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If E is a topos and C is a full subcategory of E with the properties:

C is closed under finite limits in E

the embedding C → E has a left adjoint which preserves finite
limits

then C is also a topos, and called a subtopos of E .
Subtoposes of E correspond to local operators on E .



Why study local operators in the effective topos?

◮ “Because it’s there” (Mallory); subtoposes form an intrinsic
piece of structure of the topos

◮ local operators form a Heyting algebra into which the
semilattice of Turing degrees embeds; hence a playground for
doing recursion theory

◮ local operators define new notions of realizability (also for
classical theories)



In a topos with a subobject classifier 1
⊤
→ Ω (Ω is to be thought of

as the ‘set of subsets of a one-element set’, and ⊤ names the
maximal such subset), a local operator is a map j : Ω → Ω which
satisfies:

i) ∀pq.(p → q) → (jp → jq) (j is monotone)

ii) j⊤ = ⊤ (j preserves ⊤)

iii) ∀p.jjp → jp (j is idempotent)

These properties imply: ∀pq.j(p ∧ q) ↔ jp ∧ jq

A local operator can be regarded as a modal operator on the type
theory of the topos.



The effective topos Eff (Hyland 1980) is based on indices of partial
recursive functions. For e, x ∈ N we write ex for ϕe(x), the result
of applying the e-th partial recursive function to x . We also write
ex↓ for: ex is defined, i.e. ∃yT (e, x , y). We employ a primitive
recursive coding of pairs 〈a, b〉 and sequences 〈a0, . . . , an−1〉.
Let A,B ⊆ N. We write:

A ∧ B = {〈a, b〉 | a ∈ A, b ∈ B}
A → B = {e | for all a ∈ A, ea↓ and ea ∈ B}

This is the logic of realizability



The effective topos (continued)
Objects of Eff : pairs (X , [[ · = · ]]) where X is a set and for
x , y ∈ X , [[ x = y ]] is a subset of N such that the sets

⋂

x ,y∈X [[ x = y ]] → [[ y = x ]]
⋂

x ,y ,z∈X ([[ x = y ]] ∧ [[ y = z ]]) → [[ x = z ]]

are nonempty.
An arrow (X , [[ · = · ]]) → (Y , [[ · = · ]]) is represented by a function
F : X × Y → P(N) which satisfies conditions. . .



In Eff , the subobject classifier is 1
⊤
→ Ω where:

1 = ({∗}, [[ · = · ]]) with [[ ∗ = ∗ ]] = N

Ω = (P(N), [[ · = · ]]) with [[A = B ]] = (A → B) ∧ (B → A)
A monotone map: Ω → Ω is given by a function f : P(N) → P(N)
for which

Em(f ) =
⋂

p,q⊆N

(p → q) → (fp → fq)

is a nonempty set.
Define also:

E⊤(f ) = f (N)
Eid(f ) =

⋂

p⊆N
(ffp → fp)



A local operator Ω → Ω is given by a function f : P(N) → P(N)
for which Em(f ), E⊤(f ) and Eid(f ) are nonempty. Let

Eloc(f ) = Em(f ) ∧ E⊤(f ) ∧ Eid(f )

For monotone maps f , g : P(N) → P(N) we write

[[ f ≤ g ]] =
⋂

p⊆N

fp → gp



There is a function L, acting on monotone maps f , such that L(f )
is a monotone map, and there are indices e1 and e2 such that

e1 ∈
⋂

f Em(f ) → (Eloc(L(f )) ∧ [[ f ≤ L(f ) ]])
e2 ∈

⋂

f ,g (Em(f ) ∧ Eloc(g) ∧ [[ f ≤ g ]]) → [[L(f ) ≤ g ]]

L(f ) is the local operator generated by f .
Theorem (Pitts) The map L can be defined by

L(f )(p) =
⋂

{q ⊆ N | ({0} ∧ p) ⊆ q and ({1} ∧ fq) ⊆ q}



Suppose {fn | n ∈ A} is an internal (recursive) family of monotone
maps indexed by a nonempty set A ⊆ N. That means: for some
e ∈ N we have

∀n ∈ A (en ∈ Em(fn))

Then the join
∨

n∈A fn is given by

(
∨

n∈A

fn)(p) = {〈n, x〉 | x ∈ fn(p)}

We have for arbitrary monotone g :
⋂

n∈A({n} → [[ fn ≤ g ]]) is
nonempty if and only if [[

∨

n∈A fn ≤ g ]] is nonempty.



Let A be a nonempty subset of P(N) (we write A ∈ P∗P(N) ).
Define:

GA(p) =
⋃

A∈A

(A → p)

Then GA is monotone. GA is the least f such that
⋂

A∈A f (A) 6= ∅
Every nontrivial monotone map f is a recursive join of such GA:
let A =

⋃

p⊆N
f (p) and for n ∈ A let fn = G{q⊆N | n∈fq}.

Then f ≃
∨

n∈A fn



Every local operator j : Ω → Ω satisfies

idΩ ≤ j ≤ λp.⊤

We call λp.⊤ the trivial local operator (it corresponds to the
degenerate topos).
Known results about local operators in Eff :
1. There is the ‘double negation’ local operator ¬¬:

¬¬p =

{

N if p 6= ∅
∅ otherwise

2. For a monotone map f we have:
a. L(f ) is trivial if and only if f (∅) 6= ∅
b. L(f ) is isomorphic to ¬¬ if and only if f (∅) = ∅ and
L(f )({0}) ∩ L(f )({1}) 6= ∅



More known results:
(Pitts) Let A = {{m |m ≥ n} | n ∈ N}. Then id < L(GA) < ¬¬
For an arbitrary function α : N → N let ρ(n) = {{α(n)}}
Then for j = L(

∨

n∈N
Gρ(n)) we have that

⋂

n∈N

{n} → j({α(n)}) 6= ∅

(this means that the function α determines a total map from N to
N in the topos corresponding to j), and j is the least local
operator with this property. Let us denote j by jα.
Theorem (Hyland) For α, β : N → N we have: jα ≤ jβ if and only
if α ≤T β (α is Turing reducible to β)



Back to monotone maps. Such f can be written as
f =

∨

n∈B Gθ(n) for θ : B → P∗P(N)
We wish to study the map L(f ):

L(f )(p) =
⋂

{q ⊆ N | ({0} ∧ p) ⊆ q and ({1} ∧ fq) ⊆ q}

Equivalently, L(f )(p) = L′(f )(p)ω1 where

L′(f )(p)0 = {0} ∧ p

L′(f )(p)α+1 = L′(f )(p)α ∪ ({1} ∧ f (L′(f )(p)α))
L′(f )(p)λ =

⋃

β<λ L′(f )(p)β for λ a limit



Definition A sight is, inductively,

either a thing called NIL

or a pair (A, σ) with A ⊆ N and σ a function on A such that
σ(a) is a sight for each a ∈ A.

To any sight S we associate a well-founded tree Tr(S) of coded
sequences of natural numbers, as well as a subset of its set of
leaves (which we call good leaves), by induction:

If S = NIL then Tr(S) = {〈〉} and 〈〉 is a good leaf;

if S = (∅, ∅) then Tr(S) = {〈〉} and 〈〉 is not a good leaf;

if S = (A, σ) then Tr(S) = {〈a〉 ∗ t | a ∈ A, t ∈ Tr(σ(a))}, and
〈a〉 ∗ t is a good leaf of Tr(S) if and only if t is a good leaf of
Tr(σ(a))



Consider our typical monotone map f =
∨

n∈B Gθ(n)

For w ∈ N, p ⊆ N and a sight S , we say that S is
(w , θ, p)-supporting if:

- whenever s is a good leaf of Tr(S), ws ∈ {0} ∧ p

- whenever s ∈ Tr(S) is not a good leaf, ws = 〈1, n〉 with n ∈ B

and Out(s) ∈ θ(n) (where Out(s) = {a | s ∗ 〈a〉 ∈ Tr(S)} )

Theorem L(f ) is isomorphic to the function

p 7→ {w | there is a (w , θ, p)-supporting sight}



If f = GA we can talk about a (w ,A, p)-supporting sight S :

- whenever s is a good leaf of Tr(S), ws ∈ {0} ∧ p

- otherwise, ws = 〈1, 0〉 and Out(s) ∈ A

Again, L(f ) is isomorphic to

p 7→ {w | there is a (w ,A, p)-supporting sight}

In this talk we concentrate on such f = GA. We are interested in
the preorder (P∗P(N),≤L) where A ≤L B if and only if
L(GA) ≤ L(GB)



The following are equivalent:

i) L(GA) ≤ L(GB)

ii) GA ≤ L(GB)

iii)
⋂

A∈A L(GB)(A) 6= ∅

iv) There is a number w such that for all A ∈ A, there is a
(w ,B,A)-supporting sight.



Example. Suppose A,B ∈ P∗P(N), B has the n-intersection
property (for every n-tuple B1, . . . ,Bn ∈ B, B1 ∩ · · · ∩ Bn 6= ∅) and
A has not. Then L(GA) 6≤ L(GB).
Lemma 1 If B has the n-intersection property and S1, . . . ,Sn are
sights on B (for every i , and every s ∈ Tr(Si) which is not a good
leaf, Out(s) ∈ B), then there is a d ∈

⋂n
i=1 Tr(Si ) which is a good

leaf of at least one Si .
Lemma 2 If S and T are two sights on B and both are
(w ,B,N)-supporting, then every good leaf of S is also a good leaf
of T .



Example (continued) Suppose B has n-intersection property and
A contains A1, . . . ,An with A1 ∩ · · · ∩ An = ∅.
Suppose L(GA) ≤ L(GB). Then for some w there is, for each
A ∈ A, a (w ,B,A)-supporting sight. In particular for each Ai there
is a (w ,B,Ai )-supporting sight Si .
By Lemma 1, there is d ∈

⋂n
i=1 Tr(Si) which is a good leaf of

some Si . By Lemma 2, d is a good leaf of every Si .
It follows that for each i , wd ∈ {0} ∧ Ai ; so wd = 〈0, x〉 with
x ∈

⋂n
i=1 Ai ; contradiction.



Finitary examples We look at finite collections A of finite subsets
of N such that

⋂

A = ∅ (otherwise, L(GA) ≃ id), yet for
A1,A2 ∈ A, A1 ∩ A2 6= ∅ (otherwise, L(GA) ≃ ¬¬).
We consider, for 0 < 2m < α < ω, the collection

Oα
m = {β ⊂ {1, . . . , α} | |α − β| = m}

the collection of ‘co-m-tons’ in α
Note: for such Oα

m we have Oα
m 6≤L F , where F is Pitts’ example

{{m|m ≥ n} | n ∈ ω}. For, F has the k-intersection property for
every k.



A few sample results

In (P∗P(N),≤L), Oω
1 = {p ⊆ N | |N − p| = 1} is an atom, and

{{0}, {1}} is a co-atom.
p

α
m

q is the least number d such that Oα
m does not have the

d-intersection property. Hence, if p
α

m+1q < p
α
m

q, then
Oα

m <L Oα
m+1.

Also, Oα+m
m <L Oα

m

We have an infinity of pairwise distinct finitary local operators.



Recall: for a function φ : N → N we say ‘j forces φ to be total’ if

⋂

n

{n} → j({φ(n)})

is nonempty.
For D ⊆ N we say ‘j forces D to be decidable’ if j forces χD (the
characteristic function of D) to be total.
Theorem For 0 < 2m < α < ω, L(GOα

m
) does not force any

non-recursive D to be decidable.



On the other hand, for Pitts’ F = {{m |m > n} | n ∈ N}, L(GF )
forces every arithmetical D to be decidable.
Idea: induction on arithmetical complexity. Given A ⊆ N such that
L(GF ) forces A to be decidable. We consider

∃A = {x | ∃n〈x , n〉 ∈ A}

The assumption gives us FA ∈
⋂

n({n} → L(GF )({χA(n)}))
For given x , consider the sequence 〈FA(〈x , 0〉), . . . ,FA(〈x , n〉)〉
We can construct a recursive function H such that for all x , n:

H(x)n ∈ L(GF )({0}) if for some m ≤ n, 〈x ,m〉 ∈ A

H(x)n ∈ L(GF ({1}) otherwise

It follows that for each x , H(x)n ∈ L(GF )({χ∃A(x)}) for
sufficiently large n. That is,

H(x) ∈ GF(L(GF )({χ∃A(x)}))

Using GF ≤ L(GF ) and L(GF )L(GF ) ≤ L(GF ) we get the result.



If j is a local operator in Eff we can look at the interpretation of
first-order arithmetic in the subtopos determined by j . This is
given by ‘j-realizability’. Define the notion ‘n j-realizes φ’ by
induction on φ as follows:

n j-realizes an atomic φ iff φ is true;

n j-realizes φ ∧ ψ iff n = 〈a, b〉 such that a j-realizes φ and b

j-realizes ψ

n j-realizes φ→ ψ iff for all m such that m j-realizes φ, nm↓
and

nm ∈ j({k | k j-realizes ψ})

n j-realizes ∃xφ(x) iff n = 〈a, b〉 such that b j-realizes φ(a)

n j-realizes ∀xφ(x) iff for all m, nm↓ and

nm ∈ j({k | k j-realizes φ(m)})



Using j-realizability we can prove:
Theorem If a local operator j forces every arithmetical subset of N

to be decidable, then the subtopos determined by j satisfies true
arithmetic.
We have identified a non-Boolean subtopos of Eff which
nevertheless has true arithmetic: the subtopos determined by
L(GF ). There are others: e.g. determined by jα where α is some
∆1

1-complete function.
Using the language of sights we can express j-realizability more
concretely in the case j = L(Gθ) for θ : B → P∗P(N) as before.
For example, the implication clause:

n j-realizes φ→ ψ iff for every m such that m j-realizes φ,
nm↓ and there is an (nm, θ,A)-supporting sight S ; where
A = {k | k j-realizes ψ}



A variation and application to classical realizability (based on ideas
of Wouter Stekelenburg and Thomas Streicher)
In relative realizability we consider an inclusion A♯ ⊂ A of partial
combinatory algebras, such that:

i) the application on A♯ is the restriction of the application of A

ii) A♯ contains elements k and s satisfying the PCA axioms for
both A♯ and A

The relative realizability tripos has, in each fibre over a set X , the
set of all functions from X to P(A). The preorder is defined by:
φ ≤ ψ iff the set

⋂

x∈X (φ(x) → ψ(x)) contains an element of A♯.
Let U be a proper subset of A − A♯. Then the map
((−) → U) → U : P(A) → P(A) defines a nontrivial local operator
on the relative realizability topos; the corresponding subtopos is
Boolean.



Given a relative realizability situation A♯ ⊂ A and U ⊂ (A− A♯) we
make the following definitions: let Λ = A and Π be the set of coded
sequences of elements of A. For s ∈ Λ and π = 〈π0, . . . , πn−1〉 we
write s ◦ π for 〈s, π0, . . . , πn−1〉. We write π≥k for 〈πk , . . . , πn−1〉.
Elements of Λ × Π are denoted s ∗ π. We define a new (total)
application on A by: t • s = λρ.t(s ◦ ρ). Define:

⊥⊥ = {t ∗ π | tπ is defined and ∈ U}
K = λπ.π0(π≥2)
S = λρ.ρ0(ρ2 ◦ ρ1(ρ≥2))

kπ = λρ.ρ0π

cc = λρ.ρ0(kρ≥1
◦ ρ≥1)



We can prove:

(S1) t ∗ s ◦ π ∈ ⊥⊥ ⇔ t • s ∗ π ∈ ⊥⊥
(S2) t ∗ π ∈ ⊥⊥ ⇔ K ∗ t ◦ s ◦ π ∈ ⊥⊥
(S3) (t • u) • (s • u) ∗ π ∈ ⊥⊥ ⇔ S ∗ t ◦ s ◦ u ◦ π ∈ ⊥⊥
(S4) t ∗ kπ ◦ π ∈ ⊥⊥ ⇔ cc ∗ t ◦ π ∈ ⊥⊥
(S5) t ∗ π ∈ ⊥⊥ ⇔ kπ ∗ t ◦ π′ ∈ ⊥⊥

This means, that the tuple (Λ,Π, •,⊥⊥, cc, k(−),K ,S) is a strong

abstract Krivine structure in the sense of Streicher. We can let QP
(the set of quasi-proofs) be A♯.
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