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In very recent years, renewed interest in realizability toposes:
Benno van den Berg: the Herbrand Topos (2011)
Theses by Wouter Stekelenburg and Jonas Frey (2013)
Papers by Peter Johnstone (2013)
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Starting point: the notion of a Partial Combinatory Algebra
(pca).
A pca is a set A together with a partial binary map (a, b 7→ ab):
A× A → A. We write ab ↓ for: ab is defined. We also write abc
for (ab)c.
There should be elements k and s satisfying:

kab = a
sab ↓ and, if ac(bc) ↓, then sabc = ac(bc)

Prime example: K1, the set of natural numbers, where nm is the
result (if defined) of the n-th computable function applied to m.
Peter Johnstone calls pcas Schönfinkel Algebras.
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Every pca A admits:
pairing and unpairing combinators: elements π, π0, π1 ∈ A
satisfying π0(πab) = a, π1(πab) = b
Booleans: elements T and F and an element u satisfying
uTab = a, uFab = b (we can pronounce uxyz as: if x then
y else z)
Curry numerals: elements n for every natural number n; for
every computable function f there is an element af ∈ A
such that for every n, af n = f (n)

Eric Faber, Jaap van Oosten More on Geometric Morphisms between Realizability Toposes



Every pca A gives rise to a category of assemblies Ass(A): an
object of Ass(A) (an A-assembly) is a pair (X , E) where X is a
set, and for each x ∈ X , E(x) is a nonempty subset of A.
A morphism (X , E) → (Y , F ) is a function X f→ Y which is
tracked by some b ∈ A: for every x ∈ X and every a ∈ E(x),
ba ∈ F (f (x)).
The category Ass(A) is a quasitopos with a natural numbers
object.
The Realizability Topos on A, RT(A), is the exact completion of
Ass(A) as regular category.
The realizability topos on K1 is Hyland’s Effective Topos, Eff.
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The category Ass(A) comes equipped with functors

Set
∇

// Ass(A)
Γoo

where Γ is the global sections functor and ∇ sends a set X to
the assembly (X , λx .A). We have Γ a ∇
A functor Ass(A) → Ass(B) is a Γ-functor if the diagram

Ass(A)

Γ ##GG
GG

GG
GG

G
// Ass(B)

Γ{{www
ww

ww
ww

Set

commutes.
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Definition(J. Longley) Given pcas A and B, an applicative
morphism A → B is a function γ which assigns to every a ∈ A a
nonempty subset γ(a) of B, in such a way that for some
element r ∈ B (the realizer of γ) the following holds:
whenever ab↓ in A, u ∈ γ(a), v ∈ γ(b), we have ruv ∈ γ(ab).
Composition is composition of relations.
Given two such applicative morphisms γ, δ : A → B, we say
γ ≤ δ if for some element s ∈ B: for all a ∈ A and u ∈ γ(a),
su ∈ δ(a).
We obtain a preorder-enriched category PCA.
Every applicative morphism γ : A → B determines a regular
Γ-functor γ∗ : Ass(A) → Ass(B): it sends (X , E) to (X , F ) where
F (x) =

⋃
a∈E(x) γ(a).

Whenever γ ≤ δ we have a natural transformation γ∗ ⇒ δ∗
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Theorem(J. Longley) There is a biequivalence between the
following two 2-categories:

PCA
The 2-category of categories of the form Ass(A), regular
Γ-functors and natural transformations

Every regular Γ-functor Ass(A) → Ass(B) extends uniquely to a
regular Γ-functor RT(A) → RT(B). We use the same notation
for γ∗ : Ass(A) → Ass(B) and its extension γ∗ : RT(A) → RT(B).
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Suppose f : RT(B) → RT(A) is a geometric morphism such that
the inverse image functor f ∗ restricts to a functor
Ass(A) → Ass(B). Then f ∗ is of the form γ∗ for an essentially
unique applicative morphism γ : A → B.

Can we characterize those applicative morphisms γ for which
γ∗ has a right adjoint?

Hofstra-vO: these are the computationally dense applicative
morphisms. The definition of “computationally dense” was
rather complicated.
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Two theorems of Peter Johnstone

Theorem 1 An applicative morphism γ : A → B is
computationally dense if and only if there exists a function
f : B → A such that γf ≤ idB
(i.e. there exists r ∈ B such that for every b ∈ B and
b′ ∈ γ(f (b)), rb′ = b)

Theorem 2 Every geometric morphism f : RT(A) → RT(B) has
the property that f ∗ restricts to a functor Ass(A) → Ass(B)
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A slight generalization of pcas:
An order-pca (opca) is a partially ordered set with a partial
binary application function, such that:

If ab↓, a′ ≤ a and b′ ≤ b then a′b′↓ and a′b′ ≤ ab
there is an element k such that kab ≤ a for all a
there is an element s such that sab↓, and whenever
ac(bc)↓, sabc ≤ ac(bc)

Prime example: given a pca A, let T (A) be the set of nonempty
subsets of A. For α, β ∈ T (A) say αβ↓ if for all a ∈ α, b ∈ β, ab↓
in A; then αβ = {ab |a ∈ α, b ∈ β}

For opcas A, B, an applicative morphism A → B is a function
f : A → B for which there exist elements u, r ∈ B satisfying:

whenever a ≤ b in A, uf (a) ≤ f (b) in B
whenever ab↓ in A, rf (a)f (b) ≤ f (ab) in B
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Many things generalize:
There is an order-enriched category OPCA of order-pcas,
applicative morphisms and inequalities
There is, for each order-pca A, a category of assemblies
Ass(A): assemblies (X , E) now satisfy that E(x) is a
nonempty downward closed subset of A
There is the realizability topos RT(A)

Moreover, if for an opca A we let T (A) be the opca on the set of
nonempty downwards closed subsets of A, them T extends to a
2-monad on the 2-category OPCA.

The category Ass(T (A)) is the regular completion (in the sense
of Carboni) of the category Ass(A).
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Definition. Let A, B be pcas. A proto-applicative morphism
A → B is an applicative morphism of opcas T (A) → T (B).

We have the following variation on Longleys result:

Theorem There is a biequivalence between the following two
2-categories:

Pcas, proto-applicative morphisms and inequalities
The 2-category of categories of the form Ass(A), finite-limit
preserving Γ-functors and natural transformations

Note: every applicative morphism γ : A → B gives a
proto-applicative morphism γ̃ : A → B
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Corollary 1. The following are equivalent for an applicative
morphism γ : A → B:

γ is computationally dense
There is an applicative morphism δ : B → A such that
γδ ≤ idB

γ̃ has a right adjoint
Corollary 2. The following are equivalent:

A geometric morphism RT(A) → RT(B)

An adjunction Ass(A)
f∗

// Ass(B)
f∗oo , f ∗ a f∗, such that f ∗

preserves finite limits
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Geometric Inclusions
An applicative morphism γ : A → B induces an inclusion of
toposes: RT(B) → RT(A) if and only if there is an applicative
δ : B → A such that γδ ' idB
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Regular Geometric Morphisms
Call a geometric morphism regular if its direct image is a
regular functor.

For a computationally dense applicative morphism γ : A → B
the following are equivalent:

the geometric morphism induced by γ is regular
γ has a right adjoint in PCA
γ is projective, that is: isomorphic to a single-valued
relation.

This is because γ is projective iff γ∗ preserves projective
objects iff (given that categories of the form Ass(A) have
enough projectives) the right adjoint to γ∗ preserves regular
epis (and is therefore induced by an applicative morphism)
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Example. Consider Krec
2 , this is a pca structure on the set of

total recursive functions. There is a computationally dense
applicative morphism

γ : Krec
2 → K1

where γ sends a recursive function to the set of its indices. This
cannot be isomorphic to a single-valued relation, so γ is not
projective and has no right adjoint in PCA.

Eric Faber, Jaap van Oosten More on Geometric Morphisms between Realizability Toposes



Intermezzo: Total pcas.
A pca A is total if ab↓ always. Call a pca almost total if for every
a there is a′ such that a′b↓ always, and whenever ab = c, also
a′b = c.
A pca is called decidable if there is d ∈ A such that for all
a, b ∈ A: daa = T and dab = F if a 6= b.

We know:
(Johnstone, Robinson) Eff is not equivalent to RT(A) for A
total
(vO) Every total pca is isomorphic to a nontotal one
(vO) Every RT(A) is covered by some RT(B) with B total

Furthermore:
A decidable pca is never almost total
A pca A is almost total iff there is g ∈ A such that for all
a ∈ A, gab↓ always, and whenever ab = c then gab = c
A pca is almost total iff it is isomorphic to a total pca.
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Decidable Applicative Morphisms
Definition (Longley) An applicative morphism γ : A → B is
decidable iff γ∗ preserves finite coproducts (equivalently, if γ∗

preserves the NNO)

Clearly, every computationally dense morphism is decidable.

There is, for every pca A, exactly one decidable morphism
K1 → A: it sends n to n̄, the n-th Curry numeral in A.

Definition. Let γ : A → B be applicative. A partial endofunction
f on A is representable w.r.t. γ if there is an element b such
that, whenever f (a) = a′ then bγ(a) ⊆ γ(a′)
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Construction. Given a pca A and a partial endofunction f on
A, there is a universal decidable morphism ιf : A → A[f ] w.r.t.
which f is representable: whenever γ : A → B is decidable and
f is representable w.r.t. γ, then γ factors uniquely through ιf

The construction generalizes that of forming the pca of partial
functions computable in an oracle.

The morphism ιf is computationally dense and induces a
geometric inclusion: RT(A[f ]) → RT(A).

Theorem If A is such that RT(A) is a subtopos of Eff, then A is
equivalent to K1[f ] for some partial function f on the natural
numbers.
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Local Operators in RT(A)
Let us write, for subsets U, V of A:

U ⇒ V = {a ∈ A | for all b ∈ U, ab ∈ V}
U × V = {πab |a ∈ U, b ∈ V}

A local operator in RT(A) is given by a map J : P(A) → P(A)
such that the sets⋂

U⊆A U ⇒ J(U)⋂
U⊆A J(J(U)) ⇒ J(U)⋂
U,V⊆A(U ⇒ V ) ⇒ (J(U) ⇒ J(V ))

are all nonempty.

Example. J(U) = {a ∈ A |U is nonempty}. This is the
¬¬-operator, corresponding to the inclusion Set → RT(A).
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Given any monomorphism m in a topos, there is a least local
operator for which m is dense (i.e., the sheafification of m is an
isomorphism).

Example. Consider a pca A and a partial function f on A, with
domain A′ ⊆ A. Consider the A-assemblies (A′, E1) and (A′, E2)
where E1(a) = {πaf (a)} and E2(a) = {a}. The identity on A′

gives a monomorphism (A′, E1) → (A′, E2). The least local
operator for which m is dense, corresponds to the inclusion of
RT(A[f ]) in RT(A). This generalizes a result by Hyland for the
effective topos.

Example. Consider, for a pca A, the A-assemblies 2 = 1 + 1
and ∇(2). Explicitly: 2 = ({0, 1}, E) with E(0) = {F} and
E(1) = {T} and ∇(2) = ({0, 1}, E) with E(0) = E(1) = A.
Theorem (Hyland) The least local operator in Eff for which the
inclusion of 2 in ∇(2) is dense, is ¬¬.
Let us look at this in arbitrary pcas.
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Lemma 1 (Hyland-Pitts) Let J be a local operator in RT(A) with
J(∅) = ∅. Then J = ¬¬ if and only if

⋂
a∈A J({a}) 6= ∅

Lemma 2 The least local operator in RT(A) for which 2 → ∇(2)
is dense, can be given as

J(X ) = ({T} × X ) ∪ ({F} ×
⋃
u

({u} ⇒ {T} × X ))

where u runs over all coded finite sequences (in A) of F’s and
T’s.

Since there is, in A, an A-definable bijection between such
coded sequences and the natural numbers, we get

Lemma 3 The local operator J from Lemma 2 is equal to ¬¬, if
and only if there is an element h ∈ A satisfying: for every a ∈ A
there is a natural number n such that hn̄ = a.

Theorem The least local operator in RT(A) making 2 → ∇(2)
dense, is equal to ¬¬ precisely if there exists a (necessarilty
unique) geometric morphism from RT(A) to Eff.
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Obviously, the condition that
for some h ∈ A, for all a ∈ A there is n with hn̄ = a

can only hold for countable pcas.

Example. Let A be a countable nonstandard model of Peano
Arithmetic. A is a pca, by putting ab = c iff

A |= ∃y(T (a, b, y) ∧ U(y) = c)

where T and U are Kleene’s symbols for ‘computation’ and
‘result’ respectively.

For each h ∈ A we have the type
{∀y(T (h, n, y) → U(y) 6= x) |n ∈ N}

Every nonstandard model is saturated w.r.t. these types, so this
type is satisfied in A. We conclude that there is no geometric
morphism from RT(A) to Eff.
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Assume J is a local operator on RT(A) satisfying:
J({a}) ∩ J({b}) = ∅ if a 6= b

(This implies that the inclusion 2 → ∇(2) is not J-dense)
We have a partial binary function on A: say

a ∗ b = c iff ab ∈ J({c})
Theorem. (A, ∗) is a pca. Actually, (A, ∗) is isomorphic to A[f ]
where f is the partial function such that a ∈ J({f (a)}).

We have ShJ(RT(A)) → RT(A[f ]) → RT(A)
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Computable Functionals of Type 2
Recall that a partial function A f→ A is representable w.r.t. an
applicative morphism γ : A → B if for some b ∈ B we have:
whenever f (a) = a′ then bγ(a)↓ and bγ(a) ⊆ γ(a′).
Say such a b represents f w.r.t. γ

Totγ is the set of total functions A → A that are representable
w.r.t. γ.
For f ∈ Totγ , let Iγ1 (f ) be the set of elements of B which
represent f w.r.t. γ

Now look at a partial operation AA F→ A. We say F is a
computable functional of type 2 w.r.t. gamma if for some b ∈ B
we have: whenever f ∈ Totγ and F (f ) is defined, then bIγ1 (f )↓
and bIγ1 (f ) ⊆ γ(F (f )).
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Theorem. Let A be a pca, F : AA → A a partial operation.
There is a decidable applicative morphism ιF : A → A[F ] with
respect to which F is a computable functional of type 2, and
which moreover is universal with this property:
whenever γ : A → B is decidable and F is a computable
functional of type 2 w.r.t. γ, then γ factors uniquely through ιF

The pca A[F ] is actually a pca of the form A[f ] for some partial
function f : A → A. The morphism ιF is computationally dense,
and induces a geometric inclusion: RT(A[F ]) → RT(A)
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S.C. Kleene has set up a theory of things ‘computable in F ’ for
partial operations F : NN → N; this is axiomatized by his
famous clauses ‘S1–S9’.

Theorem. If F : NN → N is a partial operation, then a partial
function N f→ N is computable in F in Kleene’s sense, if and
only if f is representable w.r.t. ιF

Example Let E be the operation NN → N given by

E(f ) =

{
0 if for some n, f (n) = 0
1 else

The E-computable functions are precisely the hyperarithmetical
functions. For a local operator J on Eff defined by A. Pitts in his
thesis, we proved earlier that the total functions N → N in
ShJ(Eff) are precisely the hyperarithmetical functions. Hence,

ShJ(Eff) ⊂ RT(K1[E ]) ⊂ Eff
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Application
Our definition of pca was a little weaker than often seen.
Most authors require s to satisfy:
(∗) sab↓, and (sabc↓ ⇔ ac(bc)↓) etc.
Let us call a pca satisfying (∗), strict.

Theorem. Every pca is isomorphic to a strict pca.
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