Local Operators in the Effective Topos

Jaap van Oosten (joint work with Sori Lee)

Department of Mathematics, Utrecht University

Proofs and Programs, Luminy, February 16, 2012

If \mathcal{E} is a topos and \mathcal{C} is a full subcategory of \mathcal{E} with the properties: \mathcal{C} is closed under finite limits in \mathcal{E} the embedding $\mathcal{C} \to \mathcal{E}$ has a left adjoint which preserves finite limits

< D > < 同 > < E > < E > < E > < 0 < 0</p>

then C is also a topos, and called a *subtopos* of \mathcal{E} . Subtoposes of \mathcal{E} correspond to *local operators on* \mathcal{E} . Why study local operators in the effective topos?

- "Because it's there" (Mallory); subtoposes form an intrinsic piece of structure of the topos
- local operators form a Heyting algebra into which the semilattice of Turing degrees embeds; hence a playground for doing recursion theory

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 local operators define new notions of realizability (also for classical theories) In a topos with a subobject classifier $1 \xrightarrow{\top} \Omega$ (Ω is to be thought of as the 'set of subsets of a one-element set', and \top names the maximal such subset), a *local operator* is a map $j : \Omega \to \Omega$ which satisfies:

i)
$$\forall pq.(p \rightarrow q) \rightarrow (jp \rightarrow jq) (j \text{ is monotone})$$

ii)
$$j \top = \top (j \text{ preserves } \top)$$

iii)
$$\forall p.jjp \rightarrow jp \ (j \text{ is } idempotent)$$

These properties imply: $\forall pq.j(p \land q) \leftrightarrow jp \land jq$

A local operator can be regarded as a modal operator on the type theory of the topos.

The effective topos $\mathcal{E}ff$ (Hyland 1980) is based on indices of partial recursive functions. For $e, x \in \mathbb{N}$ we write ex for $\varphi_e(x)$, the result of applying the *e*-th partial recursive function to *x*. We also write $ex \downarrow$ for: *ex is defined*, i.e. $\exists yT(e, x, y)$. We employ a primitive recursive coding of pairs $\langle a, b \rangle$ and sequences $\langle a_0, \ldots, a_{n-1} \rangle$. Let $A, B \subseteq \mathbb{N}$. We write:

$$A \land B = \{ \langle a, b \rangle | a \in A, b \in B \}$$

$$A \to B = \{ e | \text{ for all } a \in A, ea \downarrow \text{ and } ea \in B \}$$

This is the *logic of realizability*

The effective topos (continued) Objects of $\mathcal{E}ff$: pairs $(X, \llbracket \cdot = \cdot \rrbracket)$ where X is a set and for $x, y \in X$, $\llbracket x = y \rrbracket$ is a subset of \mathbb{N} such that the sets

$$\bigcap_{x,y\in X} \llbracket x = y \rrbracket \to \llbracket y = x \rrbracket$$
$$\bigcap_{x,y,z\in X} (\llbracket x = y \rrbracket \land \llbracket y = z \rrbracket) \to \llbracket x = z \rrbracket$$

are nonempty.

An arrow $(X, \llbracket \cdot = \cdot \rrbracket) \to (Y, \llbracket \cdot = \cdot \rrbracket)$ is represented by a function $F : X \times Y \to \mathcal{P}(\mathbb{N})$ which satisfies conditions...

In *Eff*, the subobject classifier is
$$1 \xrightarrow{\top} \Omega$$
 where:
 $1 = (\{*\}, \llbracket \cdot = \cdot \rrbracket)$ with $\llbracket * = * \rrbracket = \mathbb{N}$
 $\Omega = (\mathcal{P}(\mathbb{N}), \llbracket \cdot = \cdot \rrbracket)$ with $\llbracket A = B \rrbracket = (A \to B) \land (B \to A)$
A *monotone map*: $\Omega \to \Omega$ is given by a function $f : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$
for which

$$E_m(f) = igcap_{p,q\subseteq\mathbb{N}}(p o q) o (fp o fq)$$

is a nonempty set.

Define also:

$$\begin{array}{lll} E_{\top}(f) &=& f(\mathbb{N})\\ E_{\mathrm{id}}(f) &=& \bigcap_{p \subseteq \mathbb{N}}(ffp \to fp) \end{array}$$

A local operator $\Omega \to \Omega$ is given by a function $f : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ for which $E_m(f)$, $E_{\top}(f)$ and $E_{id}(f)$ are nonempty. Let

$$E_{\mathrm{loc}}(f) = E_m(f) \wedge E_{\top}(f) \wedge E_{\mathrm{id}}(f)$$

For monotone maps $f,g:\mathcal{P}(\mathbb{N})
ightarrow\mathcal{P}(\mathbb{N})$ we write

$$\llbracket f \leq g \rrbracket = \bigcap_{p \subseteq \mathbb{N}} fp \to gp$$

ション ヘロン イロン トロン しょうくう

There is a function L, acting on monotone maps f, such that L(f) is a monotone map, and there are indices e_1 and e_2 such that

$$\begin{array}{rcl} e_1 & \in & \bigcap_f E_m(f) \to (E_{\mathrm{loc}}(L(f)) \land \llbracket f \leq L(f) \rrbracket) \\ e_2 & \in & \bigcap_{f,g} (E_m(f) \land E_{\mathrm{loc}}(g) \land \llbracket f \leq g \rrbracket) \to \llbracket L(f) \leq g \rrbracket \end{array}$$

L(f) is the local operator generated by f. **Theorem** (Pitts) The map L can be defined by

$$L(f)(p) = \bigcap \{q \subseteq \mathbb{N} \,|\, (\{0\} \land p) \subseteq q \text{ and } (\{1\} \land fq) \subseteq q\}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Suppose $\{f_n \mid n \in A\}$ is an internal (recursive) family of monotone maps indexed by a nonempty set $A \subseteq \mathbb{N}$. That means: for some $e \in \mathbb{N}$ we have

$$\forall n \in A (en \in E_m(f_n))$$

Then the join $\bigvee_{n \in A} f_n$ is given by

$$(\bigvee_{n\in A} f_n)(p) = \{\langle n, x \rangle \mid x \in f_n(p)\}$$

We have for arbitrary monotone $g: \bigcap_{n \in A} (\{n\} \to \llbracket f_n \leq g \rrbracket)$ is nonempty if and only if $\llbracket \bigvee_{n \in A} f_n \leq g \rrbracket$ is nonempty.

Let \mathcal{A} be a *nonempty* subset of $\mathcal{P}(\mathbb{N})$ (we write $\mathcal{A} \in \mathcal{P}^*\mathcal{P}(\mathbb{N})$). Define:

$$G_{\mathcal{A}}(p) = \bigcup_{A \in \mathcal{A}} (A \to p)$$

Then $G_{\mathcal{A}}$ is monotone. $G_{\mathcal{A}}$ is the least f such that $\bigcap_{A \in \mathcal{A}} f(A) \neq \emptyset$ Every nontrivial monotone map f is a recursive join of such $G_{\mathcal{A}}$: let $A = \bigcup_{p \subseteq \mathbb{N}} f(p)$ and for $n \in A$ let $f_n = G_{\{q \subseteq \mathbb{N} \mid n \in fq\}}$. Then $f \simeq \bigvee_{n \in A} f_n$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Every local operator $j : \Omega \rightarrow \Omega$ satisfies

$$\operatorname{id}_{\Omega} \leq j \leq \lambda p.\top$$

We call λp . \top the *trivial* local operator (it corresponds to the degenerate topos).

Known results about local operators in Eff:

1. There is the 'double negation' local operator $\neg\neg$:

$$eg \neg p = \left\{ egin{array}{cc} \mathbb{N} & ext{if } p
eq \emptyset \ \emptyset & ext{otherwise} \end{array}
ight.$$

- 2. For a monotone map f we have:
- a. L(f) is trivial if and only if $f(\emptyset) \neq \emptyset$ b. L(f) is isomorphic to $\neg \neg$ if and only if $f(\emptyset) = \emptyset$ and $L(f)(\{0\}) \cap L(f)(\{1\}) \neq \emptyset$

More known results: (Pitts) Let $\mathcal{A} = \{\{m \mid m \ge n\} \mid n \in \mathbb{N}\}$. Then $\mathrm{id} < L(\mathcal{G}_{\mathcal{A}}) < \neg \neg$ For an arbitrary function $\alpha : \mathbb{N} \to \mathbb{N}$ let $\rho(n) = \{\{\alpha(n)\}\}$ Then for $j = L(\bigvee_{n \in \mathbb{N}} \mathcal{G}_{\rho(n)})$ we have that

$$\bigcap_{n\in\mathbb{N}}\{n\}\to j(\{\alpha(n)\})\neq\emptyset$$

(this means that the function α determines a total map from N to N in the topos corresponding to j), and j is the *least* local operator with this property. Let us denote j by j_{α} . **Theorem** (Hyland) For $\alpha, \beta : \mathbb{N} \to \mathbb{N}$ we have: $j_{\alpha} \leq j_{\beta}$ if and only if $\alpha \leq_{\mathcal{T}} \beta$ (α is Turing reducible to β)

Back to monotone maps. Such f can be written as $f = \bigvee_{n \in B} G_{\theta(n)}$ for $\theta : B \to \mathcal{P}^* \mathcal{P}(\mathbb{N})$ We wish to study the map L(f):

$$L(f)(p) = \bigcap \{q \subseteq \mathbb{N} \,|\, (\{0\} \land p) \subseteq q \text{ and } (\{1\} \land fq) \subseteq q\}$$

Equivalently, $L(f)(p) = L'(f)(p)_{\omega_1}$ where

$$\begin{array}{rcl} L'(f)(p)_0 &=& \{0\} \wedge p \\ L'(f)(p)_{\alpha+1} &=& L'(f)(p)_{\alpha} \cup (\{1\} \wedge f(L'(f)(p)_{\alpha})) \\ L'(f)(p)_{\lambda} &=& \bigcup_{\beta < \lambda} L'(f)(p)_{\beta} \text{ for } \lambda \text{ a limit} \end{array}$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Definition A *sight* is, inductively,

either a thing called NIL

or a pair (A, σ) with $A \subseteq \mathbb{N}$ and σ a function on A such that $\sigma(a)$ is a sight for each $a \in A$.

To any sight S we associate a well-founded tree Tr(S) of coded sequences of natural numbers, as well as a subset of its set of leaves (which we call *good leaves*), by induction:

If S = NIL then $\text{Tr}(S) = \{\langle \rangle\}$ and $\langle \rangle$ is a good leaf;

if $S = (\emptyset, \emptyset)$ then $\operatorname{Tr}(S) = \{\langle \rangle\}$ and $\langle \rangle$ is not a good leaf;

if $S = (A, \sigma)$ then $\operatorname{Tr}(S) = \{ \langle a \rangle * t \mid a \in A, t \in \operatorname{Tr}(\sigma(a)) \}$, and $\langle a \rangle * t$ is a good leaf of $\operatorname{Tr}(S)$ if and only if t is a good leaf of $\operatorname{Tr}(\sigma(a))$

Consider our typical monotone map $f = \bigvee_{n \in B} G_{\theta(n)}$ For $w \in \mathbb{N}$, $p \subseteq \mathbb{N}$ and a sight S, we say that S is (w, θ, p) -supporting if:

- whenever s is a good leaf of $\operatorname{Tr}(S)$, $ws \in \{0\} \land p$
- whenever $s \in \text{Tr}(S)$ is not a good leaf, $ws = \langle 1, n \rangle$ with $n \in B$ and $\text{Out}(s) \in \theta(n)$ (where $\text{Out}(s) = \{a \mid s * \langle a \rangle \in \text{Tr}(S)\}$)

Theorem L(f) is isomorphic to the function

 $p \mapsto \{w \mid \text{there is a } (w, \theta, p)\text{-supporting sight}\}$

If $f = G_A$ we can talk about a (w, A, p)-supporting sight S:

- whenever s is a good leaf of $\operatorname{Tr}(S)$, $ws \in \{0\} \land p$
- otherwise, $\mathit{ws} = \langle 1, 0
 angle$ and $\operatorname{Out}(\mathit{s}) \in \mathcal{A}$

Again, L(f) is isomorphic to

 $p \mapsto \{w \mid \text{ there is a } (w, \mathcal{A}, p)\text{-supporting sight}\}$

In this talk we concentrate on such $f = G_A$. We are interested in the preorder $(\mathcal{P}^*\mathcal{P}(\mathbb{N}), \leq_L)$ where $\mathcal{A} \leq_L \mathcal{B}$ if and only if $L(G_A) \leq L(G_B)$

The following are equivalent:

- i) $L(G_A) \leq L(G_B)$
- ii) $G_{\mathcal{A}} \leq L(G_{\mathcal{B}})$
- iii) $\bigcap_{A \in \mathcal{A}} L(G_{\mathcal{B}})(A) \neq \emptyset$
- iv) There is a number w such that for all $A \in A$, there is a (w, \mathcal{B}, A) -supporting sight.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example. Suppose $\mathcal{A}, \mathcal{B} \in \mathcal{P}^*\mathcal{P}(\mathbb{N})$, \mathcal{B} has the *n*-intersection property (for every *n*-tuple $B_1, \ldots, B_n \in \mathcal{B}, B_1 \cap \cdots \cap B_n \neq \emptyset$) and \mathcal{A} has not. Then $L(\mathcal{G}_{\mathcal{A}}) \leq L(\mathcal{G}_{\mathcal{B}})$.

Lemma 1 If \mathcal{B} has the *n*-intersection property and S_1, \ldots, S_n are sights on \mathcal{B} (for every *i*, and every $s \in \operatorname{Tr}(S_i)$ which is not a good leaf, $\operatorname{Out}(s) \in \mathcal{B}$), then there is a $d \in \bigcap_{i=1}^n \operatorname{Tr}(S_i)$ which is a good leaf of at least one S_i .

Lemma 2 If *S* and *T* are two sights on *B* and both are $(w, \mathcal{B}, \mathbb{N})$ -supporting, then every good leaf of *S* is also a good leaf of *T*.

Example (continued) Suppose \mathcal{B} has *n*-intersection property and \mathcal{A} contains A_1, \ldots, A_n with $A_1 \cap \cdots \cap A_n = \emptyset$. Suppose $L(G_{\mathcal{A}}) \leq L(G_{\mathcal{B}})$. Then for some *w* there is, for each $A \in \mathcal{A}$, a (w, \mathcal{B}, A) -supporting sight. In particular for each A_i there is a (w, \mathcal{B}, A_i) -supporting sight S_i . By Lemma 1, there is $d \in \bigcap_{i=1}^n \operatorname{Tr}(S_i)$ which is a good leaf of some S_i . By Lemma 2, *d* is a good leaf of every S_i . It follows that for each *i*, $wd \in \{0\} \land A_i$; so $wd = \langle 0, x \rangle$ with $x \in \bigcap_{i=1}^n A_i$; contradiction.

Finitary examples We look at finite collections \mathcal{A} of finite subsets of \mathbb{N} such that $\bigcap \mathcal{A} = \emptyset$ (otherwise, $L(G_{\mathcal{A}}) \simeq \mathrm{id}$), yet for $A_1, A_2 \in \mathcal{A}, A_1 \cap A_2 \neq \emptyset$ (otherwise, $L(G_{\mathcal{A}}) \simeq \neg \neg$). We consider, for $0 < 2m < \alpha < \omega$, the collection

$$\mathcal{O}_{\boldsymbol{m}}^{\alpha} = \{\beta \subset \{1, \ldots, \alpha\} \mid |\alpha - \beta| = \boldsymbol{m}\}$$

the collection of 'co-*m*-tons' in α

Note: for such \mathcal{O}_m^{α} we have $\mathcal{O}_m^{\alpha} \not\leq_L \mathcal{F}$, where \mathcal{F} is Pitts' example $\{\{m | m \geq n\} | n \in \omega\}$. For, \mathcal{F} has the *k*-intersection property for every *k*.

A few sample results

In $(\mathcal{P}^*\mathcal{P}(\mathbb{N}), \leq_L)$, $\mathcal{O}_1^{\omega} = \{p \subseteq \mathbb{N} \mid |\mathbb{N} - p| = 1\}$ is an atom, and $\{\{0\}, \{1\}\}\$ is a co-atom. $\lceil \frac{\alpha}{m} \rceil$ is the least number d such that \mathcal{O}_m^{α} does not have the d-intersection property. Hence, if $\lceil \frac{\alpha}{m+1} \rceil < \lceil \frac{\alpha}{m} \rceil$, then $\mathcal{O}_m^{\alpha} <_L \mathcal{O}_m^{\alpha} +_L \mathcal{O}_m^{\alpha}$ Also, $\mathcal{O}_m^{\alpha+m} <_L \mathcal{O}_m^{\alpha}$ We have an infinity of pairwise distinct finitary local operators.

Recall: for a function $\phi : \mathbb{N} \to \mathbb{N}$ we say 'j forces ϕ to be total' if

$$\bigcap_{n} \{n\} \to j(\{\phi(n)\})$$

is nonempty.

For $D \subseteq \mathbb{N}$ we say 'j forces D to be decidable' if j forces χ_D (the characteristic function of D) to be total. **Theorem** For $0 < 2m < \alpha < \omega$, $L(G_{\mathcal{O}_m^{\alpha}})$ does not force any

non-recursive D to be decidable.

On the other hand, for Pitts' $\mathcal{F} = \{\{m \mid m > n\} \mid n \in \mathbb{N}\}, L(G_{\mathcal{F}})$ forces every *arithmetical* D to be decidable. Idea: induction on arithmetical complexity. Given $A \subseteq \mathbb{N}$ such that $L(G_{\mathcal{F}})$ forces A to be decidable. We consider

$$\exists A = \{x \,|\, \exists n \langle x, n \rangle \in A\}$$

The assumption gives us $F_A \in \bigcap_n(\{n\} \to L(G_F)(\{\chi_A(n)\}))$ For given x, consider the sequence $\langle F_A(\langle x, 0 \rangle), \dots, F_A(\langle x, n \rangle) \rangle$ We can construct a recursive function H such that for all x, n:

> $H(x)n \in L(G_{\mathcal{F}})(\{0\})$ if for some $m \le n, \langle x, m \rangle \in A$ $H(x)n \in L(G_{\mathcal{F}}(\{1\}))$ otherwise

It follows that for each x, $H(x)n \in L(G_{\mathcal{F}})({\chi_{\exists A}(x)})$ for sufficiently large n. That is,

$$H(x) \in G_{\mathcal{F}}(L(G_{\mathcal{F}})(\{\chi_{\exists A}(x)\}))$$

Using $G_{\mathcal{F}} \leq L(G_{\mathcal{F}})$ and $L(G_{\mathcal{F}})L(G_{\mathcal{F}}) \leq L(G_{\mathcal{F}})$ we get the result.

If j is a local operator in $\mathcal{E}ff$ we can look at the interpretation of first-order arithmetic in the subtopos determined by j. This is given by 'j-realizability'. Define the notion 'n j-realizes ϕ ' by induction on ϕ as follows:

n j-realizes an atomic ϕ iff ϕ is true;

 $n~j\text{-realizes}~\phi\wedge\psi$ iff $n=\langle a,b\rangle$ such that $a~j\text{-realizes}~\phi$ and $b~j\text{-realizes}~\psi$

 $nm \in j(\{k \mid k \text{ } j \text{-realizes } \psi\})$

n j-realizes $\exists x \phi(x)$ iff $n = \langle a, b \rangle$ such that *b j*-realizes $\phi(a)$ *n j*-realizes $\forall x \phi(x)$ iff for all *m*, $nm \downarrow$ and

 $nm \in j(\{k \mid k \text{ } j \text{-realizes } \phi(m)\})$

(日) (日) (日) (日) (日) (日) (日) (日)

Using *j*-realizability we can prove:

Theorem If a local operator j forces every arithmetical subset of \mathbb{N} to be decidable, then the subtopos determined by j satisfies true arithmetic.

We have identified a non-Boolean subtopos of $\mathcal{E}ff$ which nevertheless has true arithmetic: the subtopos determined by $L(G_{\mathcal{F}})$. There are others: e.g. determined by j_{α} where α is some Δ_1^1 -complete function.

Using the language of sights we can express *j*-realizability more concretely in the case $j = L(G_{\theta})$ for $\theta : B \to \mathcal{P}^*\mathcal{P}(\mathbb{N})$ as before. For example, the implication clause:

n j-realizes $\phi \rightarrow \psi$ iff for every *m* such that *m j*-realizes ϕ , $nm\downarrow$ and there is an (nm, θ, A) -supporting sight *S*; where $A = \{k \mid k \text{ j-realizes } \psi\}$

(日) (日) (日) (日) (日) (日) (日) (日)

A variation and application to classical realizability (based on ideas of Wouter Stekelenburg and Thomas Streicher) In *relative realizability* we consider an inclusion $A^{\sharp} \subset A$ of partial combinatory algebras, such that:

- i) the application on A^{\sharp} is the restriction of the application of A
- ii) A^{\sharp} contains elements k and s satisfying the PCA axioms for both A^{\sharp} and A

The relative realizability tripos has, in each fibre over a set X, the set of all functions from X to $\mathcal{P}(A)$. The preorder is defined by: $\phi \leq \psi$ iff the set $\bigcap_{x \in X} (\phi(x) \to \psi(x))$ contains an element of A^{\sharp} . Let U be a proper subset of $A - A^{\sharp}$. Then the map $((-) \to U) \to U : \mathcal{P}(A) \to \mathcal{P}(A)$ defines a nontrivial local operator on the relative realizability topos; the corresponding subtopos is Boolean. Given a relative realizability situation $A^{\sharp} \subset A$ and $U \subset (A - A^{\sharp})$ we make the following definitions: let $\Lambda = A$ and Π be the set of coded sequences of elements of A. For $s \in \Lambda$ and $\pi = \langle \pi_0, \ldots, \pi_{n-1} \rangle$ we write $s \circ \pi$ for $\langle s, \pi_0, \ldots, \pi_{n-1} \rangle$. We write $\pi_{\geq k}$ for $\langle \pi_k, \ldots, \pi_{n-1} \rangle$. Elements of $\Lambda \times \Pi$ are denoted $s * \pi$. We define a new (total) application on A by: $t \bullet s = \lambda \rho . t(s \circ \rho)$. Define:

$$\begin{array}{rcl} \bot &=& \{t * \pi \,|\, t\pi \text{ is defined and } \in U\} \\ \mathcal{K} &=& \lambda \pi . \pi_0(\pi_{\geq 2}) \\ \mathcal{S} &=& \lambda \rho . \rho_0(\rho_2 \circ \rho_1(\rho_{\geq 2})) \\ k_\pi &=& \lambda \rho . \rho_0 \pi \\ \mathfrak{C} &=& \lambda \rho . \rho_0(k_{\rho_{\geq 1}} \circ \rho_{\geq 1}) \end{array}$$

A D M A

We can prove:

$$\begin{array}{cccc} (S1) & t * s \circ \pi \in \amalg & \Leftrightarrow & t \bullet s * \pi \in \amalg \\ (S2) & t * \pi \in \amalg & \Leftrightarrow & K * t \circ s \circ \pi \in \amalg \\ (S3) & (t \bullet u) \bullet (s \bullet u) * \pi \in \amalg & \Leftrightarrow & S * t \circ s \circ u \circ \pi \in \amalg \\ (S4) & t * k_{\pi} \circ \pi \in \amalg & \Leftrightarrow & \mathbf{c} * t \circ \pi \in \amalg \\ (S5) & t * \pi \in \amalg & \Leftrightarrow & k_{\pi} * t \circ \pi' \in \amalg \\ \end{array}$$

This means, that the tuple $(\Lambda, \Pi, \bullet, \bot, \infty, k_{(-)}, K, S)$ is a *strong* abstract Krivine structure in the sense of Streicher. We can let QP (the set of quasi-proofs) be A^{\sharp} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Paper 'Basic Subtoposes of the Effective Topos' (Sori Lee and Jaap van Oosten): ArXiv:1201.2571v1

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ