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Computability Theory
A function f : U → N for U ⊆ N is called a partial function on N;
note that a partial function may be total (in case U = N).
Such a function is computable if there is a Turing machine T such
that for all n ∈ N we have:

I if n ∈ U then T , with input n, reaches a halting state and
outputs f (n);

I if T , with input n, reaches a halting state then n ∈ U.

Think of a Turing machine as a program in a very primitive
computer language.



We can enumerate all Turing machines: T1,T2, . . .. To every Ti

corresponds a partial function φi as before; the domain of φi is the
set

{n ∈ N |T reaches a halting state with input n}

We may write nm for φn(m). This is not associative; when we
write n1n2 · · · nk we mean (· · · ((n1n2)n3) · · · )nk .
Since the φi are partial functions, such expressions need not
denote anything. We write: nm ↓ to indicate that m is in the
domain of φn.



Subsets of Nk are, in Computability theory, often called ‘problems’;
the ‘problem’ is to decide by an algorithm whether or not a given
k-tuple of natural numbers is an element of that set. The
algorithm (which we identify with a Turing machine) is then a
‘solution’ of the problem. One of the oldest such problems was the
Halting Problem (Turing): the set

H = {(n,m) |m is in the domain of φn}

And Turing proved:
Theorem The halting problem is unsolvable (i.e., has no solution).
One also says that H is an undecidable set.



The theory of computability aims to classify subsets of Nk in terms
of ‘difficulty to calculate’. An important tool is the notion of
Turing reducibility: for subsets A,B of Nk , the notation A ≤T B
(A is Turing reducible to B) if a Turing machine can decide the
question ‘n ∈ A?’ provided it has access to answers to ‘m ∈ B?’
(for example, by consulting a database for B). Turing said the
machine may ‘consult an oracle’.



Examples of similar structures:
K2 (“Kleene’s second model”) is the set NN of functions from N to
N. We assume a coding of sequences 〈a0, . . . an−1〉. For functions
α, β, we let αβ ↓ if and only if for each natural number n there is
some k such that

α(〈n, β(0), . . . , β(k − 1)〉) > 0

and we let αβ(n) = α(〈n, β(0), . . . , β(k − 1)〉)− 1 for the least
such k.
The domain of the partial function φα is always a Gδ-set; φα is
continuous on its domain.



Examples of similar structures (continued)
A total structure of this kind was defined by Dana Scott: let S be
the powerset of N. We assume bijections:

〈·, ·〉 : N2 → N
e− : N→ Pfin(N)

Let AB = {y | for some n, en ⊆ B and 〈n, y〉 ∈ A} The functions
φA are continuous when S is given the Scott topology: identify S
with the set of all functions N→ {0, 1}; give {0, 1} the Sierpinski
topology (with {1} the one nontrivial open set) and S the product
topology).



There is a common axiomatics underlying these structures; we
speak of Partial Combinatory Algebras (PCAs)
Peter Johnstone therefore calls PCAs “Schönfinkel algebras”.
Which prompts the following short biographical intermezzo:





Moses Ilyich (or is it Isayevich?) Schönfinkel is one of the more
mysterious figures in the history of logic. He was born in 1889 (or
was it 1887?) in Ukraina. He worked from 1914 (!) to 1924 under
Hilbert in Göttingen, during which period one paper appeared:
Über die Bausteine der mathematischen Logik in Mathematische
Annalen 92, 1924. However, this paper appears to have been
written by someone else, who took notes during lectures by
Schönfinkel.
A second paper, coauthored by Bernays, appeared in 1927; by this
time, however, Schönfinkel was already in a mental hospital in
Moscow.
He died in 1942 in Moscow; his papers were used for firewood by
his neighbours.
Stephen Wolfram, who has a voluminous piece about Schönfinkel
on his web page, also relates that his mother was from a family
called “Lurie”; and the Lurie’s were business partners of father
Schönfinkel.



A Partial Combinatory Algebra is a set A with a partial binary
operation (a, b) 7→ ab and special elements k and s, which satisfy:

kx ↓
(ka)b = a

(sa)b ↓

and: if ac(bc) ↓ then sabc ↓ and

sabc = (ac)(bc)

.
The letter k stands for “Konstante Funktion”; the letter s is
mysteriously called “Verschmelzungsfunktion” (blending function).
The original (Schönfinkel’s) aim: to provide an alternative
foundation of mathematics in which not sets, but functions are the
primitive notion.



We use the following conventions for brackets and other notations:
a statement t = s implies that t, s and all their subterms are
defined.
We write t � s to mean: if s ↓ then t = s. We write t ' s to
mean t � s and s � t.
Examples: sabc � ac(bc); k(bx) ' bx .



Basic facts about PCAs
Let A be a PCA.
We consider expressions obtained from variables (x , y , z , u, v , . . .),
elements of A (a, b, c, . . .), and the juxtaposition operation: e.g.,
x , a, x(ab)y , xayb.
For any such expression t in variables x0, . . . , xn there is an
element Λx0 · · · xn.t with the following properties: for each tuple
a0, . . . , an from A we have

I (Λx0 · · · xn.t)a0 · · · an−1 ↓
I (Λx0 · · · xn.t)a0 · · · an � t(a0, . . . , an)

For example: for Λx .x one can take skk: skka = ka(ka) = a.
Let p = Λxyz .zxy so pab = Λz .zab; let p0 = Λv .vk and let
p1 = Λv .v(Λwu.u). Then p0(pab) = a and p1(pab) = b so p is an
ordered pair operator, with unpairings p0 and p1.
There are also Booleans t and f and a definition by cases term C
satisfying C tab = a and C fab = b.



Some Computability theory in a PCA A
There is a copy of N in A: {n̄ | n ∈ N}, the Curry numerals.
For every k-ary partial recursive function φ there is an element aφ
of A simulating φ: for all n1, . . . , nk ∈ N,

aφn̄1 · · · n̄k � φ(n1, . . . , nk)

We can manipulate finite sequences 〈a0, . . . , ak−1〉 of elements of
A. For example we have for suitable c, d ∈ A:

cī〈a0, . . . , ak−1〉 = ai
d〈a0, . . . , ak−1〉 = k̄



Some Computability theory in a PCA A (continued) We have a
recursion theorem in every PCA A: there are elements y, z
satisfying, for each f ∈ A:

i) yf � f (yf )

ii) zf ↓
iii) zfx � f (zf )x for all x ∈ A.

Theorem. Let A be a PCA. For every computable function F on
the natural numbers, there is an element φ of A satisfying
φn ' F (n) (here n is the Curry numeral corresponding to the
natural number n).



In Andy Pitts’ thesis (1981) and a paper by Hyland, Johnstone and
Pitts (1980) it is explained how every PCA A gives rise to a topos,
the realizability topos over A, RT(A).
Hyland’s paper “The effective topos” describes the topos RT(K1)
(K1 is the PCA of indices of Turing machines, out first example) in
great detail.
The starting point: given a PCA A we have a category Ass(A) of
assemblies over A.



An assembly over A is a pair (X ,E ) where X is a set and E (x) is a
nonempty subset of A, for each x ∈ X .
A morphism of assemblies (X ,E )→ (Y ,F ) is a function
f : X → Y of sets, for which there is an element a ∈ A such that
for all x ∈ X and all b ∈ E (x), ab ∈ F (f (x)). One says that a
tracks the function f .



The category Ass(A) is locally cartesian closed, regular, has a weak
subobject classifier (is a quasi-topos). Moreover, Ass(A) comes
with an adjunction

(Γ : Ass(A)→ Set) a (∇ : Set→ Ass(A))

Γ(X ,E ) = X ; ∇(X ) = (X , λx .A).
The category Ass(A) also has a natural numbers object
N = (N,E ) with E (n) = {n̄}.



Structure of Ass(A):
Product (X ,E )× (Y ,F ) is (X × Y ,G ) where
G (x , y) = {pab | a ∈ E (x), b ∈ F (y)}.
Exponent (Y ,F )(X ,E) is (Z ,G ) where Z is the set of morphisms
(X ,E )→ (Y ,F ) in Ass(A), and G (f ) is the set of elements a
which track f .



Example. Let us consider, in Ass(K1), the finite type structure
over the natural numbers object N. The natural numbers object is
isomorphic to (N,E ) where E (n) = {n}.
We have the basic type o and for types σ, τ the arrow type σ ⇒ τ .
In Ass(K1) we form objects Xσ for each type σ, starting with
Xo = N and taking exponents for the arrow types.
We obtain the structure of “hereditarily effective operations” of
Kreisel-Troelstra; one of the models of the system HAω of
intuitionistic arithmetic in all finite types. This was Hyland’s
original motivation for developing the effective topos.



The realizability topos RT(A) is the exact completion of the
regular category Ass(A). One formally adds quotients of
equivalence relations. Details are skipped.
The category Ass(A) is a full subcategory of RT(A). Actually, the
category Set is the category of ¬¬-sheaves in RT(A), and Ass(A)
is the category of ¬¬-separated objects (the objects X for which
the statement ∀xy ∈ X (¬¬(x = y)→ x = y) holds).



We now wish to understand: how functorial is the construction
A 7→ RT(A)?
It turns out that there is a very nice categorical structure on the
class of PCAs, which was first explored by John Longley in his
thesis (1995). It has the following features:
It ties up with the standard notion of morphism for toposes,
namely: geometric morphisms (Johnstone 2013, Faber/vO 2014).
It ties up with standard notions of classical recursion theory
(Longley 1995, vO 2006, Longley/Normann 2015, Faber/vO 2016).



Applicative morphisms of PCAs
Let A,B be PCAs. An applicative morphism A→ B is a total
relation γ (we think of γ as a function from A to the set of
nonempty subsets of B, so (A, γ) is an assembly over B) for which
there is an element r ∈ B which satisfies:
For each pair a, a′ of elements of A and b ∈ γ(a), b′ ∈ γ(a′), if
aa′ ↓ in A then rbb′ ↓ in B, and rbb′ ∈ γ(aa′).
The element r realizes the morphism γ. Composition of morphisms
is composition of total relations.
We think of γ as a simulation in B of computations in A; the
element r is a machine that translates code for an A-program into
code for a B-program.



Examples of applicative morphisms
δ1 : K1 → A: δ1(n) = {n̄} is the essentially unique applicative
morphism K1 → A (up to a suitable notion of isomorphism of
applicative morphisms)
δ2 : Krec

2 → K1: δ2(φ) = {e ∈ N |φ = ϕe}. Think of what a
realizer of this morphism does; how it simulates the action of Krec
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in K1!
There are interesting applicative morphisms between K2 and S in
both directions.



Theorem (Longley, 1995): every applicative morpjism A
γ→ B gives

rise to a regular functor Ass(γ) : Ass(A)→ Ass(B) which makes
the diagrams

Ass(A)
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KK

KK
KK

K

Ass(γ)// Ass(B)

Γ
��

Set

Ass(A)
Ass(γ)// Ass(B)

Set

∇

eeKKKKKKKKK
∇

OO

commute. Conversely, every regular functor making the two
diagrams commute, is of the form Ass(γ) for some applicative
morphism γ : A→ B.



A geometric morphism of toposes f : F → E consists of an adjoint
pair

(f ∗ : E → F) a (f∗ : F → E)

such that the left adjoint f ∗ preserves finite limits.
Examples: 1. If F and E are categories of sheaves over sober
spaces X and Y , respectively, then these correspond exactly to
continuous maps X → Y .
2. The adjunction Γ a ∇ between Set and Ass(A) extends to a
geometric morphism Set→ RT(A), which embeds Set as the
category of ¬¬-sheaves in RT(A)
What do geometric morphisms between realizability toposes look
like?



Fundamental observation by P.T. Johnstone: Every geometric
morphism RT(A)→ RT(B) restricts to an adjunction between the
categories of assemblies.
The left adjoint of such a restriction is always a regular functor
commuting with the Γ’s and ∇’s, and therefore corresponds to an
applicative morphism B

γ→ A. The question then is:
For which applicative morphisms γ : B → A does the regular
functor Ass(γ) : Ass(B)→ Ass(A) have a right adjoint?



Answer: (Hofstra/vO 2003; Johnstone 2013) For an applicative
morphism γ : B → A the functor Ass(γ) has a right adjoint if and
only if γ satisfies the following condition:

There is an element q ∈ A such that for each a ∈ A there
exists a b ∈ B satisfying qγ(b) = {a}

Here qγ(b) = {a} means: for all a′ ∈ γ(b), qa′ = a.



Special case of geometric morphisms: inclusions
A geometric morphism f : F → E is called an inclusion if the right
adjoint f∗ is full and faithful. In the case of categories of sheaves
over spaces, this corresponds to an embedding of topological
spaces.
Here I wish to draw attention to some specific inclusions between
realizability toposes.
Definition: Let A and B be PCAs; let us write tA, fA for the
Booleans in A and ditto tB , fB for B.
An applicative morphism γ : A→ B is decidable if there is an
element d ∈ B such that dγ(tA) = {tB} and dγ(fA) = {fB}.
Equivalently, the functor Ass(γ) preserves finite sums.
Note, that if Ass(γ) has a right adjoint, γ is necessarily decidable.



Computations in PCAs with an oracle
Let γ : A→ B be an applicative morphism. A partial function
f : A⇀ A is representable w.r.t. γ if there is an element b ∈ B
satisfying: for each a ∈ A, if f (a) ↓ then bγ(a) ⊆ γ(f (a)).
Theorem (vO 2006): Given PCA A and partial function f on A,
there is a PCA A[f ] which is universal with the property that there
is a decidable applicative morphism ιf : A→ A[f ] w.r.t which f is
representable: if γ : A→ B is decidable and f is representable
w.r.t. γ, then γ factors uniquely through ιf :

A
ιf //

γ
!!B

BB
BB

BB
BB

A[f ]

��
B

Applying this construction to K1 gives us the PCA of
“computations with oracle f ”.



Note, that this construction gives us a notion of “Turing
reducibility in A”: if f and g are partial functions on A, then
f ≤T g if and only if f is representable w.r.t. ιg : A→ A[g ].

Equivalently: for every decidable applicative morphism A
γ→ B we

have: if g is representable w.r.t. γ, then so is f .



An extension of the “oracle” result (Faber/vO 2016)
Given a PCA A, we can define what we call an “effective operation
of type 2” in A, and we have, for any partial function F : AA ⇀ A
a similar universal solution for “forcing F to be an effective
operation”: a decidable applicative morphism ιF : A→ a[F ] with
the expected universal property.
We have the following result (which should not come unexpected):
For the Kleene functional E (E (f ) = 0 if and only if ∃nf (n) = 0)
we have: a function N→ N is representable w.r.t. K1[E ] if and
only if the function f is hyperarithmetical.
This opens up the possibility of “realizability with
hyperarithmetical functions”; this is a sheaf subtopos of the
effective topos in which there is a model of Peano Arithmetic (with
classical logic!). Such a model cannot exist in the effective topos.



In a recent paper, Jetze Zoethout takes this one step further. He
explains why a straightforward extension to“third-order
functionals” is not to be expected; however, employing a “lax”
version of PCAs (the equations hold “up to inequality”) one can
obtain, for such a PCA A and third-order Φ, a PCA A[Φ] enjoying
a weaker universal property.


