Chapter 4

The single—particle Green’s
function

Green’s functions are very useful for solving certain partial differential equations,
for instance the inhomogeneous wave equations in electrodynamics (see J.D. Jack-
son, Classical Electrodynamics,

Section 6.6). In many-body physics a generalized version of Green’s functions
turns out not only to be extremely helpful for analysing certain problems, but
also to contain itself a wealth of information about the dynamics of the many-
particle system. In this chapter we limit ourselves on the single-particle Green’s
function; two-particle Green’s functions, which are related to various response
functions or susceptibilities, will not be considered. Furthermore, we consider only
Green’s functions at zero temperature. Green’s functions at finite temperatures,
especially the so-called Matsubara Green’s functions, do not present additional
complications. Essentially, the ground state expectation values are replaced by
averages with respect to the grand-canonical ensemble.

4.1 Basic Definitions

We consider a many-body system described by a Hamiltonian H, for instance
a system of fermions or bosons with short-range interactions. In the Heisen-
berg picture the time-evolution is given by the time-dependence of creation and
annihilation operators

U, (rt) = er W (r)e #,
ao(t) = enflg el (4.1)

We define the time-ordering symbol 7" as an operator which orders a product of
time-dependent operators in such a way that the early times are to the right and
later times to the left, i.e.

U, (r1,t) Ul (vo,t9), t1 >t
t _ o\t1l,01 o \12,02), 1 2,
T [qla(rlatl) \Ila(r27t2)} - { j:\I;:rT (r2,t2) \Pa(rlatl); tl < t2, (42)

where the plus and minus signs stand for bosons and fermions, respectively. Let
|Wo > describe the exact ground state of N particles. The single-particle Green’s
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function is then defined as
G (I‘l,tl, I'Q,tg = —1 <\If() |T I'l,tl) \If I‘2,t2 | \I]0> (43)

Here we have implicitly assumed that there are no spin-dependent interactions
(such as spin-orbit interactions which would require matrix Green’s functions
Gs,0,)- If the Hamiltonian is time-independent, the Green’s function depends
only on ¢t := t; — 5. Moreover, if the system is translationally invariant, GG
depends only on r := r; — ry (this is not true for electrons in a periodic lattice
potential). In this case we can introduce the Fourier transform,

GU’ (rltl; Ta, t2) / / (k-r—wt) GU (ka w) )

G,k ,w) = / dt / dr e kT G (r,1). (4.4)

In view of Eq. (2.26) it is easy to see that G, (k,w) is the (time) Fourier transform
of

G, (k,t) = —i <x1r0\:r [akg (t)alfw} \\1;0> . (4.5)

The Green’s function (4.3) can be interpreted as follows. Let us consider the case
t1 > to first where

Ga(rl, tl, Iy, tg) = —1 <\I’0|€%Ht1 ‘IJU(I'l) 6_%H(t1_t2)\11: (1‘2) 6_%Ht2 |\I’0> .

We first let evolve the exact ground state until the time ¢, where we add a particle
at ro, then the system evolves further during the time interval ¢; —¢5. The scalar
product between the resulting state and a state where at time ¢; a particle has
been added at r; is then given by the Green’s function. Similarly for ¢; < t; we
seek the overlap between a state obtained by removing at time ¢; a particle at
r,, with a subsequent evolution until ¢5, and a state where at time ¢, a particle
is removed at r,.

More important than this interpretation is the use of the single-particle Green’s
function for calculating observable quantities. Thus the occupation number of the
single-particle state ko is

(T, ‘algakg Vo) = ilim G, (k. 1). (4.6)

4.2 Free fermions

We consider the simple case of free bosons or fermions in a box of volume V. The
Hamiltonian is given by Eq. (2.30),

H= Zsk al axy, (4.7)
ko
with a single-particle spectrum ¢, = % For this case the time dependence is

given by
) + ) i
ko (t) — e%skt ), ko akaef%skt Oy Ok
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This operator satisfies the differential equation

d . .
%aka(t) - %516 [aligaka; akai| (t) - _%Ek aka(t) ;
with the initial condition
ko (0) = Ukg -
Its solution is .
ko (t) = 6_%skt kg - (48)

This expression can also be easily obtained by acting with ayx,(¢) on a general
basis state in occupation number representation.

We use now this result for calculating the free fermion Green’s function, where
in the ground state all levels ko are occupied up to the Fermi energy er and empty
above,

Uo) = frr = { L, e <er (4.9)

\I!‘aTa
(o | a1, 0s 0 , ep,>e¢p.

Inserting Eq. (4.8) into Eq. (4.5) we obtain
Goll,t) = =i [0(t) (1~ fiur) = (1) ficg] €7, (4.10)
where 9(t) is the step function

1, t>0,
19(15):{0 o (4.11)

One immediately verifies that Eq. (4.10) agrees with Eq. (4.6). The Green’s
function (4.10) satisfies the differential equation

(i% - %’“) G, (k,t) = 8(t). (4.12)

Therefore G, (k, t) is indeed a Green’s function in the sense of the quantity intro-

duced for solving differential equations; it is the Green’s function of the operator
- 9 2
’LE B

The Fourier transform of Eq. (4.10) is ill-defined because of the oscillatory

behavior for ¢t — +oc. Therefore we consider the function
e M G, (k,t), where 7>0.

Its Fourier transform is

/dt eiwt e—n|t\ Gg(k, t) — 1- fko’ + fk(f (413)

€k ; £k i
W—F+1 W= =

We use the notation G, (k,w) for this expression in the limit where 7 is infinite-
simal. Together with the definition

e :=mn sign(ex —er) (4.14)
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we obtain the simple result

1

G, kw)=—°—. 4.15
o) = g (415)
For the inverse transform we integrate along contours in the complex plane. For
t > 0 we have to integrate in the lower half-plane where the contribution over the

semi-circle vanishes for R — oo:

d . 1 d . 1
/_we—zwt = : = lim _Ze—zzt = :
2m w— =+ R—oo [o 2 Z— 3+
= —1 6_%6kt€_nt 19(616 - SF) . (416)
Imz
N
I
I ,
—= — Mk
__ | & _
| ° > Rez
I
R [
I
I
o

For t < 0 we integrate in the upper half-plane and obtain:

dw —iwt 1 : dZ —izt 1
—e —— Y = lim —e —
2T w— 2E 4y R—oo Jo, 2T z— 3+
= e wertem V(e — ex) - (4.17)
Imz
N
c, |
|
|
R |
|
I [ J
- = - — > Rez
T
| h ¢
|

The comparison of Egs. (4.16) and (4.17) with Eq. (4.10) yields

/ g—j e G, (k,w) = e MG, (k,t), (4.18)

as expected.
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4.3 Spectral representation

We turn now to an interacting many-fermion system with translational symmetry
and spin-independent forces between the particles and thus consider the Green’s
function (4.5). Using the completeness relation in Fock space

YOI+ D WD) + Y [FPNTD |+,

where |0) is the vacuum state and |\I!7(f)) is the n’th eigenstate of the Hamiltonian
with ¢ particles, we can write the Green’s function as

Go(k,t) = —"{%)Zwomka(t)|ng+l>><w;N+1>|aLa|wo>

n

—t)y < %ngw;N-”)ng-”|aka(t>|wo>} ,

where |Uy) is the N-particle ground state. The relations

() (VD

(\Ilo|aka(t)\\I/(N+1)> — ernBo )t<‘1,0‘ak0m,$lN+1)>’
i (V1) () B
(U Dl (1)) = h 5=

allow us to calculate explicitly the Fourier transform of G, (k,t)e ",

£V _p(N+D)

o S (Dl )|

Gyk,w) = —ZZ/ dte
+i2/_:dte

2 2
(@ Plal wo)| (Y g 00)|

= E +
(N) (N+1) (N-1) (N)
E§ E‘ : E ~E .
n |w+"t—F"—+in wt+tT—F2—1in

BN=1)_ (V)
w— ”H“O_

I (YD aig o)

.(4.19)

The operator aLf in the first term increases the momentum by Ak and the energy

by
BV B = 0 1y

where el ™ .= EVTY E(N+1) is the excitation energy and uy : E(N+1) E(()N)

is the chemical potential. Correspondingly, the operator ay, in the second term
removes a momentum Ak and an energy

E((]N) _ E7(lN—1) = pn_1 — 8%N—l)_

We assume that the differences between the chemical potentials uy and py_1
and between the excitation energies 5,(1Ni1) are of order % and can be neglected.

(There are cases where this is not always true, for instance a semiconductor with
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an energy gap between valence and conduction band.) We define the spectral
densities A(k,w) and B(k,w) by the relations

Alk,w) = ;‘(W%N“)MLA%) 25(w— %") ,
Blk,w) = Zﬂ:\<\pgN—1>|aka\%)\25(w—%") . (4.20)

Both functions vanish for w < 0 and we can write G, (k,w) as an integral

< Ak, w' Bk, W'
Gg(k,w)z/ du { Alkw) | Blw) } (4.21)
0 w—w s Wt w —

In the large volume limit the excitation energies ¢, are expected to be dense
so that the spectral densities become smooth (real and positive) functions of w.
Then the integration in Eq. (4.21) can be separated into real and imaginary
parts,

I A '} 1 __ B
w—w 5 w+w 5

ReG,(k,w) = f:odw’{ Al o) | Blk o) } (4.22)

—TAk,w—-5%) , w>%,

ImGo(k,w) = {wB(k,—w+%) , w< B,

(4.23)

Here f’ indicates the principal part

T2 Tro—¢€ 2
4 dx 7]6(3:) = lim {/ dx 7f(x) —i—/ dx 7f(x) } )
T xr — X e—0 o T — Xy To+e T — X
if £1 < xg < x9, and the imaginary part comes from the semi-circles around the
simple poles. Sometimes one writes symbolically

1 1
li =P i o(x — xp) - 4.24
nlg)lfa;—:voiin x—xoq:m (z = 20) (4.24)

Eq. (4.23) implies that the imaginary part of G(k,w) changes sign for w = p/h.
Inserting Eq. (4.23) into (4.22) we obtain the dispersion relation

1 [ ImG,(k,w' + %) ImG,(k,—w' + £)
ReG,(k,w) = ;f dw’{— PR v s }
0 h h
1 [ I k, '
= ;f_oo dw' % sign (w' — p/h) . (4.25)

4.4 Quasi-particle poles

For independent fermions the Green’s function G, (k,t) is given by Eq. (4.10),
i.e., fort >0

i

Go(k,t) = —id (e}, — p)e w°. (4.26)
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G, (k,w) has a simple pole at % —in for e, > p (cf. Eq. (4.15)). We now discuss
the Green’s function for interacting fermions

G,k t) = / d—we_i“’tGU(k,w).

0o 2T

For w < p G,(k,w) is equal to G4(k,w); therefore it is analytic in the lower
half-plane. For w > u G, (k,w) is equal to Gg(k,w), which is expected to have
singularities in the lower half-plane. We assume that there is a simple pole at
€r — 17,- We can then deform the integration contour as follows:

n

| ®

® ) g Yy

Here G, is replaced by GG 4 to the left of w = u and by G at the right-hand side.
The integral over the horizontal line is very small if ¢ is sufficiently large. One
can also show that the integrals over v; and 7, can be neglected if % Lt K %
(see Abrikosov et al., Section 7.2). This is only possible if v, < (éx — p). In this
case the only contribution arises from the circle surrounding the pole, i.e.

G, (k,t) = —ia e nEkl gD (4.27)

where a is the residue of Gg at the pole. Thus the time dependence (4.26),
which is just that of a single particle, is replaced by that of a quasi-particle with
a renormalized energy & and a finite lifetime % Due to the Pauli principle
scattering processes close to the Fermi surface are strongly reduced so that the
inequality v < (£, — ) appears to be very reasonable in this region. On the other
hand the assumption of a simple pole is not always justified. In one dimension

branch cuts can occur instead.
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