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1. Martin-Löf Type Theory

The world is organized in types rather than sets.
Types are dependent: that is, given a type A and elements x of A,
we may have types B(x), varying with x . And so on.
In the formal system, there are four kinds of basic utterances
(judgements):
A type (A is a type)
a : A (a is a term - denotes an element - of type A)
A = B (types A and B are equal)
a = b : A (terms a and b are equal as elements of type A)



Every judgement is warranted by a suitable context, which is a
variable declaration:

x1:A1, . . . , xn:An

And there is a system of basic inferences, leading to statements of
the form

x1:A1, . . . , xn:An ⊢ A type
x1:A1, . . . , xn:An ⊢ a:A
x1:A1, . . . , xn:An ⊢ A = B
x1:A1, . . . , xn:An ⊢ a = b:A

Each of these statements expresses that a certain judgement is
valid under context x1:A1, . . . , xn:An



The formation of contexts is intertwined with the system of
inferences. The context

x1:A1, . . . , xn:An

is only legitimate provided

x1:A1, . . . , xn−1:An−1 ⊢ An type

is a valid judgement.



There is a legitimate empty context to start with, and some basic
types, for example the natural numbers:

⊢ N type
⊢ 0:N

x :N ⊢ S(x):N

Given a valid judgement x1:A1, . . . , xn:An ⊢ B(xn) type, we think
of an indexed family of types

{B(x) | x ∈ An}

(relative to the context x1:A1, . . . , xn−1:An−1)
We can substitute terms for variables in dependent types: given
valid judgements x1:A1, . . . , xn:An ⊢ B(xn) type and
x1:A1, . . . , xn−1:An−1 ⊢ t(x1, . . . , xn−1):An we have

x1:A1, . . . , xn−1:An−1 ⊢ B(t) type



At the moment, we do not know how to construct a single
dependent type! Bear with me.
Given a valid judgement

x1:A1, . . . , xn:An ⊢ B(xn) type

one can form the dependent product of the indexed family of
types: one can infer the judgement

x1:A1, . . . , xn−1:An−1 ⊢
∏

x :An.B(x) type

and there are inference rules governing the behaviour of the
product.
From now, we shall abbreviate a context by the symbol Γ; a
horizontal line denotes a permitted inference from the hypotheses
above to the conclusion below.



Rules for
∏

:

Γ, x :A ⊢ B(x) type

Γ ⊢
∏

x :A.B(x) type

Γ, x :A ⊢ t(x):B(x)
λ

Γ ⊢ λx :A.t(x):
∏

x :A.B(x)

Γ ⊢ t:
∏

x :A.B(x) Γ ⊢ s:A
App

Γ ⊢ ts:B(s)

Γ, x :A ⊢ t(x):B(x) Γ ⊢ s:A
β

Γ ⊢ (λx :A.t(x))s = t[s/x ]:B(s)

(Here t[s/x ] denotes substitution of the term s for x in t(x))

Γ ⊢ t:
∏

x :A.B(x)
η

Γ ⊢ (λx :A.tx) = t:
∏

x :A.B(x)



Similarly, there is a type construction
∑

x :A.B(x) for disjoint sum.
The equality symbol = is sometimes pronounced as definitional
equality. It allows substitutions:

Γ, x :A ⊢ B(x) type Γ ⊢ t = s:A

Γ ⊢ B(t) = B(s)

and

Γ, x :A ⊢ B(x) type Γ ⊢ t = s:A Γ ⊢ u:B(t)

Γ ⊢ u:B(s)

But, there is a more intriguing notion of “equality”, the central
notion of this talk: the Identity type.



Identity types.
Professor Whitehead writes in his last book that if we begin to ask
ourselves the meaning of the simple word “equal” we find ourselves
plunged into abstruse modern speculations concerning the
character of the universe.
(E. Cunningham)

For any type A and elements x , x ′ of A we have the type IdA(x , x ′)
of proofs that x and x ′ are identical as elements of A:

Γ ⊢ A type

Γ, x :A, x ′:A ⊢ IdA(x , x ′) type

We have an axiom

Γ, x :A ⊢ reflA(x):IdA(x , x)



and two inference rules:

Γ, x :A, x ′:A, α:IdA(x , x ′) ⊢ B(x , x ′, α) type
Γ, x :A ⊢ t(x):B(x , x , reflA(x))

Γx :A, x ′:A, α:IdA(x , x ′) ⊢ J(x , x ′, α, t):B(x , x ′, α)

Γ, x :A, x ′:A, α:IdA(x , x ′) ⊢ B(x , x ′, α) type
Γ, x :A ⊢ t(x):B(x , x , reflA(x))

Γ, x :A ⊢ J(x , x , reflA(x), t) = t:B(x , x , reflA(x))



2. Semantics of Type Theory

First, a simple-minded approach, ignoring the identity types.
If, under context Γ, we have x :A ⊢ B(x) type, we think of a
function

B
f
→ A

(interpreting B(x) as f −1(x))
And if under Γ we have x :A, u:B(x) ⊢ t(u):C (x) we think of a
commutative triangle

B
t

//

��
??

??
??

? C

����
��

��
�

A

We describe our intuition for
∏

and
∑

-types in the following
abstract categorical setting:



Locally cartesian closed categories

Given a category C and an object A, the slice category C/A has as
objects: arrows B → A in C, and as arrows from B → A to C → A
commutative triangles

B
t

//

��
??

??
??

? C

����
��

��
�

A

If C has pullbacks, then for any arrow φ : A → A′ we have a
pullback functor φ∗ : C/A′ → C/A
C is locally cartesian closed if C has pullbacks and every φ∗ has a
right adjoint

Πφ : C/A → C/A′

Equivalently: every slice C/A is cartesian closed.



In a locally cartesian closed category we can interpret a type
judgement

x1:A1, . . . , xn:An ⊢ A type

as a sequence of arrows

A
f
→ An

fn−1
→ An−1 → · · ·

f1→ A1

Then the judgement

x1:A1, . . . , xn1 :An−1 ⊢
∏

x :An.A type

is interpreted as

Πfn−1
(f ) → An−1 → · · · → A1

But, what to do with the identity types?



3. Homotopy-theoretic semantics Crucial intuition (apparently
due to Moerdijk):
Identity types behave like path spaces, so there should be an
interpretation of type theory in terms of homotopy theory.
Recall: two continuous functions f , g : X → Y are homotopic if
there is a continuous map H : X × [0, 1] → Y satisfying
H(x , 0) = f (x) and H(x , 1) = g(x).
A continuous function f : X → Y is a homotopy equivalence if
there is a continuous function g : Y → X such that both
compositions fg and gf are homotopic to the identity functions.
A path in a space X is a continuous function f : [0, 1] → X . It is
said to be from f (0) to f (1). Given two paths f and g from x to y
a path homotopy from f to g is a homotopy H from f to g which
keeps the end-points fixed: H(0, t) = x and H(1, t) = y .



The space X , together with path homotopy classes of paths, forms
a groupoid: a category in which every arrow is an isomorphism. It
is called the fundamental groupoid on X .
Rather than quotienting by the homotopy relation, we can consider
X with the following structure:
points (“0-homotopies”)
paths (“1-homotopies”)
2-homotopies: path homotopies between compositions of paths
and so on.

The n-homotopies can be composed (for n > 0). This composition
is not associative, but ‘associative up to n + 1-homotopy’.
Similarly, they have inverses ‘up to n + 1-homotopy’ and there
identities up to n + 1-homotopy.
This leads to the concept of weak ∞-groupoid; we speak of the
fundamental weak ∞-groupoid of the space X .



In fact, Van den Berg and Garner have shown that “Identity types
are weak ∞-groupoids”.



In Type Theory one can prove the following: if B is a type
depending on type A (so x :A ⊢ B(x) type) and we have x , x ′ in A,
u in B(x) and α in IdA(x , x ′), then there is u′ in B(x ′) and β in

IdP

x :A.B(x)(〈x , u〉, 〈x ′, u′〉)

which β projects down to α.

This looks like a ‘path-lifting’ property.



In topology, a continuous map E
p
→ B is called a (Hurewicz)

fibration if it has precisely such a path-lifting property: given a
commutative diagram

Y
f

//

i0
��

E

p

��

Y × [0, 1]
h

// B

(where i0(y) = (y , 0))
there is a diagonal filler, i.e. a map h̃ : Y × [0, 1] → E such that
ph̃ = h and h̃i0 = f .

Our discussion suggests: a dependent type x :A ⊢ B(x) type should
be interpreted by a map B → A which is like a fibration.



Summarizing so far:
we need a locally cartesian closed category with a class of arrows
F (thought of as fibrations) which must satisfy at least:
F is closed under composition
F is closed under Π-functors along arrows in F : given

A

b

��

B
f

// C

with d , f ∈ F , then Πf (b) ∈ F
Moreover, F must have certain ‘right lifting properties’.



The category of simplicial sets

Let ∆{[0], [1], [2], . . .} where [n] = {0, 1, . . . , n} considered as a
linearly ordered set.
∆ is a category with as arrows [n] → [m] the order-preserving
functions: i ≤ j ⇒ f (i) ≤ f (j).
∆ is generated by the maps

d i : [n − 1] → [n] (n ≥ 1, 0 ≤ i ≤ n) omit i
s i : [n] → [n − 1] (n ≥ 1, 0 ≤ i ≤ n − 1) double i

(these maps satisfy some equations)
A simplicial set is a contravariant functor from ∆ to the category
of sets. A morphism of simplicial sets is a natural transformation.



So, a simplicial set X looks like an array of sets:

X = (X0,X1, . . .)

with functions

di : Xn → Xn−1 face maps
si : Xn−1 → Xn degeneracy maps

An element of Xn is called an n-simplex of X ; it is nondegenerate
if it is not in the image of some si .

The standard n-simplex ∆[n] is the simplicial set generated by one
nondegenerate n-simplex. The geometric n-simplex is the following

subspace of R
n+1:

{(x1, . . . , xn+1) | 0 ≤ x1, . . . , xn+1 ≤ 1,

n+1∑

i=1

xi = 1}



There is a geometric realization functor |·| from simplicial sets to
topological spaces, obtained by taking, for each nondegenerate
n-simplex of a simplicial set X , a copy of the geometric n-simplex,
and glue these together according to the equalities between faces
which hold in X .

Given the standard n-simplex, its i -th horn Λi
n is the simplicial set

generated by the faces of ∆[n] except for the one opposite the i -th
vertex.

A map p : E → B of simplicial sets is called a Kan fibration if for
every commutative diagram

Λi
n

//

��

E

p

��

∆[n] // B

there is a diagonal filler: ∆[n] → E .



A map f : X → Y of simplicial sets is called a weak equivalence if
its geometric realization |f | : |X | → |Y | is a homotopy equivalence
between topological spaces.

Let us call a map f : X → Y of simplicial sets injective if every
component fn : Xn → Yn is an injective function.



We have the following facts:
1. Every map between simplicial sets can be written as the
composition of an injective weak equivalence, followed by a Kan
fibration;
2. For every commutative diagram

X //

f

��

E

p

��

Y // B

where f is an injective weak equivalence and p a Kan fibration,
there is a diagonal filler: Y → E .
3. Conversely, if a map p : E → B has the property in 2. with
respect to injective weak equivalences, then it is a Kan fibration. It
follows, that Kan fibrations are stable under composition.
4. Injective weak equivalences are stable under pullback along Kan
fibrations.



Interpretation of Type Theory (still too simple-mindedly)
We now have a category (simplicial sets) which is cartesian closed,
and a class of maps (the Kan fibrations) which has the desirable
properties mentioned before.
Therefore, we can interpret a dependent type x :A ⊢ B(x) type as a
Kan fibration B → A.
The Identity type: x , x ′:A ⊢ IdA(x , x ′) type is interpreted by the
path space PA for A: factor the diagonal embedding A → A×A as

A
rA→ PA

tA→ A × A, with rA an injective weak equivalence and tA a
Kan fibration. Then rA will be our interpretation of the term reflA.



Now, we need to interpret the term J given in the inference rules
for the identity type. So assume we have a type B dependent on
IdA; which has been interpreted as a Kan fibration: B

p
→ PA. And

suppose we have a term x :A ⊢ t(x):B(x , x , reflA(x). Then we have
a commutative diagram

A

rA

��

t
// B

p

��

PA
id

// PA

and the rule says basically that we need a diagonal filler in this
diagram. But such is guaranteed to exist, since rA is an injective
weak equivalence and p is a Kan fibration.

So, we are done. Or, aren’t we?



In fact, there is a serious flaw in this approach: since in the type
theory, we may have variables present on which the whole situation
depends, and we can carry out substitutions for these variables, we
actually need a coherent choice of liftings (diagonal fillers).

But such a coherent system of liftings is not known to exist!



Solution (Voevodsky)

Fix a strongly inaccessible cardinal κ and consider only κ-small
Kan fibrations.

There is a universal such: a Kan fibration

Ũ

pU

��

U

such that every κ-small Kan fibration is a pullback of pU .



Now, consider the pullback

Ũ ×U Ũ //

��

Ũ

pU

��

Ũ pU
// U

and the canonical arrow Ũ → Ũ ×U Ũ .

Factor this map as

Ũ
rU→ Eq(U)

EU→ Ũ ×U Ũ

where rU is an injective weak equivalence and EU is a Kan
fibration.

Now suppose we have a dependent type, interpreted as a small
Kan fibration B → A.



We have a pullback diagram

B ×A B //

��

Ũ ×U Ũ

��

B // Ũ

Define the Identity type over B ×A B , IdB , to be the pullback of
the arrow

EU : Eq(U) → Ũ ×U Ũ

The map reflB : B → IdB is the pullback of rU : Ũ → Eq(U). This
is not necessarily an injective weak equivalence!



From the generic small Kan fibration Ũ
pU→ U we can construct a

generic diagram

(GD)

A

ρ

��

δ
// C

γ

��

E
id

// E

with two properties:
1. ρ is an injective weak equivalence and γ is a Kan fibration;
2, Every diagram of interpreted types:

(TD)

A

rA

��

d
// C

c

��

IdA
id

// IdA

is a pullback of (GD). Since we have a diagonal filler in (GD), we
have a coherent choice of diagonal fillers for all diagrams (TD).



Voevodsky’s aim is to base a new foundation of (constructive)
mathematics on the following stratification of (homotopy types of)
spaces:
A space is of h-level 0 if it is contractible
A space is of h-level n + 1 if for any two points x , y , the space of
paths from x to y is of h-level n.

0. There is exactly one homotopy type of h-level 0: the one-point
space pt
1. There are exactly two homotopy types of h-level 1: pt and the
empty space. Hence, level 1 is the set of Boolean truth values.
2. Spaces of level 2 are sums of contractible components; that is,
sets.
3. Spaces of level 3 are groupoids.
...



If the intuition of types as spaces is good, we should be able to do
some basic homotopy theory inside Type Theory, with the Identity
types for path spaces.

For a type A and a term a:A define

π1(A, a) = IdA(a, a) a1 = reflA(a):π1(A, a)
π2(A, a) = π1(π1(A, a), a1) a2 = reflπ1(A,a)(a1):π2(A, a)
...

One can prove: πn(A, a) is a group, and it is abelian for n ≥ 2.



Suppose A is a type, a:A a term, and t is a term of type∏
x :A.IdA(a, x)

(t witnesses that “A is path connected”)
Suppose x :A ⊢ B(x) type, which we think of as a fibration

∑
x :A.B(x) → A

We should have a long exact sequence

πn(B(a), b) → πn(
∑

x :A.B(x), 〈a, b〉) →
πn(A, a) → πn−1(B(a), b) → · · ·

· · · → π0(
∑

x :A.B(x), 〈a, b〉) → π0(A, a) = 1

This is indeed the case (Voevodsky, Coquand)


