Hand-in Exercise 2 - O-minimal Structures

24 oktober 2014

Problem 1.
Let F denote an ordered field and let R be a nontrivial ordered F-linear space as defined in (7.2). Construe R as a model-theoretic structure for the language $L_F = \{<, 0, -, +\} \cup \{\cdot : \lambda \in F\}$ of ordered abelian groups augmented by a unary function symbol \cdot for each $\lambda \in F$, to be interpreted as multiplication by the scalar λ. Prove:

1. The subsets of R^m definable in the L_F-structure \mathcal{R} using constants are exactly the semilinear sets in R^m.

2. The maps $R \to R$ that are additive and definable using constants are exactly the scalar multiplications by elements of F. A map f is additive iff
 \[\forall r_1, r_2 \in R : f(r_1 + r_2) = f(r_1) + f(r_2). \]

Solution

1. (2 points)
 This little exercise is a good example of the concepts defined in paragraph 5, model-theoretic structures. We have to prove that the subsets of R^m definable in the structure $\text{Def}(\mathcal{R}_R)$ are exactly the semilinear sets in R^m. Since every affine function is definable using constants from R, we conclude that all basic semilinear sets in R^m are definable using constants. This means that the basic semilinear sets are definable using constants in every structure on R that contains the relations and the functions of the L_F-structure. Since every structure has to be a boolean algebra on every level of the structure, we conclude that every structure, containing the basic semilinear sets, defines the semilinear sets. Hence the semilinear sets are defined in $\text{Def}(\mathcal{R}_R)$. Furthermore, Corollary (7.6) shows that $(S_m)_{m \in \mathbb{N}}$, with S_m the boolean algebra of semilinear subsets of R^m, is actually a structure. We conclude that $\text{Def}(\mathcal{R}_R)$ is said structure and that the subsets of R^m definable in $\text{Def}(\mathcal{R}_R)$ are exactly the semilinear sets in R^m. \(\square \)

2. (8 points)
 Notice that the scalar multiplications are indeed definable and additive. (Additivity is a property of scalar multiplication in a vector space).
 Let $f : R \to R$ be an additive map, definable in the L_F-structure \mathcal{R} using constants. Following definition (7.2), we see that R is an ordered additive group and using proposition (4.2), we conclude that R is abelian, divisible and torsion-free. Writing the identity element of R as 0, we see that $f(0) = f(0 + 0) = f(0) + f(0)$. Since R is torsion-free, $f(0)$ has
to be the identity element, so \(f(0) = 0 \). Furthermore, writing the additive inverse of an element \(r \in R \) as \(-r\), we see that \(0 = f(0) = f(r + (-r)) = f(r) + f(-r) \), which means that \(-f(r) = f(-r)\).

In point 1 of the exercise, we saw that \(\text{Def}(R) \) is the structure defined in corollary (7.6), so we can apply the same corollary to see that there is a partition of \(R \) into basic semilinear sets \(A_i \), \((1 \leq i \leq k)\), such that \(f|_{A_i} \) is the restriction to \(A_i \) of an affine function on \(R \), for each \(i \in \{1, \ldots, k\} \). Using this we can write \(f(x) = \lambda x + a_i \) for all \(x \in A_i \), with \(\lambda \in F \), \(a_i \in R \), \(i \in \{1, \ldots, k\} \). Since \(R \) is infinite (for example because it is torsion-free) and our partition finite of definable subsets, there is at least one \(A_i \) such that \(A_i \) contains an interval. Take WLOG \(A_1 \) as such an element in our partition and let \(y, z \in R \) s.t. \((y, z) \subset A_1 \). Let \(x \in (y, z) \) and \(r \in R \) s.t. \(x + r \in (y, z) \). Then we have for all \(r' \in (0, r) \), (so \(x + r' \in (y, z) \subset A_1 \)), the following:

\[
\begin{align*}
 f(r') &= f(x + r' - x) = f(x + r') + f(-x) = f(x + r') - f(x) = \lambda_1(x + r') + a_1 - (\lambda_1 x + a_1) \\
 &= \lambda_1 x + \lambda_1 r' + a_1 - \lambda_1 x - a_1 = \lambda_1 r'.
\end{align*}
\]

Here we used the usual properties of scalar multiplication in a vector space. Write this \(\lambda_1 \) as \(\lambda \). We’ll now first prove that for every \(A_i \) containing an interval, \(\lambda_i = \lambda \). Next we’ll prove that for all \(x \in R \), \(x \in A_j \), that \(f(x) = \lambda_j x + a_j = \lambda x \), concluding our prove that every additive and definable map: \(R \to R \) is a scalar multiplication by elements of \(F \).

Let \(A_1 \) be an element in our partition containing an interval. Then there are \(x \in A_i \), \(r' \in (0, r) \) s.t. \(x + r' \in A_i \). Now we have that \(\lambda_1 x + \lambda_1 r' + a_i = \lambda_i (x + r') + a_i = f(x + r') = f(x) + f(r') = \lambda x + a_i + \lambda r' \). This means that \(\lambda r' = \lambda_j r' \), which implies that \(\lambda = \lambda_j \).

Suppose not and assume WLOG that \(\lambda > \lambda_j \), because we have a linear order on \(F \). Then \((\lambda - \lambda_j) r' > 0 \), but \(\lambda - \lambda_j > 0 \) and \(r' > 0 \). This is in direct contradiction with definition 7.2 of an ordered \(F \)-linear space. We conclude that for every \(A_i \) containing an interval \(\lambda_i = \lambda \).

Next let \(A_j \) be any element of our partition and let \(x \in A_j \). Notice that we have a finite number of sets in our partition, each being a finite union of intervals and points. Since \(R \) is torsion-free and since \(F \) has an infinite number of elements, we conclude that there exist two different \(n_1, n_2 \in F \) s.t. \(n_1 x = (1 + \cdots + 1)x = x + \cdots + x \in A_k \) and \(n_2 x \in A_k \), where \(A_k \) is an element in our partition containing an interval. Hence we have that \(n_1(\lambda_j x + a_j) = n_1 f(x) = f(x) + \cdots + f(x) = f(x + \cdots + x) = f(n_1 x) = \lambda n_1 x + a_k \) and \(n_2(\lambda_j x + a_j) = n_2 f(x) = f(x) + \cdots + f(x) = f(x + \cdots + x) = f(n_2 x) = \lambda n_2 x + a_k \).

If we subtract these expressions from each other, we find that \((n_1 - n_2)(\lambda_j x + a_j) = n_1(\lambda_j x + a_j) - n_2(\lambda_j x + a_j) = \lambda n_1 x + a_k - (\lambda n_2 x + a_k) = (n_1 - n_2)\lambda x \). Again we have used the usual properties of scalar multiplication in a vector space. Furthermore we used that \(F \) has commutative multiplication, since it is by definition an ordered field. Now multiplying with the multiplicative inverse of \((n_1 - n_2)\), which exists since \(n_1 \neq n_2 \), we find that \(f(x) = \lambda_j x + a_j = \lambda x \). This holds for every \(A_j \) in our partition and every \(x \in A_j \), so it holds for every \(x \in R \). We conclude that the maps \(R \to R \) that are additive and definable using constants are exactly the scalar multiplications by elements of \(F \).