Partial Combinatory Algebras - Variations on a Topos-theoretic Theme

Jaap van Oosten
Department of Mathematics
Utrecht University

UGC Seminar, April 6, 2021

Computability Theory
A function $f: U \rightarrow \mathbb{N}$ for $U \subseteq \mathbb{N}$ is called a partial function on \mathbb{N}; note that a partial function may be total (in case $U=\mathbb{N}$).
Such a function is computable if there is a Turing machine T such that for all $n \in \mathbb{N}$ we have:

- if $n \in U$ then T, with input n, reaches a halting state and outputs $f(n)$;
- if T, with input n, reaches a halting state then $n \in U$.

Think of a Turing machine as a program in a very primitive computer language.

We can enumerate all Turing machines: T_{1}, T_{2}, \ldots. To every T_{i} corresponds a partial function ϕ_{i} as before; the domain of ϕ_{i} is the set

$$
\{n \in \mathbb{N} \mid T \text { reaches a halting state with input } n\}
$$

We may write $n m$ for $\phi_{n}(m)$. This is not associative; when we write $n_{1} n_{2} \cdots n_{k}$ we mean $\left(\cdots\left(\left(n_{1} n_{2}\right) n_{3}\right) \cdots\right) n_{k}$. Since the ϕ_{i} are partial functions, such expressions need not denote anything. We write: $n m \downarrow$ to indicate that m is in the domain of ϕ_{n}.

Subsets of \mathbb{N}^{k} are, in Computability theory, often called 'problems'; the 'problem' is to decide by an algorithm whether or not a given k-tuple of natural numbers is an element of that set. The algorithm (which we identify with a Turing machine) is then a 'solution' of the problem. One of the oldest such problems was the Halting Problem (Turing): the set

$$
H=\left\{(n, m) \mid m \text { is in the domain of } \phi_{n}\right\}
$$

And Turing proved:
Theorem The halting problem is unsolvable (i.e., has no solution). One also says that H is an undecidable set.

The theory of computability aims to classify subsets of \mathbb{N}^{k} in terms of 'difficulty to calculate'. An important tool is the notion of Turing reducibility: for subsets A, B of \mathbb{N}^{k}, the notation $A \leq_{T} B$ (A is Turing reducible to B) if a Turing machine can decide the question ' $n \in A$?' provided it has access to answers to ' $m \in B$?' (for example, by consulting a database for B). Turing said the machine may 'consult an oracle'.

Examples of similar structures:
\mathcal{K}_{2} ("Kleene's second model") is the set $\mathbb{N}^{\mathbb{N}}$ of functions from \mathbb{N} to \mathbb{N}. We assume a coding of sequences $\left\langle a_{0}, \ldots a_{n-1}\right\rangle$. For functions α, β, we let $\alpha \beta \downarrow$ if and only if for each natural number n there is some k such that

$$
\alpha(\langle n, \beta(0), \ldots, \beta(k-1)\rangle)>0
$$

and we let $\alpha \beta(n)=\alpha(\langle n, \beta(0), \ldots, \beta(k-1)\rangle)-1$ for the least such k.
The domain of the partial function ϕ_{α} is always a G_{δ}-set; ϕ_{α} is continuous on its domain.

Examples of similar structures (continued)
A total structure of this kind was defined by Dana Scott: let \mathcal{S} be the powerset of \mathbb{N}. We assume bijections:

$$
\begin{aligned}
\langle\cdot, \cdot\rangle: & \mathbb{N}^{2} \rightarrow \mathbb{N} \\
e_{-}: & \mathbb{N} \rightarrow \mathcal{P}_{\text {fin }}(\mathbb{N})
\end{aligned}
$$

Let $A B=\left\{y \mid\right.$ for some $n, e_{n} \subseteq B$ and $\left.\langle n, y\rangle \in A\right\}$ The functions ϕ_{A} are continuous when \mathcal{S} is given the Scott topology: identify \mathcal{S} with the set of all functions $\mathbb{N} \rightarrow\{0,1\}$; give $\{0,1\}$ the Sierpinski topology (with $\{1\}$ the one nontrivial open set) and \mathcal{S} the product topology).

There is a common axiomatics underlying these structures; we speak of Partial Combinatory Algebras (PCAs) Peter Johnstone therefore calls PCAs "Schönfinkel algebras". Which prompts the following short biographical intermezzo:

Moses Ilyich (or is it Isayevich?) Schönfinkel is one of the more mysterious figures in the history of logic. He was born in 1889 (or was it 1887?) in Ukraina. He worked from 1914 (!) to 1924 under Hilbert in Göttingen, during which period one paper appeared: Über die Bausteine der mathematischen Logik in Mathematische Annalen 92, 1924. However, this paper appears to have been written by someone else, who took notes during lectures by Schönfinkel.
A second paper, coauthored by Bernays, appeared in 1927; by this time, however, Schönfinkel was already in a mental hospital in Moscow.
He died in 1942 in Moscow; his papers were used for firewood by his neighbours.
Stephen Wolfram, who has a voluminous piece about Schönfinkel on his web page, also relates that his mother was from a family called "Lurie"; and the Lurie's were business partners of father Schönfinkel.

A Partial Combinatory Algebra is a set A with a partial binary operation $(a, b) \mapsto a b$ and special elements k and s , which satisfy:

$$
\begin{gathered}
k x \downarrow \\
(\mathrm{ka}) b=a \\
(\mathrm{sa}) b \downarrow
\end{gathered}
$$

and: if $a c(b c) \downarrow$ then sabc \downarrow and

$$
s a b c=(a c)(b c)
$$

The letter k stands for "Konstante Funktion"; the letter s is mysteriously called "Verschmelzungsfunktion" (blending function). The original (Schönfinkel's) aim: to provide an alternative foundation of mathematics in which not sets, but functions are the primitive notion.

We use the following conventions for brackets and other notations: a statement $t=s$ implies that t, s and all their subterms are defined.
We write $t \preceq s$ to mean: if $s \downarrow$ then $t=s$. We write $t \simeq s$ to mean $t \preceq s$ and $s \preceq t$.
Examples: $s a b c \preceq a c(b c) ; k(b x) \simeq b x$.

Basic facts about PCAs Let A be a PCA.
We consider expressions obtained from variables (x, y, z, u, v, \ldots), elements of $A(a, b, c, \ldots)$, and the juxtaposition operation: e.g., $x, a, x(a b) y, x a y b$.
For any such expression t in variables x_{0}, \ldots, x_{n} there is an element $\Lambda x_{0} \cdots x_{n} . t$ with the following properties: for each tuple a_{0}, \ldots, a_{n} from A we have

- $\left(\Lambda x_{0} \cdots x_{n} . t\right) a_{0} \cdots a_{n-1} \downarrow$
- $\left(\Lambda x_{0} \cdots x_{n} . t\right) a_{0} \cdots a_{n} \preceq t\left(a_{0}, \ldots, a_{n}\right)$

For example: for $\Lambda x . x$ one can take skk: skka $=k a(k a)=a$. Let $\mathrm{p}=\Lambda x y z . z x y$ so $\mathrm{pab}=\Lambda z . z a b$; let $p_{0}=\Lambda v . v \mathrm{k}$ and let $\mathrm{p}_{1}=\Lambda v . v(\Lambda w u . u)$. Then $\mathrm{p}_{0}(\mathrm{pab})=a$ and $\mathrm{p}_{1}(\mathrm{pab})=b$ so p is an ordered pair operator, with unpairings p_{0} and p_{1}.
There are also Booleans t and f and a definition by cases term C satisfying $C \operatorname{tab}=a$ and $C f a b=b$.

Some Computability theory in a PCA A
There is a copy of \mathbb{N} in $A:\{\bar{n} \mid n \in \mathbb{N}\}$, the Curry numerals.
For every k-ary partial recursive function ϕ there is an element a_{ϕ} of A simulating ϕ : for all $n_{1}, \ldots, n_{k} \in \mathbb{N}$,

$$
a_{\phi} \overline{n_{1}} \cdots \overline{n_{k}} \preceq \overline{\phi\left(n_{1}, \ldots, n_{k}\right)}
$$

We can manipulate finite sequences $\left\langle a_{0}, \ldots, a_{k-1}\right\rangle$ of elements of
A. For example we have for suitable $c, d \in A$:

$$
\begin{aligned}
\operatorname{c\overline {i}\langle a_{0},\ldots ,a_{k-1}\rangle } & =a_{i} \\
d\left\langle a_{0}, \ldots, a_{k-1}\right\rangle & =\bar{k}
\end{aligned}
$$

Some Computability theory in a PCA A (continued) We have a recursion theorem in every PCA A : there are elements y, z satisfying, for each $f \in A$:
i) $y f \preceq f(\mathrm{yf})$
ii) $z f \downarrow$
iii) $z f x \preceq f(z f) x$ for all $x \in A$.

Theorem. Let A be a PCA. For every computable function F on the natural numbers, there is an element ϕ of A satisfying $\phi \bar{n} \simeq \overline{F(n)}$ (here \bar{n} is the Curry numeral corresponding to the natural number n).

In Andy Pitts' thesis (1981) and a paper by Hyland, Johnstone and Pitts (1980) it is explained how every PCA A gives rise to a topos, the realizability topos over $A, \mathrm{RT}(A)$.
Hyland's paper "The effective topos" describes the topos $\operatorname{RT}\left(\mathcal{K}_{1}\right)$ (\mathcal{K}_{1} is the PCA of indices of Turing machines, out first example) in great detail.
The starting point: given a PCA A we have a category $\operatorname{Ass}(A)$ of assemblies over A.

An assembly over A is a pair (X, E) where X is a set and $E(x)$ is a nonempty subset of A, for each $x \in X$.
A morphism of assemblies $(X, E) \rightarrow(Y, F)$ is a function
$f: X \rightarrow Y$ of sets, for which there is an element $a \in A$ such that for all $x \in X$ and all $b \in E(x), a b \in F(f(x))$. One says that a tracks the function f.

The category $\operatorname{Ass}(A)$ is locally cartesian closed, regular, has a weak subobject classifier (is a quasi-topos). Moreover, Ass (A) comes with an adjunction

$$
(\Gamma: \operatorname{Ass}(A) \rightarrow \operatorname{Set}) \dashv(\nabla: \operatorname{Set} \rightarrow \operatorname{Ass}(A))
$$

$\Gamma(X, E)=X ; \nabla(X)=(X, \lambda x . A)$.
The category $\operatorname{Ass}(A)$ also has a natural numbers object $N=(\mathbb{N}, E)$ with $E(n)=\{\bar{n}\}$.

Structure of $\operatorname{Ass}(A)$:
Product $(X, E) \times(Y, F)$ is $(X \times Y, G)$ where $G(x, y)=\{p a b \mid a \in E(x), b \in F(y)\}$.
Exponent $(Y, F)^{(X, E)}$ is (Z, G) where Z is the set of morphisms $(X, E) \rightarrow(Y, F)$ in $\operatorname{Ass}(A)$, and $G(f)$ is the set of elements a which track f.

Example. Let us consider, in $\operatorname{Ass}\left(\mathcal{K}_{1}\right)$, the finite type structure over the natural numbers object N. The natural numbers object is isomorphic to (\mathbb{N}, E) where $E(n)=\{n\}$.
We have the basic type o and for types σ, τ the arrow type $\sigma \Rightarrow \tau$. In $\operatorname{Ass}\left(\mathcal{K}_{1}\right)$ we form objects X_{σ} for each type σ, starting with $X_{o}=N$ and taking exponents for the arrow types.
We obtain the structure of "hereditarily effective operations" of Kreisel-Troelstra; one of the models of the system HA^{ω} of intuitionistic arithmetic in all finite types. This was Hyland's original motivation for developing the effective topos.

The realizability topos $\mathrm{RT}(A)$ is the exact completion of the regular category Ass (A). One formally adds quotients of equivalence relations. Details are skipped.
The category $\operatorname{Ass}(A)$ is a full subcategory of $\mathrm{RT}(A)$. Actually, the category Set is the category of $\neg \neg$-sheaves in $\mathrm{RT}(A)$, and $\operatorname{Ass}(A)$ is the category of $\neg \neg$-separated objects (the objects X for which the statement $\forall x y \in X(\neg \neg(x=y) \rightarrow x=y)$ holds $)$.

We now wish to understand: how functorial is the construction $A \mapsto \mathrm{RT}(A)$?
It turns out that there is a very nice categorical structure on the class of PCAs, which was first explored by John Longley in his thesis (1995). It has the following features:
It ties up with the standard notion of morphism for toposes, namely: geometric morphisms (Johnstone 2013, Faber/vO 2014).
It ties up with standard notions of classical recursion theory (Longley 1995, vO 2006, Longley/Normann 2015, Faber/vO 2016).

Applicative morphisms of PCAs Let A, B be PCAs. An applicative morphism $A \rightarrow B$ is a total relation γ (we think of γ as a function from A to the set of nonempty subsets of B, so (A, γ) is an assembly over B) for which there is an element $r \in B$ which satisfies:
For each pair a, a^{\prime} of elements of A and $b \in \gamma(a), b^{\prime} \in \gamma\left(a^{\prime}\right)$, if $a a^{\prime} \downarrow$ in A then $r b b^{\prime} \downarrow$ in B, and $r b b^{\prime} \in \gamma\left(a a^{\prime}\right)$.
The element r realizes the morphism γ. Composition of morphisms is composition of total relations.
We think of γ as a simulation in B of computations in A; the element r is a machine that translates code for an A-program into code for a B-program.

Examples of applicative morphisms
$\delta_{1}: \mathcal{K}_{1} \rightarrow A: \delta_{1}(n)=\{\bar{n}\}$ is the essentially unique applicative morphism $\mathcal{K}_{1} \rightarrow A$ (up to a suitable notion of isomorphism of applicative morphisms)
$\delta_{2}: \mathcal{K}_{2}^{\text {rec }} \rightarrow \mathcal{K}_{1}: \delta_{2}(\phi)=\left\{e \in \mathbb{N} \mid \phi=\varphi_{e}\right\}$. Think of what a realizer of this morphism does; how it simulates the action of $\mathcal{K}_{2}^{\text {rec }}$ in \mathcal{K}_{1} !
There are interesting applicative morphisms between \mathcal{K}_{2} and \mathcal{S} in both directions.

Theorem (Longley, 1995): every applicative morpjism $A \xrightarrow{\gamma} B$ gives rise to a regular functor $\operatorname{Ass}(\gamma): \operatorname{Ass}(A) \rightarrow \operatorname{Ass}(B)$ which makes the diagrams

commute. Conversely, every regular functor making the two diagrams commute, is of the form $\operatorname{Ass}(\gamma)$ for some applicative morphism $\gamma: A \rightarrow B$.

A geometric morphism of toposes $f: \mathcal{F} \rightarrow \mathcal{E}$ consists of an adjoint pair

$$
\left(f^{*}: \mathcal{E} \rightarrow \mathcal{F}\right) \dashv\left(f_{*}: \mathcal{F} \rightarrow \mathcal{E}\right)
$$

such that the left adjoint f^{*} preserves finite limits.
Examples: 1. If \mathcal{F} and \mathcal{E} are categories of sheaves over sober spaces X and Y, respectively, then these correspond exactly to continuous maps $X \rightarrow Y$.
2. The adjunction $\Gamma \dashv \nabla$ between Set and $\operatorname{Ass}(A)$ extends to a geometric morphism Set $\rightarrow \mathrm{RT}(A)$, which embeds Set as the category of $\neg \neg$-sheaves in $\mathrm{RT}(A)$
What do geometric morphisms between realizability toposes look like?

Fundamental observation by P.T. Johnstone: Every geometric morphism $\mathrm{RT}(A) \rightarrow \mathrm{RT}(B)$ restricts to an adjunction between the categories of assemblies.
The left adjoint of such a restriction is always a regular functor commuting with the Γ 's and ∇ 's, and therefore corresponds to an applicative morphism $B \xrightarrow{\gamma} A$. The question then is: For which applicative morphisms $\gamma: B \rightarrow A$ does the regular functor $\operatorname{Ass}(\gamma): \operatorname{Ass}(B) \rightarrow \operatorname{Ass}(A)$ have a right adjoint?

Answer: (Hofstra/vO 2003; Johnstone 2013) For an applicative morphism $\gamma: B \rightarrow A$ the functor $\operatorname{Ass}(\gamma)$ has a right adjoint if and only if γ satisfies the following condition:

There is an element $q \in A$ such that for each $a \in A$ there exists a $b \in B$ satisfying $q \gamma(b)=\{a\}$ Here $q \gamma(b)=\{a\}$ means: for all $a^{\prime} \in \gamma(b), q a^{\prime}=a$.

Special case of geometric morphisms: inclusions
A geometric morphism $f: \mathcal{F} \rightarrow \mathcal{E}$ is called an inclusion if the right adjoint f_{*} is full and faithful. In the case of categories of sheaves over spaces, this corresponds to an embedding of topological spaces.
Here I wish to draw attention to some specific inclusions between realizability toposes.
Definition: Let A and B be PCAs; let us write $\mathrm{t}_{A}, \mathrm{f}_{A}$ for the Booleans in A and ditto $\mathrm{t}_{B}, \mathrm{f}_{B}$ for B. An applicative morphism $\gamma: A \rightarrow B$ is decidable if there is an element $d \in B$ such that $d \gamma\left(\mathrm{t}_{A}\right)=\left\{\mathrm{t}_{B}\right\}$ and $d \gamma\left(\mathrm{f}_{A}\right)=\left\{\mathrm{f}_{B}\right\}$. Equivalently, the functor $\operatorname{Ass}(\gamma)$ preserves finite sums. Note, that if $\operatorname{Ass}(\gamma)$ has a right adjoint, γ is necessarily decidable.

Computations in PCAs with an oracle
Let $\gamma: A \rightarrow B$ be an applicative morphism. A partial function $f: A \rightharpoonup A$ is representable w.r.t. γ if there is an element $b \in B$ satisfying: for each $a \in A$, if $f(a) \downarrow$ then $b \gamma(a) \subseteq \gamma(f(a))$. Theorem (vO 2006): Given PCA A and partial function f on A, there is a PCA $A[f]$ which is universal with the property that there is a decidable applicative morphism $\iota_{f}: A \rightarrow A[f]$ w.r.t which f is representable: if $\gamma: A \rightarrow B$ is decidable and f is representable w.r.t. γ, then γ factors uniquely through ι_{f} :

Applying this construction to \mathcal{K}_{1} gives us the PCA of "computations with oracle f ".

Note, that this construction gives us a notion of "Turing reducibility in A ": if f and g are partial functions on A, then $f \leq_{T} g$ if and only if f is representable w.r.t. $\iota_{g}: A \rightarrow A[g]$. Equivalently: for every decidable applicative morphism $A \xrightarrow{\gamma} B$ we have: if g is representable w.r.t. γ, then so is f.

An extension of the "oracle" result (Faber/vO 2016)
Given a PCA A, we can define what we call an "effective operation of type 2 " in A, and we have, for any partial function $F: A^{A} \rightharpoonup A$ a similar universal solution for "forcing F to be an effective operation": a decidable applicative morphism $\iota_{F}: A \rightarrow a[F]$ with the expected universal property.
We have the following result (which should not come unexpected):
For the Kleene functional $E(E(f)=0$ if and only if $\exists n f(n)=0)$ we have: a function $\mathbb{N} \rightarrow \mathbb{N}$ is representable w.r.t. $\mathcal{K}_{1}[E]$ if and only if the function f is hyperarithmetical.
This opens up the possibility of "realizability with hyperarithmetical functions"; this is a sheaf subtopos of the effective topos in which there is a model of Peano Arithmetic (with classical logic!). Such a model cannot exist in the effective topos.

In a recent paper, Jetze Zoethout takes this one step further. He explains why a straightforward extension to "third-order functionals" is not to be expected; however, employing a "lax" version of PCAs (the equations hold "up to inequality") one can obtain, for such a PCA A and third-order Φ, a PCA $A[\Phi]$ enjoying a weaker universal property.

