
Concrete Models for Classical Realizability

Jaap van Oosten (joint work with Tinxiang Zou)

Department of Mathematics, Utrecht University

Utrecht Workshop on Proof Theory, April 16, 2015

Classical Realizability was developed in the middle of the 1990s by
Jean-Louis Krivine.
Its aim is twofold:

Give new models for classical theories (in particular, set
theory)

Understand classical truth in terms which have computational
meaning

In this talk, we concentrate on the first aspect.

Outline of the talk:

1) Description of Krivine’s classical realizability

2) Krivine realizability as a tripos/topos construction

3) A connection with relative realizability

Sources:

1) Papers by Jean-Louis Krivine, see Krivine’s home page:
http://www.pps.jussieu.fr/∼krivine/

2) Paper Krivine’s Classical Realizability from a Categorical
Perspective by Thomas Stre-
icher (to appear in MSCS); available at Streicher’s home page:
http://www.mathematik.tu-darmstadt.de/∼streicher/

3) Paper All realizability is relative by Pieter Hofstra (Math.
Proc. Camb. Phil. Soc. 141 (2006), 239–264

4) Some ideas of Wouter Stekelenburg

5) Tingxiang Zou’s MSc Thesis (in preparation)

There are two kinds of objects: terms (denoted t, t ′, s, u, . . .) and
stacks (denoted π, π′).
We may have stack constants (basic stacks) from a set Π0; we
think of a stack as a sequence of closed terms ended by a stack
constant. Given a closed term t and a stack π, we have a new
stack t.π.
The terms come from a λ-calculus enriched with extra constants.
In this talk, we shall only consider the following extra constants:

For every stack π there is a constant kπ (sometimes called
continuation constants)

There is a constant cc (call/cc)

If we denote the set of stacks by Π and the set of terms by Λ, we
have therefore the following formal syntax:

Π ::= α|t.π (α ∈ Π0, t ∈ Λ, t closed)

Λ ::= x |λx .t|tu|cc|kπ (π ∈ Π)

An element of Λ×Π (typically written as t ∗ π) is called a process.
There is a reduction relation on processes, generated by the
following one-step reductions:

Push tu ∗ π � t ∗ u.π
Grab λx .t ∗ u.π � t[u/x] ∗ π
Save cc ∗ u.π � u ∗ kπ.π
Restore kπ ∗ u.π′ � u ∗ π

This is called Krivine’s Abstract Machine. Note that the first two
rules implement weak head reduction:

(λx1 · · · xn.t)M1 · · ·Mn ∗ π �� t[M1/x1, . . . ,Mn/xn] ∗ π

A set of U processes is saturated if t ∗ π ∈ U whenever
t ∗ π � t ′ ∗ π′ and t ′ ∗ π′ ∈ U .
We fix a saturated set of processes: a pole ⊥⊥.
We also fix a set of terms: the set PL of proof-like terms. Krivine
stipulates: PL is the set of closed terms which don’t contain a
continuation constant kπ (this may be too strict).

Logic
Consider a language in second-order logic: we have certain
first-order constants, function symbols and relation symbols;
first-order varables x , y , . . ., second-order variables X ,Y , . . . (of
each arity ≥ 0), and the logical symbols →,∀x ,∀X .
We have the usual definitions:

⊥ ≡ ∀X .X
¬A ≡ A→ ⊥

A ∧ B ≡ ∀X .(A→ (B → X))→ X
A ∨ B ≡ ∀X .(A→ X)→ ((B → X)→ X)
∃xA ≡ ∀X .(∀x(A→ X)→ X)
etc.

Curry Howard for Classical second-order logic
Define a derivation system of typing judgements Γ ` t : A where Γ
is a variable declaration x1 : A1, . . . , xn : An, the Ai are
second-order formulas and t is a term:

(x : A) ∈ Γ
Γ ` x : A

Γ, x : A ` t : B

Γ ` λx .t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ ` t : A x 6∈ FV (Γ)
Γ ` t : ∀xA

Γ ` t : ∀xA
Γ ` t : A[e/x]

Γ ` t : A X 6∈ FV (Γ)
Γ ` t : ∀X .A

Γ ` t : ∀X .A
Γ ` t : A[P/X]

And one classical rule (Peirce’s Law):

Γ ` cc : ((A→ B)→ A)→ A

Examples of derivable judgements:

pair ≡ λxyz .zxy : ∀XY .X → (Y → X ∧ Y)
fst ≡ λz .z(λxy .x) : ∀XY .X ∧ Y → X
left ≡ λxuv .ux : ∀XY .X → X ∨ Y

right ≡ λyuv .vy : ∀XY .Y → X ∨ Y

and also

EM ≡ cc(λk .right(λx .k(leftx))) : ∀X .X ∨ ¬X

We should have: whenever Γ ` t : A is derivable, t is a proof-like
term.

Realizability
Suppose we are given a set U of individuals. Relative to an
assignment of variables, where elements of U are assigned to
first-order variables and functions Uk → P(Π) are assigned to
k-ary predicate variables, we now assign to any formula A a set of
stacks ‖A‖, a set of “witnesses against A”. The set of realizers of
A, written |A|, is defined as

|A| = {t ∈ Λ | ∀π ∈ ‖A‖ t ∗ π ∈⊥⊥}

The definition is simple:

‖A→ B‖ = |A|.‖B‖ = {t.π | t ∈ |A|, π ∈ ‖B‖}
‖∀xA‖ =

⋃
u∈U ‖A(u)‖

‖∀X .A‖ =
⋃

F :Uk→P(Π) ‖A(F)‖

Then |∀xA| =
⋂

u∈U |A(u)|, etc.

A complication: if the pole ⊥⊥ is empty, we always have: |A| = ∅ or
|A| = Λ. We have classical, two-valued semantics.
On the other hand, if the pole contains one process, say t ∗ π, then
by the rule (Restore) we have kπ ∗ t.π′ ∈⊥⊥ for any π′; whence by
(Push), kπt ∗ π′ ∈⊥⊥ for any π′; which means that kπt ∈ |A| for
any A, in particular for A ≡ ∀X .X .
Therefore we say: a closed formula A is true under this
realizability, if its set |A| of realizers contains an element of PL, the
set of proof-like terms.
Strong Soundness Theorem Suppose the typing judgement
x1 : A1, . . . , xn : An ` t : B is derivable; suppose that relative to an
assignment ρ we have u1 ∈ |A1[ρ]|, . . . , un ∈ |An[ρ]|. Then

t[u1/x1, . . . , un/xn] ∈ |B[ρ]|

Note that the hypothesis implies that t is proof-like; so if
u1, . . . , un are proof-like, so is t(u1, . . . , un).

Examples
1. For any A,B and term t:

t ∈ |A→ B| ⇒ ∀u(u ∈ |A| ⇒ tu ∈ |B|)

For, suppose π ∈ ‖B‖, u ∈ |A|. Then u.π ∈ ‖A→ B‖ so
t ∗ u.π ∈⊥⊥; by (Push), tu ∗ π ∈⊥⊥.
2. For any A and B: if π ∈ ‖A‖ then kπ ∈ |A→ B|. For, suppose
π ∈ ‖A‖, u.ρ ∈ ‖A→ B‖ so u ∈ |A|, ρ ∈ ‖B‖. Then u ∗ π ∈⊥⊥
whence by (Restore), kπ ∗ u.ρ ∈⊥⊥.
3. Let us see that cc realizes Peirce’s Law: suppose
t.π ∈ ‖((A→ B)→ A)→ A‖, so t ∈ |(A→ B)→ A|, π ∈ ‖A‖.
Then kπ ∈ |A→ B|, so kπ.π ∈ ‖(A→ B)→ A‖. Hence
t ∗ kπ.π ∈⊥⊥. By (Save), cc ∗ t.π ∈⊥⊥. we conclude that
cc ∈ |((A→ B)→ A)→ A|

So far the treatment of Krivine/Miquel. Can we understand this
interpretation in terms of categorical logic?
Definition. A tripos on Set is a pseudofunctor P : Setop → Preord,
satisfying:
a) For each set X the preorder PX is endowed with a binary
operation (·)→ (·) which obeys the laws of intuitionistic
implicational logic (e.g., φ ≤ ψ → φ,
θ → (φ→ ψ) ≤ (θ → φ)→ (θ → ψ));
b) For every function f : X → Y of sets, the map Pf : PY → PX
preserves → up to isomorphism. Moreover, Pf has a right adjoint
∀f , which satisfies the Beck condition and the condition that for
φ ∈ PX , ψ ∈ PY ,

∀f (Pf (ψ)→ φ) ' ψ → ∀f (φ)

c) There is a generic predicate: a set Σ and an element σ ∈ PΣ
with the property that for every φ ∈ PX there is a function
{φ} : X → Σ such that P{φ}(σ) ' φ.

Every tripos on Set gives rise to a model of second-order logic.
Formulas with parameters from a set X are interpreted as elements
of PX
Second-order (unary) predicates are interpreted as elements of ΣX

(where Σ is the carrier of a chosen generic predicate)
The element relation must be an element of P(ΣX × X): it can be
taken as P(ev)(σ) where ev : ΣX × X → Σ is the evaluation map.
A closed formula is interpreted as an alement of P1 (1 a fixed
one-element set); it is true if its interpretation is the top element
in this preorder.

Krivine’s realizability defines a Boolean tripos K on Set: for a set
X , let KX be the set of functions X → P(Π). Given such a
function φ, we define |φ(x)| by

|φ(x)| = {t ∈ Λ | ∀π ∈ φ(x) t ∗ π ∈⊥⊥}

Define → on KX by

(φ→ ψ)(x) = {t.π | t ∈ |φ(x)|, π ∈ ψ(x)}

The order is given by: φ ≤ ψ if and only if
⋂

x |(φ→ ψ)(x)|
contains a proof-like term.
For f : X → Y , Kf : KY → KX is given by composition with f .
So Kf preserves → and is order-preserving. Its right adjoint ∀f is
given by

∀f (φ)(y) = ‖∀x(f (x) � y → φ(x)‖

Here ‖∀x(f (x) � y → φ(x)‖ =⋃
x∈X{t.π | t ∈ |f (x) � y |, π ∈ φ(x)}

Thomas Streicher has given a reformulation of Krivine’s
realizability in terms reminiscent of combinatory logic.
An abstract Krivine structure consists of:

a set Λ of “terms”, with elements K , S and cc

an application operation t, s 7→ ts : Λ× Λ→ Λ

a subset QP of Λ: the ‘quasi-proofs’; QP is closed under
application, and contains the elements K , S and cc

a set Π of “stacks”

an operation t, π 7→ t.π : Λ× Π→ Π

an operation k(−) : Π→ Λ

and a ‘pole’, a saturated subset ⊥⊥ of Λ× Π

As usual, we write elements of Λ× Π as t ∗ π

The saturatedness of ⊥⊥ means that the following axioms are
satisfied:

(S1) if t ∗ s.π ∈⊥⊥ then ts ∗ π ∈⊥⊥
(S2) if t ∗ π ∈⊥⊥ then K ∗ t.s.π ∈⊥⊥
(S3) if tu(su) ∗ π ∈⊥⊥ then S ∗ t.s.u.π ∈⊥⊥
(S4) if t ∗ kπ.π ∈⊥⊥ then cc ∗ t.π ∈⊥⊥
(S5) if t ∗ π ∈⊥⊥ then kπ ∗ t.π′ ∈⊥⊥

Again, we have a tripos: PX = P(Π)X

φ ≤ ψ if and only if
⋂

x∈X |φ(x)→ ψ(x)| contains a proof-like
element, where:
|χ(x)| = {t ∈ Λ | ∀π ∈ χ(x) t ∗ π ∈⊥⊥}
φ(x)→ ψ(x) = {t.π | t ∈ |φ(x)|, π ∈ ψ(x)}

Streicher’s formulation facilitates drawing a parallel with ‘relative
realizability’.
An order-pca (opca) is a poset A with a partial application
a, b 7→ ab on A which satisfies:

if ab is defined, a′ ≤ a and b′ ≤ b then a′b′ is defined and
a′b′ ≤ ab

there are elements k and s in A such that kab ≤ a, sab is
defined, and whenever ac(bc) is defined then so is sabc, and
sabc ≤ ac(bc)

A filter Φ on an opca A is a subset which contains some choice for
k and s, and is closed under application.

Relative realizability triposes:
Given an opca A and a filter Φ we have a tripos PA,Φ. Let D(A)
be the set of all downwards closed subsets of A.
Let PA,Φ(X) the set of all functions X → D(A).
Define φ ≤ ψ iff for some element c of the filter Φ we have: for all
x ∈ X and a ∈ φ(x), ca ∈ ψ(x)

Prime example of an opca with filter: let A the set of all functions
N→ N, and Φ the set of all total recursive functions.
The application on A is as follows: for α, β, γ ∈ NN, αβ = γ if for
every n ∈ N there is a k ∈ N such that

α(〈n, β(0), . . . , β(k − 1)〉) = γ(n) + 1

α(〈n, β(0), . . . , β(l − 1)〉) = 0 for l < k

Given an opca A with filter Φ, fix a subset U of A which is disjoint
from Φ.
Consider a standard coding of finite sequences in A. We define an
abstract Krivine structure as follows:

Let Π be the set of coded sequences of A

Put Λ = A

Let a.π be the code of the sequence π with a appended at the
front.

Define a pole ⊥⊥ by:

⊥⊥ = {t ∗ π | tπ is defined and an element of U}

define a new, total, application on A by:

a·b = λπ.a(b.π)

Our set QP of quasi-proofs is Φ.
For the rest of the structure, let π≥k be a code of the sequence
πk , πk+1, . . ., if π is code of the sequence π0, π1, Then define:

K = λπ.π0(π≥2)
S = λρ.ρ0(ρ2.[λν.ρ1(ρ2.ν)].ρ≥3)
kπ = λρ.ρ0π
cc = λρ.ρ0(kρ≥1

.ρ≥1)

We have: (S1) if t ∗ s.π ∈⊥⊥, then t(s.π) ∈ U , so (t·s)π ∈ U ,
therefore t·s ∗ π ∈⊥⊥, etc.

The tripos obtained from this abstract Krivine structure can
equivalently be described as follows:
define a new preorder on the sets PA,Φ(X), by putting:
φ ≤ ψ iff the set

⋂
x φ(x)→ [(ψ(x)→ U)→ U] contains an

element of A].
The topos one constructs from this tripos is the Booleanization of
a closed subtopos of Set[PA],A]

Thomas Streicher shows that every abstract Krivine structure gives
rise to an opca with a filter, but he does not compare the Krivine
tripos with the standard relative realizability tripos PA,Φ.
Theorem (Zou) Every abstract Krivine structure is equivalent to
one formed from an opca A, a filter Φ and a subset U ⊂ A− Φ.
Theorem (Zou) For A = NN, Φ the set of total recursive functions,
and U = {τ} for some non-recursive τ , the tripos obtained from
the abstract Krivine structure as above, is not equivalent to a
tripos of the form [−,B] for some complete Boolean algebra B.

