Concrete Models for Classical Realizability

Jaap van Oosten (joint work with Tinxiang Zou)

Department of Mathematics, Utrecht University

Utrecht Workshop on Proof Theory, April 16, 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Classical Realizability was developed in the middle of the 1990s by Jean-Louis Krivine.

Its aim is twofold:

Give new models for classical theories (in particular, set theory)

Understand classical truth in terms which have computational meaning

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In this talk, we concentrate on the first aspect.

Outline of the talk:

- 1) Description of Krivine's classical realizability
- 2) Krivine realizability as a tripos/topos construction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3) A connection with relative realizability

Sources:

- Papers by Jean-Louis Krivine, see Krivine's home page: http://www.pps.jussieu.fr/~krivine/
- 2) Paper Krivine's Classical Realizability from a Categorical Perspective by Thomas Streicher (to appear in MSCS); available at Streicher's home page: http://www.mathematik.tu-darmstadt.de/~streicher/

- 3) Paper *All realizability is relative* by Pieter Hofstra (Math. Proc. Camb. Phil. Soc. **141** (2006), 239–264
- 4) Some ideas of Wouter Stekelenburg
- 5) Tingxiang Zou's MSc Thesis (in preparation)

There are two kinds of objects: *terms* (denoted t, t', s, u, ...) and *stacks* (denoted π, π').

We may have *stack constants* (basic stacks) from a set Π_0 ; we think of a stack as a sequence of closed terms ended by a stack constant. Given a closed term t and a stack π , we have a new stack $t.\pi$.

The terms come from a λ -calculus enriched with extra constants. In this talk, we shall only consider the following extra constants:

For every stack π there is a constant k_{π} (sometimes called *continuation constants*)

There is a constant ∞ (*call/cc*)

If we denote the set of stacks by Π and the set of terms by $\Lambda,$ we have therefore the following formal syntax:

$$egin{aligned} &\Pi ::= lpha | t.\pi \; ig(lpha \in \Pi_0, \; t \in \Lambda, \; t \; ext{closed} ig) \ &\Lambda ::= x | \lambda x.t | t u | m{lpha} | m{k}_\pi \; ig(\pi \in \Pi ig) \end{aligned}$$

An element of $\Lambda \times \Pi$ (typically written as $t * \pi$) is called a *process*. There is a *reduction relation* on processes, generated by the following one-step reductions:

> Push $tu * \pi \succ t * u.\pi$ Grab $\lambda x.t * u.\pi \succ t[u/x] * \pi$ Save $\mathfrak{c} * u.\pi \succ u * k_{\pi}.\pi$ Restore $k_{\pi} * u.\pi' \succ u * \pi$

This is called *Krivine's Abstract Machine*. Note that the first two rules implement *weak head reduction*:

$$(\lambda x_1 \cdots x_n.t)M_1 \cdots M_n * \pi \succ t[M_1/x_1, \ldots, M_n/x_n] * \pi$$

A set of \mathcal{U} processes is *saturated* if $t * \pi \in \mathcal{U}$ whenever $t * \pi \succ t' * \pi'$ and $t' * \pi' \in \mathcal{U}$. We fix a saturated set of processes: a *pole* \bot . We also fix a set of terms: the set PL of *proof-like* terms. Krivine stipulates: PL is the set of closed terms which don't contain a continuation constant k_{π} (this may be too strict).

Logic

Consider a language in second-order logic: we have certain first-order constants, function symbols and relation symbols; first-order variables x, y, \ldots , second-order variables X, Y, \ldots (of each arity ≥ 0), and the logical symbols $\rightarrow, \forall x, \forall X$. We have the usual definitions:

$$\begin{array}{rcl} \bot &\equiv & \forall X.X \\ \neg A &\equiv & A \rightarrow \bot \\ A \wedge B &\equiv & \forall X.(A \rightarrow (B \rightarrow X)) \rightarrow X \\ A \lor B &\equiv & \forall X.(A \rightarrow X) \rightarrow ((B \rightarrow X) \rightarrow X) \\ \exists xA &\equiv & \forall X.(\forall x(A \rightarrow X) \rightarrow X) \\ \text{etc.} \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Curry Howard for Classical second-order logic Define a derivation system of typing judgements $\Gamma \vdash t : A$ where Γ is a variable declaration $x_1 : A_1, \ldots, x_n : A_n$, the A_i are second-order formulas and t is a term:

$$\frac{}{\Gamma \vdash x : A} (x : A) \in \Gamma$$

$$\frac{}{\Gamma \vdash x : A \vdash t : B}$$

$$\frac{}{\Gamma \vdash t : A \rightarrow B} \qquad \Gamma \vdash u : A$$

$$\frac{}{\Gamma \vdash t : A} x \notin FV(\Gamma)$$

$$\frac{}{\Gamma \vdash t : \forall xA} x \notin FV(\Gamma)$$

$$\frac{}{\Gamma \vdash t : \forall xA} X \notin FV(\Gamma)$$

$$\frac{}{\Gamma \vdash t : \forall XA} X \notin FV(\Gamma)$$

$$\frac{}{\Gamma \vdash t : \forall XA} X \notin FV(\Gamma)$$

And one classical rule (Peirce's Law):

$$\Gamma \vdash \mathfrak{cc} : ((A
ightarrow B)
ightarrow A)
ightarrow A$$

Examples of derivable judgements:

and also

$$\mathsf{EM} \equiv \mathfrak{cc}(\lambda k.\mathsf{right}(\lambda x.k(\mathsf{left} x))) : \forall X.X \lor \neg X$$

We should have: whenever $\Gamma \vdash t : A$ is derivable, t is a proof-like term.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Realizability

Suppose we are given a set U of individuals. Relative to an assignment of variables, where elements of U are assigned to first-order variables and functions $U^k \to \mathcal{P}(\Pi)$ are assigned to k-ary predicate variables, we now assign to any formula A a set of stacks ||A||, a set of "witnesses against A". The set of *realizers of* A, written |A|, is defined as

$$|A| = \{t \in \Lambda \,|\, \forall \pi \in ||A|| \, t * \pi \in \mathbb{L}\}$$

The definition is simple:

$$\begin{array}{rcl} \|A \to B\| &=& |A| . \|B\| = \{t.\pi \mid t \in |A|, \pi \in \|B\|\} \\ \|\forall xA\| &=& \bigcup_{u \in U} \|A(u)\| \\ \|\forall X.A\| &=& \bigcup_{F: U^k \to \mathcal{P}(\Pi)} \|A(F)\| \end{array}$$

Then $|\forall xA| = \bigcap_{u \in U} |A(u)|$, etc.

A complication: if the pole \bot is empty, we always have: $|A| = \emptyset$ or $|A| = \Lambda$. We have classical, two-valued semantics.

On the other hand, if the pole contains one process, say $t * \pi$, then by the rule (Restore) we have $k_{\pi} * t.\pi' \in \mathbb{I}$ for any π' ; whence by (Push), $k_{\pi}t * \pi' \in \mathbb{I}$ for any π' ; which means that $k_{\pi}t \in |A|$ for any A, in particular for $A \equiv \forall X.X$.

Therefore we say: a closed formula A is *true* under this realizability, if its set |A| of realizers contains an element of PL, the set of proof-like terms.

Strong Soundness Theorem Suppose the typing judgement $x_1 : A_1, \ldots, x_n : A_n \vdash t : B$ is derivable; suppose that relative to an assignment ρ we have $u_1 \in |A_1[\rho]|, \ldots, u_n \in |A_n[\rho]|$. Then

$$t[u_1/x_1,\ldots,u_n/x_n] \in |B[\rho]|$$

Note that the hypothesis implies that t is proof-like; so if u_1, \ldots, u_n are proof-like, so is $t(u_1, \ldots, u_n)$.

Examples

1. For any A, B and term t:

$$t \in |A \rightarrow B| \Rightarrow \forall u(u \in |A| \Rightarrow tu \in |B|)$$

For, suppose $\pi \in ||B||$, $u \in |A|$. Then $u.\pi \in ||A \to B||$ so $t * u.\pi \in \mathbb{L}$; by (Push), $tu * \pi \in \mathbb{L}$. 2. For any A and B: if $\pi \in ||A||$ then $k_{\pi} \in |A \to B|$. For, suppose $\pi \in ||A||$, $u.\rho \in ||A \to B||$ so $u \in |A|$, $\rho \in ||B||$. Then $u * \pi \in \mathbb{L}$ whence by (Restore), $k_{\pi} * u.\rho \in \mathbb{L}$. 3. Let us see that \mathfrak{C} realizes Peirce's Law: suppose $t.\pi \in ||((A \to B) \to A) \to A||$, so $t \in |(A \to B) \to A|$, $\pi \in ||A||$. Then $k_{\pi} \in |A \to B|$, so $k_{\pi}.\pi \in ||(A \to B) \to A||$. Hence $t * k_{\pi}.\pi \in \mathbb{L}$. By (Save), $\mathfrak{C} * t.\pi \in \mathbb{L}$. we conclude that $\mathfrak{C} \in |((A \to B) \to A) \to A||$ So far the treatment of Krivine/Miquel. Can we understand this interpretation in terms of categorical logic?

Definition. A tripos on Set is a pseudofunctor $P : Set^{op} \rightarrow Preord$, satisfying:

a) For each set X the preorder PX is endowed with a binary operation $(\cdot) \rightarrow (\cdot)$ which obeys the laws of intuitionistic implicational logic (e.g., $\phi \leq \psi \rightarrow \phi$, $\theta \rightarrow (\phi \rightarrow \psi) \leq (\theta \rightarrow \phi) \rightarrow (\theta \rightarrow \psi)$);

b) For every function $f : X \to Y$ of sets, the map $Pf : PY \to PX$ preserves \to up to isomorphism. Moreover, Pf has a right adjoint $\forall f$, which satisfies the Beck condition and the condition that for $\phi \in PX$, $\psi \in PY$,

$$\forall f(Pf(\psi) \to \phi) \simeq \psi \to \forall f(\phi)$$

c) There is a *generic predicate*: a set Σ and an element $\sigma \in P\Sigma$ with the property that for every $\phi \in PX$ there is a function $\{\phi\}: X \to \Sigma$ such that $P\{\phi\}(\sigma) \simeq \phi$. Every tripos on Set gives rise to a model of second-order logic. Formulas with parameters from a set X are interpreted as elements of PX

Second-order (unary) predicates are interpreted as elements of Σ^X (where Σ is the carrier of a chosen generic predicate) The element relation must be an element of $P(\Sigma^X \times X)$: it can be taken as $P(ev)(\sigma)$ where $ev : \Sigma^X \times X \to \Sigma$ is the evaluation map. A closed formula is interpreted as an alement of P1 (1 a fixed one-element set); it is *true* if its interpretation is the top element in this preorder.

Krivine's realizability defines a Boolean tripos \mathcal{K} on Set: for a set X, let $\mathcal{K}X$ be the set of functions $X \to \mathcal{P}(\Pi)$. Given such a function ϕ , we define $|\phi(x)|$ by

$$|\phi(x)| = \{t \in \Lambda \,|\, \forall \pi \in \phi(x) \,t * \pi \in \mathbb{L}\}$$

Define ightarrow on $\mathcal{K}X$ by

$$(\phi \to \psi)(x) = \{t.\pi \mid t \in |\phi(x)|, \ \pi \in \psi(x)\}$$

The order is given by: $\phi \leq \psi$ if and only if $\bigcap_x |(\phi \rightarrow \psi)(x)|$ contains a proof-like term.

For $f : X \to Y$, $\mathcal{K}f : \mathcal{K}Y \to \mathcal{K}X$ is given by composition with f. So $\mathcal{K}f$ preserves \to and is order-preserving. Its right adjoint $\forall f$ is given by

$$\forall f(\phi)(y) = \|\forall x(f(x) \asymp y \to \phi(x))\|$$

Here $\|\forall x(f(x) \asymp y \to \phi(x))\| = \bigcup_{x \in X} \{t.\pi \mid t \in |f(x) \asymp y|, \ \pi \in \phi(x)\}$

Thomas Streicher has given a reformulation of Krivine's realizability in terms reminiscent of combinatory logic. An *abstract Krivine structure* consists of:

a set Λ of "terms", with elements K, S and ∞ an application operation $t, s \mapsto ts : \Lambda \times \Lambda \to \Lambda$ a subset QP of Λ : the 'quasi-proofs'; QP is closed under application, and contains the elements K, S and ∞ a set Π of "stacks" an operation $t, \pi \mapsto t.\pi : \Lambda \times \Pi \to \Pi$ an operation $k_{(-)}: \Pi \to \Lambda$ and a 'pole', a saturated subset \bot of $\Lambda \times \Pi$ As usual, we write elements of $\Lambda \times \Pi$ as $t * \pi$

The saturatedness of \bot means that the following axioms are satisfied:

(S1) if
$$t * s.\pi \in \mathbb{L}$$
 then $ts * \pi \in \mathbb{L}$
(S2) if $t * \pi \in \mathbb{L}$ then $K * t.s.\pi \in \mathbb{L}$
(S3) if $tu(su) * \pi \in \mathbb{L}$ then $S * t.s.u.\pi \in \mathbb{L}$
(S4) if $t * k_{\pi}.\pi \in \mathbb{L}$ then $\mathfrak{c} * t.\pi \in \mathbb{L}$
(S5) if $t * \pi \in \mathbb{L}$ then $k_{\pi} * t.\pi' \in \mathbb{L}$

Again, we have a tripos: $PX = \mathcal{P}(\Pi)^X$ $\phi \leq \psi$ if and only if $\bigcap_{x \in X} |\phi(x) \to \psi(x)|$ contains a proof-like element, where:

$$\begin{aligned} |\chi(x)| &= \{ t \in \Lambda \, | \, \forall \pi \in \chi(x) \, t * \pi \in \mathbb{L} \} \\ \phi(x) \to \psi(x) &= \{ t . \pi \, | \, t \in |\phi(x)|, \pi \in \psi(x) \} \end{aligned}$$

Streicher's formulation facilitates drawing a parallel with 'relative realizability'.

An order-pca (opca) is a poset A with a partial application $a, b \mapsto ab$ on A which satisfies:

if ab is defined, $a' \leq a$ and $b' \leq b$ then a'b' is defined and $a'b' \leq ab$

there are elements k and s in A such that $kab \le a$, sab is defined, and whenever ac(bc) is defined then so is sabc, and $sabc \le ac(bc)$

A filter Φ on an opca A is a subset which contains some choice for k and s, and is closed under application.

Relative realizability triposes:

Given an opca A and a filter Φ we have a tripos $P_{A,\Phi}$. Let $\mathcal{D}(A)$ be the set of all downwards closed subsets of A. Let $P_{A,\Phi}(X)$ the set of all functions $X \to \mathcal{D}(A)$. Define $\phi \leq \psi$ iff for some element c of the filter Φ we have: for all $x \in X$ and $a \in \phi(x)$, $ca \in \psi(x)$

Prime example of an opca with filter: let A the set of all functions $\mathbb{N} \to \mathbb{N}$, and Φ the set of all total recursive functions. The application on A is as follows: for $\alpha, \beta, \gamma \in \mathbb{N}^{\mathbb{N}}$, $\alpha\beta = \gamma$ if for every $n \in \mathbb{N}$ there is a $k \in \mathbb{N}$ such that

$$\alpha(\langle n, \beta(0), \dots, \beta(k-1) \rangle) = \gamma(n) + 1$$

$$\alpha(\langle n, \beta(0), \dots, \beta(l-1) \rangle) = 0 \text{ for } l < k$$

Given an opca A with filter Φ , fix a subset \mathcal{U} of A which is disjoint from Φ .

Consider a standard coding of finite sequences in A. We define an abstract Krivine structure as follows:

Let Π be the set of coded sequences of A

Put $\Lambda = A$

Let $a.\pi$ be the code of the sequence π with a appended at the front.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Define a pole \bot by:

$$\mathbb{L} = \{ t * \pi \mid t\pi \text{ is defined and an element of } \mathcal{U} \}$$

define a new, total, application on A by:

$$a \cdot b = \lambda \pi . a(b.\pi)$$

Our set QP of quasi-proofs is Φ . For the rest of the structure, let $\pi_{\geq k}$ be a code of the sequence π_k, π_{k+1}, \ldots , if π is code of the sequence π_0, π_1, \ldots . Then define:

$$\begin{split} & \mathcal{K} &= \lambda \pi. \pi_0(\pi_{\geq 2}) \\ & \mathcal{S} &= \lambda \rho. \rho_0(\rho_2. [\lambda \nu. \rho_1(\rho_2. \nu)]. \rho_{\geq 3}) \\ & k_{\pi} &= \lambda \rho. \rho_0 \pi \\ & \mathfrak{c} &= \lambda \rho. \rho_0(k_{\rho_{\geq 1}}. \rho_{\geq 1}) \end{split}$$

We have: (S1) if $t * s.\pi \in \mathbb{L}$, then $t(s.\pi) \in \mathcal{U}$, so $(t \cdot s)\pi \in \mathcal{U}$, therefore $t \cdot s * \pi \in \mathbb{L}$, etc.

The tripos obtained from this abstract Krivine structure can equivalently be described as follows:

define a new preorder on the sets $P_{A,\Phi}(X)$, by putting: $\phi \leq \psi$ iff the set $\bigcap_x \phi(x) \rightarrow [(\psi(x) \rightarrow \mathcal{U}) \rightarrow \mathcal{U}]$ contains an element of A^{\sharp} .

The topos one constructs from this tripos is the Booleanization of a closed subtopos of ${\rm Set}[P_{A^{\sharp},A}]$

Thomas Streicher shows that every abstract Krivine structure gives rise to an opca with a filter, but he does not compare the Krivine tripos with the standard relative realizability tripos $P_{A,\Phi}$. **Theorem** (Zou) Every abstract Krivine structure is equivalent to one formed from an opca A, a filter Φ and a subset $\mathcal{U} \subset A - \Phi$. **Theorem** (Zou) For $A = \mathbb{N}^{\mathbb{N}}$, Φ the set of total recursive functions, and $\mathcal{U} = \{\tau\}$ for some non-recursive τ , the tripos obtained from the abstract Krivine structure as above, is not equivalent to a tripos of the form $[-, \mathcal{B}]$ for some complete Boolean algebra \mathcal{B} .