∈ H∨ is negative, then Gr+3 (Hδ,R) is a codimension 3-submanifold of Gr+3 (HR). In
particular, Gr+3 (HR) � Gr+3 (Hδ,R) is simply connected.

Lemma 5.3 Let � be a subset of H∨ which consists of indivisible negative vectors, and is
invariant under a subgroup � of O(q) of finite index. Then

Gr+3 (HR)� := Gr+3 (HR) � ∪δ∈� Gr+3 (Hδ,R)

is open inGr+3 (HR) if and only if � has finitely many orbits in �. If these equivalent conditions
are fulfilled, then {Gr+3 (Hδ,R)}δ∈� is locally finite on Gr+3 (HR) so that any open subset of
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Gr+3 (HR) which containsGr+3 (HR)� is simply connected, but if they are not, thenGr+3 (HR)�
has empty interior.

Proof If P is a positive 3-plane, then it is clear that for every 0 < ε < 1, the open subset
Uε(P⊥) of HR consisting of (v,w) ∈ P ⊕ P⊥ = HR with q(v) < −εq(w) is an open
neighborhood of P⊥

� {0} which consists of negative vectors. The lemma follows from the
assertion that such an open subset meets every �-orbit in H in a finite set, and meets every
infinite union of �-orbits consisting of negative indivisible vectors in an infinite set. The
proof of this last property is left to the reader. ��

The following Corollary has (apart from its last assertion) a version for THK and is in that
form due to Amerik–Verbitsky [1, Theorem 4.9].

Corollary 5.4 Let C be a connected component of TH. Then �C is a finite union of Mod(M)C-
orbits and PH maps C diffeomorphically onto Gr+(HR)�C . In particular, C is simply
connected.

Proof The Torelli Theorem 4.1 implies thatPH defines an open embedding of C in Gr+(HR).
This image is of courseMod(M)C-invariant. Propositions 5.1 and 5.2imply that this image in
PH must be contained in Gr+(HR)�C . Lemma 5.3 then tells us that�C must be a finite union
of Mod(M)C-orbits and defines a locally finite arrangement on Gr+(HR). Then turning back
to Proposition 5.1, we see that this implies that the image of C is exactly Gr+(HR)�C . ��

The Torelli theorem asserts among other things that the Mod(M)-stabilizer of C,
Mod(M)C , acts with finite kernel on H = H2(M; Z). Property (iv) of Proposition 3.3
implies that for every Einstein metric g on M which represents a point of C, the group of
isometries of (M, g) that are isotopic to the identity only depends on C and hence can be
identified with the kernel of this action. We therefore denote this kernel by Aut0(C).

Corollary 5.5 The Teichmüller space of Einstein metrics on M,TH, carries a family of Einstein
manifolds NH/TH which is endowed with a faithful action of Mod(M). It is almost-universal
in the sense that every family of Einstein metrics on M is a pull-back of this one, but can be
so in more ways than one, with the ambiguity residing in a finite group which is constant on
every connected component TH.

In somewhat fancier language: TH underlies a (Deligne–Mumford) stack and this stack is
a constant gerbe on every connected component.

Let us note that the fibers of THK → TH are twistor conics, and hence comewith tautologi-
cal families. On the other hand the fibers ofTH → T are convex subsets of hyperbolic n-space
(Kähler cones) and these too, come with tautological families. This is why this corollary is
essentially equivalent to a recent theorem of Markman [23] which states the same property
for T.

Corollary 5.6 The Teichmüller spaces THK and T carry families of hyperkähler resp. hyper-
kählerian manifolds that are almost-universal in the sense above. Each connected component
C resp. CHK comes with a faithful action of an extension of Mod(M)C by Aut0(C).

Proof For THK this is immediate from Corollary 5.5. The corresponding result for T then
follows from the fact that we have a descent along THK → T. ��
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As it suffices to prove Corollary 5.5 per connected component of TH, we check this for C.
Before we get into the proof, we make some preliminary observations, which we hope help
to clarify that the issue is the possible non-triviality of the center of Aut0(C).

Since we need to glue the local universal deformations into a global object over C, the
group Aut0(C) prevents us, at least a priori, to do this in a canonical fashion. To make
this more concrete: suppose that we have two maps f+, f− from the 2-disk D2 to TH that
coincide on the boundary, so that together they define a map f : S2 → TH. The goal is to
produce a family of Einstein manifolds over S2 for which f is the classifying map. Since
D2 is contractible, there is no difficulty in finding two corresponding families of Einstein
metrics {g±

x }x∈D2 on M . By definition the two metrics that we get when x ∈ ∂ D2 differ by
an isotopy. We fix some p ∈ ∂ D2. By modifying the family defined by f+ with the isotopy
that we get for p, we can already assume that the two metrics coincide in p: g+

p = g−
p . If

γ : [0, 2π] → ∂ D2 parametrizes ∂ D2, with γ (0) = γ (2π) = p, then there is a unique
continuous family of isotopies t ∈ [0, 2π ] �→ ht of M with h0 the identity, such that ht takes
g−
γ (t) to g+

(γ (t). Then h2π will be an Aut0(C)-equivariant isometry of (M, g+
p ) and hence is

given by a central element of Aut0(C). It is not hard to check that this central element only
depends on the homotopy class of f .

In order that we have a family over S2, we want h2π to be the identity. But the component
C is obtained from the manifold Gr+(HR) by removal of an (infinite) arrangement of closed
submanifolds of codimension 3, with the link of each member representing a nontrivial
element of its second homotopy group. So it may well happen that f is not null-homotopic.
In fact, since Gr+(HR) is contractible, such a link is the basic case to consider. The following
lemma addresses this.

Lemma 5.7 Let p ∈ Gr+(HR) be such that p ∈ Gr+(Hδ,R) for a unique δ ∈ �C . Then p
has a neighborhood B in Gr+(Hδ,R) such that B ∩ Gr+(HR)�C supports a smooth family
of Einstein manifolds.

Proof Recall that in the commutative diagram (†) at the end of Section 3, the period map P is
surjective on every connected component of T. The complex structures on M parametrized
by T for which δ is of Hodge type (−1,−1) define a divisor Dδ of Ts whose preimage in T

consists of nonseparated points. Choose distinct points p̂+, p̂− in THK that both lie over p,
have distinct images p̃+, p̃− in T, but have the same image ps in Ts . Then p̂+ and p̂− lie in
distinct Kähler cones, the values of their Kähler classes taking on δ opposite signs. Choose
a small contractible neighborhood U of ps in Ts and denote by Û± the lift of U in T passing
through p̂± in T. These two open subsets meet, and each gives a family of hyperkählerian
manifolds over U . By part (iii) of Proposition 3.3 they are then isomorphic over Û+ ∩ Û−.
We use such an isomorphism to turn this into a family over the connected nonseparated space
Û := Û+ ∪ Û−. By taking all possible Kähler Einstein metrics on the fibers of the family
parametrized by Û we then obtain a family over the preimage of Û in THK. Forgetting the
complex structure (but retaining the metric) then makes this part of a twistor construction
over an open subset B of TH. This open subset is as desired. ��
Proof of Corollary 5.5 Let us write G for the finite group Aut0(C). We have seen that if g is an
Einstein metric on M , then the group of isometries of (M, g) that are isotopic to the identity
is isomorphic to G; the choice of such an isomorphism makes it an Einstein manifold with
G-action.

The set of points in Gr+(HR)which are contained in at most one Gr+3 (Hδ,R)with δ ∈ �C ,
make up an open subset Gr+(HR)◦ of Gr+(HR) whose complement is of codimension 6. In
particular, Gr+(HR)◦ is 2-connected (even 4-connected).
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With the help of Lemma 5.7 we can find a Leray covering U := {Ũα}α∈A of Gr+(HR)◦
by open subsets such that for every α ∈ A, Uα := Ũα ∩ Gr+(HR)�C supports a family of
G-Einstein manifolds Nα/Uα . This means that every nonempty intersection of members of
U is contractible, so that a partition of unity subordinate toU defines a homotopy equivalence
fromGr+(HR)◦ to the nerve ofU. So for every abelian group Z , the naturalmap Ȟ •(U; Z) →
H •(Gr+(HR)◦; Z) is an isomorphism. Since Gr+(HR)◦ is 2-connected, the latter is zero in
degree 2.

If (α, β) ∈ A2 is a 1-simplex of the nerve of U, then we have over Uαβ two such families.
They are isomorphic and so there exists a G-equivariant isomorphism fαβ : Nα|Uαβ

∼=
Nβ |Uαβ over Uαβ . Then for every 2-simplex (α, β, γ ) ∈ A3 of the nerve, fγα fβγ fαβ is
an automorphism of Nα/Uαβγ . Since this automorphism preserves each G-orbit, it must be
given by the action of a central element cαβγ ∈ Z(G). It is clear that (α, β, γ ) �→ cαβγ is
then a Z(G)-valued Čech 2-cocycle for U and hence defines an element of Ȟ2(U; Z(G)).
Since the latter is trivial, this cocycle is a coboundary: there exists a Z(G)-valued Čech
1-cochain (α, β) �→ cαβ such that cαβγ = cγαcβγ cαβ . Upon replacing fαβ with fαβc−1

αβ , we
then arrange that fγα fβγ fαβ is always the identity, wherever defined. This implies that if we
glue the families Nα/Uα by means of these isomorphisms we obtain a well-defined family
over Gr+(HR)�C . ��

Question 5.8 Corollary 5.5 leads us to the purely topological question whether the group
homomorphism ρ : Mod(M) → O(q) has almost a section in the sense that there exists
a subgroup �̃ of Mod(M) such that ρ|�̃ is injective and ρ(�̃) is of finite index in O(q). If
such a �̃ exists, then by taking the �̃-quotient we obtain a genuine family over an arithmetic
quotient of TH. Otherwise, there is no such family.

Since for a connected component C of T, the image of the stabilizer Mod(M)C in O(q)

is of finite index, we can take �̃ ⊂ Mod(M)C . So by Corollary 5.6, the answer is yes when
Aut0(C) is trivial. In general, the group Mod(M)C acts on the finite group Aut0(C) by inner
automorphisms, so that we want to choose �̃ in the kernel of this action. Then �̃ will be an
extension of � by a central subgroup Z := �̃ ∩ Aut0(C) and the question comes down to
whether such a central extension is residually finite. Put differently, this central extension
is given by an element of H2(ρ(�̃); Z) and the question is then whether this element dies
when we restrict it to some subgroup of ρ(�̃) of finite index. This is a nontrivial issue, for the
algebraic universal cover of SO(qR) is the Spin group Spin(qR), but the absolute metaplectic
cover of the latter is still of order 2 when n ≥ 3 and it is not clear whether this cover contains
arithmetic groups that are residually finite (see [26]).

Question 5.9 Aconnected componentC ofTHwas identifiedwith anopen subset ofGr+3 (HR),
and so it inherits from this a locally symmetric metric and hence a notion of geodesic interval.
The twistor construction singles out geodesic intervals of a particular type: Let two elements
of Gr+3 (HR) be represented by the 3-planes P0 and P1 and assume that these have a 2-plane
� in common. Recall that by our convention, P0 and P1 are naturally oriented and so an
orientation of � determines a ray ri in the orthogonal complement of � in Pi . If we connect
r0 with r1 in the orthogonal complement of � in P0 + P1 (in the obvious manner) by a path
{rt }t∈[0,1], then the orthogonal complement Pt of rt in P0 + P1 traverses a geodesic segment
[P0, P1] in Gr+3 (HR). Suppose now that P0 represents an Einstein metric g0 on M . Then �

defines a member of the associated twistor family and hence defines a complex structure on
M for which g0 is Kähler-Einstein. For the underlying complex manifold X , the family rt

defines an interval in its (projectivized) Kähler cone, hence gives a path of Einstein metrics
on M that begins with g0. If this is part of a piecewise geodesic loop (P0, P1, . . . , Pk) with
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dim(Pi−1 ∩ Pi ) ≥ 2 and P0 = Pk , then we also get a loop in C (the most basic case is that
of a small triangle with P0, P1, P2 having a line in common). This means that the Einstein
metric on M that we end up with must differ from g0 by an isotopy of M .

What is the subgroup of Diff0(M) generated by such isotopies? Note that this group
(which is unique up to conjugacy in Diff0(M)) may be regarded as the structure group of the
universal bundle over C . A recent theorem of Giansiracusa–Kupers–Tshishiku [8] asserts
that for a K3 surface M , the natural map Diff+(M) → Mod(M) does not split, not even
over a subgroup of finite index. So for such surfaces this must be an infinite group.3

5.2 The periodmap for the full cohomology

In this subsection it is convenient to adopt the language of the theory of algebraic groups and
in particular that of Shimura varieties.

The functor which assigns to any Q-algebra R, the subgroup SO(qR) ⊂ GL(HR), is
represented by a Q-algebraic group SOq , so that for example SOq(R) = SO(qR). Although
SO(qR) has two connected components when n > 0, as an algebraic group, SOq is connected.
We denote by Spinq the algebraic universal cover SOq . This is a semi-simple algebraic group
defined over Q and Spinq(R) is the usual Spin(qR) (which however is not simply connected
for the Hausdorff topology: for n ≥ 3 its fundamental group has order 2) and has Gr+3 (HR)

as its symmetric space. We identify the kernel of Spinq → SOq with μ2 = {±1} and put
CSpinq := Spinq ×μ2 Gm . This is a reductive algebraic group over Q that can be regarded
as an extension of SOq by Gm , but whose commutator subgroup is Spinq . It is clear that
the action of Spinq × Gm on HQ for which Spinq acts via SOq and t ∈ Gm as scalar
multiplication with t−2, factors through CSpinq and makes HQ a Q-representation of CSpin.

Any z ∈ D defines an embedding j z : U(1) ↪→ SOq(R) that is given by clockwise rotation
in the oriented plane �z and as the identity in �⊥

z . Its preimage in Spinq(R) is a double
(connected) cover in the sense that it yields a group homomorphism jz : U(1) → Spinq(R)

whose square lifts j z . We may thus identifyDwith a distinguished conjugacy class of group
monomorphisms jz : U(1) → Spinq(R). The preimage of the center in this new copy of
U(1) is μ2. The preimage of j z under the projection CSpin(R) → SOq(R) is of course a
copy of U(1) ×μ2 R

×, which is just a complicated way of writing C
×, but regarded as the

group of real points of a group defined overR. In other words, it is a copy of the Deligne torus
S(R). Thus z ∈ D also determines a group homomorphism Jz : S(R) → Spinq(R). This
identifiesD with a conjugacy class of such homomorphisms. The real tangent space ofD at
z is HomR(�z,�

⊥
z /�z). On this S(R) acts via �z (and induces the given complex structure

on this tangent space) so that the Hodge numbers of TzD are (1,−1) and (−1, 1). For every
finite dimensional real representation V of CSpin, the diagonal action of CSpin(R) on V ×D

turns the trivial local system D with fiber V into a family V of real Hodge structures over
D. The natural maps TzD → EndR(Vz) are S(R)-equivariant, so that V satisfies Griffiths
transversality, hence is a variation ofHodge structure. ThismakesD almost a Shimura variety
as then any hyperplane section ofD defined by a negative Q-linear form on HQ is a Shimura
variety (of orthogonal type) with respect to its CSpin-stabilizer.

3 There is a similar question for the usual Teichmüller space: if C is a closed Riemann surface of genus
≥ 2, then a closed loop in its Teichmüller space consisting of piecewise Teichmüller geodesics defines a
quasi-conformal self-homeomorphism of C isotopic to the identity. The subgroup generated by such self-
homeomorphisms is clearly the image of an increasing union of connected (finite dimensional) manifolds.
What is this subgroup? We have been asking around for a while, but no-one seems to know.
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Let g be an Einstein metric on M and denote the resulting Riemann manifold by N as
before. Then we have associated to N an algebra of quaternions HN and a positive 3-plane
PN ⊂ HR such that H×

N acts on PN as the subgroup of CSpin(R)which leaves P⊥ pointwise
fixed. The embeddingH

×
N ↪→ CSpin(R) is then unique and takes the distinguished conjugacy

class in Hom(S(R), H
×
N ) to the distinguished conjugacy class in Hom(S(R),CSpin(R)). Let

us refer to the image of such anH
×
N as twistor subgroup ofCSpin(R).We thus recover a recent

result due independently to Soldatenkov (Thm. 3.6 of [29]) and Green–Kim–Laza–Robles
(Thm. 4.1 of [9]).

Corollary 5.10 (Soldatenkov, Green–Kim–Laza–Robles) Let C be a connected component of
T and identify its separated quotient withD. Then the associated variation of Hodge structure
on the full cohomology H •(M; Q) over D is defined by a Q-representation of CSpin(R) on
H •(M; Q).

Proof Wehave seen that this is truewhenwe restrict to a twistor family and the corresponding
twistor subgroup. Each η ∈ HR = H2(M; R) which can appear as a Kähler class relative
to some complex structure on M defines a representation of sl2(R) on H •(M; R). It was
proved in [21] that these generate a graded semisimple Lie algebra defined over Q, of which
the degree zero part is the Lie algebra of CSpin(R), except that a generator of its center acts
on Hk(M; Q) as multiplication with 2m − k rather that −k (so that is a shift over 2m). In
view of Remark 2.2, this implies that H •(M; Q) affords a Q-representation of CSpin that is
compatible with the twistor representations. Since the twistor subgroups generate CSpin(R)

and the union of the twistor families make up a dense subset of C, the assertion follows in
general. ��
Remark 5.11 Kurnosov–Soldatenkov–Verbitsky [19] recently produced a Kuga–Satake con-
struction for the rational cohomology of M . This is accomplished by a Q-representation of
CSpin of weight one whose exterior algebra contains the rational cohomology of M as a
graded CSpin-submodule.
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