
Synthetic Nonstandard Arithmetic

Jaap van Oosten

Department of Mathematics, Utrecht University

Kolloquium des Fachbereichs Mathematik der TU Darmstadt
May 11, 2011



Infinitesimals in Antiquity

Antiphon (contemporary of Socrates):
If one inscribed any regular polygon, say a square, in a circle, then

inscribed an octagon by constructing isosceles triangles in the four

segments, then inscribed isosceles triangles in the remaining eight

segments, and so on until the whole area of the circle was by this

means exhausted, a polygon would thus be inscribed whose sides,

in consequence of their smallness, would coincide with the

circumference of the circle



Euler, Cauchy:
Euler writes 2 sinh x = (1 + x

n
)n − (1− x

n
)n “for infinitely large n”.

Then n is treated as a classical natural number (which, for
example, is either even or odd). Euler then derives the formula

sin z = z

∞∏

k=1

(1 − z2

k2π2
)

Cauchy proved: the pointwisse limit of a convergent sequence of
continuous functions is continuous.



A bit of Logic

A first-order language consists of:

◮ a set F of symbols for functions

◮ a set R of symbols for relations

◮ a set C of symbols for fixed elements (constants)

◮ logical symbols ∧,∨,→,¬,∀,∃
◮ variables x , y , z , . . .

◮ the equality symbol =



Terms and formulas

Every variable and every constant are terms. If f is a function
symbol (for a function of n arguments) and t1, . . . , tn are terms,
then f (t1, . . . , tn) is a term.

If R is a relation symbol (for a set of n-tuples) and t1, . . . , tn are
terms, then R(t1, . . . , tn) is a formula; if t and s are terms then
t = s is a formula.
If φ and ψ are formulas then φ ∧ ψ, φ ∨ ψ, φ→ ψ and ¬φ are
formulas; if φ is a formula and x a variable, then ∀xφ and ∃xφ are
formulas.



Models

Given a set M such that for every function symbol f of n

arguments we are given a function f M : Mn → M, for every
relation symbol R of n arguments we are given a set RM ⊆ Mn,
and for every constant c we are given an element cM of M.
Then M is called a model for this language, and we have a
straightforward definition of what it means that a formula φ is true

in M for elements a1, . . . , an of M, denoted:

M |= φ[a1, . . . an]



Example

Consider the language with one binary relation symbol R . We can
look at two different models M: M1 is N, with

RM1 = {(n,m) : n ≤ m}

and M2 is N with

RM2 = {(n,m) : n|m}

Then M1 |= R(x , y)[0, 1]; M2 |= ¬R(x , y)[0, 1]. In both models,
the formulas ∀xR(x , x) and
∀x∀y∀z((R(x , y) ∧ R(y , z)) → R(x , z)) are true (both relations
are partial orders); moreover,

M1 |= ∀x∀y(R(x , y) ∨ R(y , x))

but this does not hold for M2.



A language for the real numbers

Consider the language LR which has a function symbol f for every
function f : R

n → R, a relation symbol R for every subset R ⊆ R
n

and a constant a for every a ∈ R.
Clearly, R can be made into a model of LR.

Theorem. There is a model ∗
R of LR such that R ⊂ ∗

R and for
every formula φ of LR and every a1, . . . , an ∈ R we have

R |= φ[a1, . . . , an] ⇔ ∗
R |= φ[a1, . . . , an]

and moreover, in ∗
R there is an element c such that c > n for all

natural numbers n.
The number c is called a nonstandard number. The elements of R

are called standard numbers.



Infinitesimals

Let c ∈ ∗
R be nonstandard. Then we have 0 < 1

c
< 1

n
for every

natural number n > 0. We call 1
c

an infinitesimal.
For x , y ∈ ∗

R, write x ≃ y for: |y − x | is either 0 or an
infinitesimal.
We have compact definitions of continuity and differentiation:
f : ∗

R → ∗
R is continuous at x if for every infinitesimal y ,

f (x + y) ≃ f (x)
f : ∗

R → ∗
R is differentiable at x with derivative f ′(x) = y if and

only if for every infinitesimal h:

f (x + h) − f (x)

h
≃ f ′(x)



From ∗
R back to R

Call ξ ∈ ∗
R bounded if there is x ∈ R such that ξ < x .

Theorem For every bounded ξ ∈ ∗
R there is a unique

x = st(ξ) ∈ R (the standard part of ξ), such that x ≃ ξ.
Proof. Suppose ξ > 0. Let x = sup{y ∈ R : y < ξ}.
Now suppose f : R → R is differentiable at x ∈ R. Let
∗f : ∗

R → ∗
R be its extension to ∗

R. We have:

f ′(x) = st(
∗f (x + h) − ∗f (x)

h
)

for any infinitesimal h.



Nonstandard Arithmetic

The language LPA of Peano Arithmetic has function symbols for
the function S(x) = x + 1, and for the functions addition and
multiplication. It has one constant 0. Clearly, N is a model of LPA;
it is called the standard model.
The order x < y is defined by the formula

x < y ≡ ∃z(x + S(z) = y)

Similarly as before, we have:
Theorem There is a model ∗

N for the language LPA such that
N ⊂ ∗

N and for every formula φ of LPA and every tuple of natural
numbers a1, . . . , an we have:

N |= φ[a1, . . . , an] ⇔ ∗
N |= φ[a1, . . . , an]

and moreover, ∗
N contains a nonstandard element c, such that

c > n for all natural numbers n.



Proof. Let ∗
N be the extension of the subset N ⊂ R to ∗

R. That
is,

∗
N = {x ∈ ∗

R : ∗
R |= x ∈ N}

Since R |= ∀x∃y(x < y ∧ y ∈ N), the same holds for ∗
R. So ∗

N

contains nonstandard elements.

Theorem There is no LPA − formula φ and a tuple b1, . . . , bn of
elements of ∗

N such that, for every a ∈ ∗
N we have:

∗
N |= φ[b1, . . . , bn, a] ⇔ a ∈ N



Proof. In ∗
N, the formula

∀y1∀y2 · · · ∀yn(φ(~y , 0) ∧ ∀z(φ(~y , z) → φ(~y ,S(z)))
→ ∀zφ(~y , z))

is true.

Corollary 1 (Overspill) Given φ and b1, . . . , bn as before. If for
every n ∈ N there is an m > n, m ∈ N such that ∗

N |= φ[~b,m],
then there is a nonstandard number c such that ∗

N |= φ[~b, c].

For, otherwise the formula ∃y(x < y ∧ φ(~b, y)) would define N.

Corollary 2 (Underspill) Given φ and ~b as above, if for every
nonstandard c there is a nonstandard d < c such that
∗
N |= φ[~b, d ], then there is a standard number n such that

∗
N |= φ[~b, n].



Example (application of Overspill):

Let a ∈ ∗
N be nonstandard. Define a

1
N by

a
1
N = {b ∈ ∗

N : bn < a for all n ∈ N}

Note: the exponential function is LPA-definable over ∗
N

Then a
1
N contains N, hence by Overspill it contains a nonstandard

element. It is the largest subset of ∗
N which is closed under + and

· and does not contain a.



What does ∗
N look like as ordered set?

Answer: N + (Q × Z) where Q is a dense linear order without end
points.



Applications of nonstandard methods (1)
L. van den Dries and K. Schmidt (Inventiones Math. 76, 1984):

Let I an ideal of K [X1, . . . ,Xn] generated by polynomials of degree

≤ d. Then there are bounds B = B(n, d) and C = C (n, d) such

that:

1. I is prime if and only if for all f , g ∈ K [~X ] of degree ≤ B,

fg ∈ I implies f ∈ I or g ∈ I ;

2.
√

I is generated by polynomials of degree ≤ B, and for

f ∈ K [~X ], if f ∈
√

I then f C ∈ I .

Moreover the bounds B and C work for any field K and any ideal I



Applications of nonstandard methods (2)
L. van den Dries and A. Wilkie (Journ. of Algebra 89, 1984):

Let Γ be a group generated by a finite set X . Define a growth

function G : N → N by: G (n) is the number of elements of Γ
which are represented by a word in X ∪ X−1 of length ≤ n.
Γ is said to have polynomial growth if for some c , d :

G (n) ≤ cnd for n sufficiently large

The authors prove a slightly generalized version of Gromov’s

Theorem: if Γ has polynomial growth, it has a nilpotent subgroup
of finite index.



Applications of nonstandard methods (3)
L. van den Dries (Foundations of computational mathematics 3,
2003):

Any algorithm for the greatest common divisor function which is
based on a primitive recursive definition, is necessarily extremely
inefficient.



Applications in Teaching:

J. Keisler has written the text Elementary Calculus: an Approach

using Infinitesimals (1970’s): an elementary text book on Analysis
that was actually used at several universities.



Towards “Synthetic Nonstandard Arithmetic”

Synthetic reasoning: using axioms, not ‘hardware’ of the model.
Reasons:
1. The models ∗

R and ∗
N are hard to analyze concretely.

2. More often than not, reasoning in applications is totally
independent of the particular model.



Axiom systems for Nonstandard Arithmetic/Analysis:

J. Keisler: recent papers investigating one such axiomatics in the
context of ‘reverse mathematics’ (e.g. Nonstandard arithmetic and

recursive comprehension, APAL 161, 2010)

Benci and Di Nasso, Alpha Theory, Expositiones Math. 21 (2003).
Based on their papers on ‘numerosities’; work in an extension of
ZFC.

For us, the most inspiring axiomatics is Internal Set Theory



Edward Nelson: Internal Set Theory (IST)

Extend the language of Zermelo-Fraenkel Set Theory by one extra
(unary) relation symbol st(x) for: “x is standard”.
A formula which does not contain st is called internal.
We employ quantifiers

∃stxφ ≡ ∃x(st(x) ∧ φ)
∀stxφ ≡ ∀x(st(x) → φ)



Axioms of IST: Transfer

For φ internal the axiom

∀stx1 · · · ∀stxn (∀styφ↔ ∀yφ)

or equivalently

∀stx1 · · · ∀stxn (∃styφ↔ ∃xφ)

This axiom implies that every set which is uniquely defined by an
internal formula is standard.



Axioms of IST: Idealisation

For φ internal, the axiom

∀stfinz∃y∀x ∈ zφ ↔ ∃y∀stxφ

Taking y 6= x for φ gives: there is a nonstandard set y .
Moreover:

If S is a standard finite set, then all its elements are standard
Every infinite set contains a nonstandard element
There is a finite set which contains every standard set.



Axioms of IST: Standardisation

For arbitrary φ, the axiom

∀stx∃sty∀stz(z ∈ y ↔ z ∈ x ∧ φ)

Caveat: the usual set formation rules in set theory apply only for
internal formulas. For φ not internal, the set {y ∈ x : φ} is not
guaranteed to exist. But there is a set which contains exactly the
standard y ∈ x which satisfy φ. It is denoted S{z ∈ x : φ}.



Example of a non-standard proof.

Theorem (De Bruijn and Erdös, 1951): if G is a graph such that
every finite subgraph admits a k-colouring, then so does G .
Proof: assume, by Transfer, that G and k are standard. By
Idealization, there is a finite subgraph F of G containing all its
standard elements; by hypothesis F has a k-colouring f .
Let g = S f . Since f takes only standard values, every standard
element of G is in the domain of g . By Transfer, every element of
G is in the domain of g . Toverify that g is a k-colouring, it
suffices, by Idealization, to examine the standard elements, where
it agrees with f . This concludes the proof.



Intuitionistic Arithmetic

Intuitionistic logic does not contain the ‘tertium non datur’ φ∨¬φ,
or the rule that if the assumption ¬φ leads to a contradiction, then
φ must be true (we can only deduce that ¬¬φ is true).

Intuitionistic Arithmetic has the same language as Peano
Arithmetic (0,S,+,·) and the following axioms:
1.S(x) 6= 0
2.S(x) = S(y) → x = y

3.x + 0 = x

4.x + S(y) = S(x + y)
5.x ·0 = 0
6.x ·S(y) = x ·y + x

7.φ(0) ∧ ∀x(φ(x) → φ(S(x))) → ∀xφ(x)
The last is a family of axioms, induction axioms.



Although φ ∨ ¬φ is not part of intuitionistic logic, one can derive
certain instances of it, using the induction axioms:

We can prove ∀x∀y(x = y ∨ x 6= y), ∀x∀y(x < y ∨ x = y ∨ x > y),
in general ψ ∨ ¬ψ if ψ is formed using:
propositional connectives ∧,∨,¬,→ and
bounded quantifiers ∀x < t, ∃x < t.

However, there are formulas of the form ∀xφ, with one unbounded
quantifier (so, φ is quantifier-free), for which ‘tertium non datur’
fails.



Intuitionistic Nonstandard Arithmetic: a first problem

Suppose we reason intuitionistically, and we consider a model of
nonstandard arithmetic ∗

N with nonstandard elements, for which
we have full transfer in the sense that for any formula φ(~x) with
~x ∈ N, we have:

N |= φ ⇔ ∗
N |= φ

Then we can prove for any formula of the form ∀yΦ with Φ
quantifier-free:

∀yΦ ∨ ¬∀yΦ

contradicting our earlier conclusions.
For, let a be a nonstandard element of ∗

N. Intuitionistically we can
prove ∀x(∀y < xΦ ∨ ∃y < x¬Φ), so either ∗

N |= ∀y < aΦ holds,
or ∗

N |= ¬∀yΦ. The first implies N |= ∀yΦ since every standard
number is smaller than every nonstandard number; the second
implies N |= ¬∀yΦ by transfer.

In the form ∀st~x(Ast ↔ A), the transfer principle implies the
tertium non datur for all internal formulas.



Some recent work on intuitionistic nonstandard arithmetic/analysis

Palmgren (A constructive approach to nonstandard analysis, APAL
73, 1995) sets up an axiomatic system for intuitionistic arithmetic
in all finite types (a system for N but also for functions N → N,
functionals N

N → N and so on).
He adds an infinite element ∞ of type the integers, has a limit

principle:
∀xσ∃sty0→σ(x = y∞)

and a principle for ‘equality in the limit’:

∀stx0→σ∀sty0→σ [x∞ = y∞ ↔ ∃stk∀stn ≥ k(xn = yn)]



Moerdijk (A model for intuitionistic nonstandard arithmetic, APAL
73, 1995) constructs a sheaf model for nonstandard arithmetic in a
constructive universe. The internal theory is classical, but
¬∀x(st(x) ∨ ¬st(x)) holds. The model satisfies the full transfer
principle and is, in a nonstandard way, an elementary extension of
N.



Moerdijk and Palmgren (Minimal models of Heyting arithmetic
(JSL 62, 1997) build further on this and construct ‘minimal models
of arithmetic’, that is: models which in a similar sense as Moerdijk
1995, elementarily embed in every other model.
They also consider nonstandard models Their theory contains an
explicit axiom for overspill:

∀styA(~x , y) → ∃y [¬st(y) ∧ ∀u < yA(~x , u)]

Palmgren (Developments in constructive nonstandard analysis,
BSL 4, 1998) develops an impressive body of constructive analysis
by nonstandard methods.



Avigad and Helzner (Transfer principles in nonstandard
intuitionistic arithmetic, Arch. Math. Logic 41, 2002), analyze
carefully what forms of transfer can be allowed without forcing
classical logic.

Van den Berg, Briseid, Safarik (A functional interpretation for
non-standard arithmetic, unpublished, 2011) have an original
realizability interpretation for nonstandard arithmetic in all finite
types which validates Nelson’s Idealization principle:

∀stxσ∃y τ∀i ≤ |x |φ(xi , y) → ∃y τ∀stxσφ(x , y)

which is stronger than Overspill.


