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Natur und Kunst

Natur und Kunst, sie scheinen sich zu fliehen,
Und haben sich, eh’ man es denkt, gefunden;

Der Widerwille ist auch mir verschwunden,
Und beide scheinen gleich mich anzuziehen.

Es gilt wohl nur ein redliches Bemühen!
Und wenn wir erst in abgemeßnen Stunden;

Mit Geist und Fleiß uns an die Kunst gebunden,
Mag frei Natur im Herzen wieder glühen.

So ist’s mit aller Bildung auch beschaffen:
Vergebens werden ungebundne Geister

Nach der Vollendung reiner Höhe streben.

Wer Großes will, muß sich zusammenraffen:
In der Beschränkung zeigt sich erst der Meister,

Und das Gesetz nur kann uns Freiheit geben.

Johann Wolfgang Goethe (1880)
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Preface

This syllabus is the outcome of teaching the course Information Systems sev-
eral times. When students start the course, they often consider mathematics
to be difficult and hard. The many different obscure symbols, Greek letters,
abstract notations and formulae many mathematicians employ strenghten
that idea.

With this syllabus, I want to introduce the reader to the world of behav-
ioral modeling using mathematical notions. Whereas many books on such
topics are very theoretical and dive into the details of these notions, this syl-
labus wants to focus on the practical side of modeling. So, the focus is more
on questions like “How can I use it?”, “How can I create a model?” and
“Are these two models the same?”, rather than on presenting the underlying
ideas of the mathematical notions.

Many of the more mathematical modeling notations are rarely used in
practice. So, why study them? If introduced properly, these notions form
a powerful tool in the toolbox of the modeller. Instead of teaching only
the standard tools and techniques currently used in industry, focusing on
he underlying mathematical notations helps to understand these standards
better, including the standards of the future.” And, more importantly, expe-
rience learns that knowing these mathematical notions, you will better and
quicker understand stakeholders and their problems, it shapes your thinking
and creativity, and better models!

This syllabus is the result of fruitful and inspiring discussions with many
different people across different universities. A special word of thanks to
Joost Gabriels, Kees van Hee and Natalia Sidorova from Eindhoven, and
Fabiano Dalpiaz, Sietse Overbeek and Sjaak Brinkkemper from Utrecht.

Jan Martijn van der Werf
Utrecht, 2016
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1
Introduction

Organizations nowadays heavily depend on information systems. An infor-
mation system supports an organization by collecting, storing, and retriev-
ing (business) data, as well as it supports or executes the processes within
the organization, or even cross-organizational. With the ever growing dy-
namism of society, not only should the organization be agile, but also should
its information systems be easy adaptable to changing requirements.

1.1 Background: Information Systems

Early information systems were collections of monolithic systems, each ded-
icated to its own task. Each system was designed to automate a frequently
occurring (business) process within an organization, such as updating the
general ledgers independently of other processes. Based on the control flow,
i.e., the order of actions needed to perform the process, a program was con-
structed that processed an input file, producing other files. These files were
totally unrelated, thereby making it hard to maintain consistency. A nice
example of such a dedicated monolithic system is the mechanical tabular
of Hollerith [6], which is considered to be the first automated information
system. The machine worked with punched cards. It was introduced in 1890
[7], when the census of 1890 was estimated not to be completed before 1900.
Hollerith, who was a statistician, approached the United States Census Of-
fice, and offered to use his mechanical tabular. The use of the mechanical
tabular allowed reducing the time needed to publish the first results from
eight years to only six weeks. The census was completed within two years
[8].

Although early information systems were highly modularized, each mod-
ule had its own dedicated task, and they were not integrated well. Processed
files were unrelated. For example, records in several files represented differ-
ent aspects of the same objects. In the sixties of the last century, the focus
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2 CHAPTER 1. INTRODUCTION

was more on the data aspect of information systems. In 1968, IBM intro-
duced the Information Management System / Virtual Storage (IMS/VS)
[2]. However, it took until the introduction of the relational data model by
Codd [4] for specialized database systems to be adopted. These database
systems not only focused on data storage and retrieval, but also allowed for
more advanced data management, including transaction management and
authorization. Instead of monolithic systems each processing their own data
file, all data files were integrated into database management systems. In this
way, multiple application programs could be developed concurrently as soon
as the database was defined.

The introduction of database management systems in information sys-
tems improved the integration of independent monolithic systems. However,
support for changes in the control flow was minimal, since the control flow
was hard-coded in the information systems. The introduction of workflow
management systems in the nineties of the last century allowed separating
the code into control flow and business logic. In other words, the sequencing
of task is separated from the internal logics of each individual task. In turn,
this led to the introduction of Process Aware Information Systems (PAIS).
In a PAIS, the control flow layer is introduced. Hence, a PAIS has three as-
pects: the data aspect , the control flow aspect and the business logic aspect .
All aspects are designed independently, and then integrated into a single
system.

1.2 Design Process of Information Systems

The design of an information system and its components comprises many
different activities and disciplines. Most design approaches only differ in
the grouping and ordering of design tasks. In this syllabus, we consider
an abstract model of the design process. In any design process we can
distinguish nine important activities, which are executed in some order.
Fig. 1.1 depicts an abstract model of the design process. Nodes are objects,
either formal or informal, a double arc denotes an activity that creates an
object out of the other. Note that the figure does not prescribe any order
of the activities, it only depicts the relation between the activities.

Scoping and justification An information system supports an organiza-
tion in the “real world”. This means that terms and activities in the
real world need to be translated into formal concepts, as the informa-
tion system needs to understand these. Domain experts need to have a
deep understanding of the real world. Together with the requirements
engineer , the scope of a component is fixed, describing the boundaries
of the component, the stakeholders involved in the component, and
the functionality of the component. This activity is called scoping .
It results in a requirements document in terms of the client, i.e. the
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Real world Requirements

Scoping Formalization

Validation

Composition,
Integration,
Refinement

Verification

Justification

(Formal) 
Framework

Instantiation

Informal Formal

Realization

Testing

ModelModelModel System

Deployment

Figure 1.1: Meta-model of design process of an information system

functionality of the component is described in natural domain-specific
language and (mostly) informal diagrams.

The rationale of each decision taken in the scoping activity has to be
justified. For each decision, there has to be a reason in the real world.
The activity of checking the requirements against the real world, is
called justification.

Formalization and validation The requirements are still informal, while
the component to be built is formal. The activity of translating the
scoped world from informal requirements to (formal) models is called
formalization. Models describe the requirements. All models together
form the architecture of the component. An architectural framework
defines for an architecture which type of models are needed and how
these are related. If an architecture is according to some framework,
i.e., it has all the models prescribed by the framework, we say the
architecture is an instance of the framework.

A model is based on some modeling language. A modeling language
defines the concepts that can be used, and their semantics. The ac-
tivity of formalization is error prone, as requirements are expressed
in natural language and informal diagrams. Therefore, the require-
ments are often ambiguous, and the models need to be checked as to
whether they describe the requirements as intended. This activity is
called validation. Validation can be done in many ways. One way is
by guiding stakeholders through the model explaining the model. An-
other often used practice is by creating a prototype from the models,
such that the stakeholders can get a look and feel of the system. In
general, validation cannot be automated due to the informal nature of
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the requirements. However, this task is crucial during development.

Composition, integration, refinement and verification Once the first
models are created and validated, these models can be integrated into
larger models, decomposed into smaller models to focus on different
aspects, or refined into more precise models. Each step should be ver-
ified to be correct, i.e. the new collection of models should have at
least the same properties as the original collection. The main differ-
ence between verification and validation is that verification is checking
whether the model is correct, whereas validation is checking whether
it is the correct model. While in refinement the focus lies on extending
a model with more specified functionality, in integration the focus lies
on combining different models into new models, in such manner that
all properties of the models are preserved, and the composition has
some additional properties.

Realization, testing and deployment When the models reach a suffi-
cient degree of precision, the component can be realized. In soft-
ware development, this involves the search for existing subcomponents
and their configuration, and the construction of new subcomponents.
All subcomponents are integrated into a single component. To check
whether the realized component indeed satisfies the design, it needs to
be tested against the verified models. When the component is realized
and thoroughly tested, it is deployed in the real world.

1.3 Modeling and Verification

Models play a central role in the design of an information system. A model
is an abstract representation of some aspect of a real world system to ana-
lyze a set of properties of the system. We assume that properties are chosen
such that if a property holds in the model, it also holds in the real world sys-
tem. The activity of creating these models is called modeling. It comprises
formalization, integration, composition and refinement.

Many different modeling languages exist, each focusing on different as-
pects of the system. Some languages focus on modeling the data aspect, like
Entity-Relationship Diagrams [3], or on the process aspect, like Petri nets
[11] and the Business Process Model and Notation (BPMN) [9].

It is desirable for models to be consistent with each other. In the poem
of Saxe (Fig. 1.2), each of the blind men models a single aspect of the
elephant. Each of them has a correct model of the elephant, focusing on
some aspects. Together, the models represent the elephant as a whole. The
design of an information system is similar. Each of the models describes
some aspects of the system. Together, the models represent the information
system. Therefore, verification in a modeling process does not only require
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The Blindmen and the Elephant

It was six men of Indostan, to learning much inclined,

who went to see the elephant (Though all of them were blind),

that each by observation, might satisfy his mind.

The first approached the elephant, and, happening to fall,

against his broad and sturdy side, at once began to bawl:

"God bless me! but the elephant, is nothing but a wall!"

The second feeling of the tusk, cried: "Ho! what have we here,

so very round and smooth and sharp? To me tis mighty clear,

this wonder of an elephant, is very like a spear!"

The third approached the animal, and, happening to take,

the squirming trunk within his hands, "I see," quoth he,

"the elephant is very like a snake!"

The fourth reached out his eager hand, and felt about the knee:

"What most this wondrous beast is like, is mighty plain," quoth he;

"Tis clear enough the elephant is very like a tree."

The fifth, who chanced to touch the ear, Said; "E'en the blindest man

can tell what this resembles most; Deny the fact who can,

This marvel of an elephant, is very like a fan!"

The sixth no sooner had begun, about the beast to grope,

than, seizing on the swinging tail, that fell within his scope,

"I see," quothe he, "the elephant is very like a rope!"

And so these men of Indostan, disputed loud and long,

each in his own opinion, exceeding stiff and strong,

Though each was partly in the right, and all were in the wrong!

So, oft in theologic wars, the disputants, I ween,

tread on in utter ignorance, of what each other mean,

and prate about the elephant, not one of them has seen!

John Godfrey Saxe, 1816 - 1887

Figure 1.2: The Blindmen and the Elephant, John Godfrey Saxe, 1816 -
1887
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checking for correctness of each of the models, but also checking for the
consistency between models.

1.4 Modeling and Mathematics

Many different notations and formalisms exist for modelling information
systems. Industrial standards are typically created and maintained by large
consortia. As each participating organisation like their own symbols and
notations to be included, such standards can become very large and cum-
bersome. For example, the Business Process Model and Notation (BPMN)
standard [9] has more than 50 symbols that can be used. This makes it hard
to grasp all details of such a notation, and is one of the reasons that many
people only use a very small subset of the language.

Another aspect of industry standards, is that many are either informal
or semi-formal. As an example, consider the BPMN model depicted in
Fig. 1.3. Ask several persons the intention of the model, and you most
certainly obtain different answers! One possible explanation of the model
might be that once activity A is finished, activities B and C are executed in
any order, completed by activities D and E. A second person might state
that there is a choice between B and C. And a third person, who actually
read the complete BPMN standard (which is 508 pages long!), states that
activities A, B and C are executed, after which activity D is executed twice.
Who has the right interpretation of this model? According to the standard,
the third person is right: activity D is executed twice. But, what was the
intention of the modeller who created this model? Was it the intention of
the first person, the second or the third? Or had the modeller a different
intention?

This example shows that it is important that people have a common un-
derstanding of the model to actually be able to discuss the intention behind
the model. When the same model leaves room for multiple interpretations,
how will you be able to transfer your ideas and knowledge to other people?

Figure 1.3: BPMN model with different interpretations among modellers
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That is the reason why we introduce mathematical notions in modeling. It
ensures that everybody has the same interpretation of the model. One might
disagree, but at least the modeller is able to transfer their intention.

1.5 Outline

This syllabus is structured as follows. In Chapter 2, we introduce the basic
mathematical notions such as sets, relations and functions. This chapter is
intended for the readers that are inexperienced with mathematical notations
like first order logic and set theory.

Chapter 3 introduces graphs. Many of the modeling notations have a
graph-based visualisation, or can even be represented by graphs. In this
chapter, we introduce the mathematical notation of graphs, and show how
one can systematically traverse and search the nodes within the graph. Last,
we explain the shortest path algorithm by E.W. Dijkstra.

A first modeling notation to capture information flows are transition
systems, presented in Chapter 4. Transition systems are labelled graphs
that represent the states in which a system can be, and how the system
can move from one state to another. After introducing the mathematical
notions, we show how such systems can be compared and constructed.

The last chapter, Chapter ?? of this syllabus introduces Petri nets. Petri
nets form a natural abstraction of transition systems. In this chapter, we
introduce the basic notions, and show how these models can be analysed us-
ing techniques presented in the previous chapters. Additionally, we present
different classes of Petri nets with their properties.
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2
Sets, Relations and Functions

2.1 Sets

Within mathematics, a set represents a collection of objects. This collec-
tion can be of anything, for example, all students registered for the course
“information systems” can be represented as a set: each student following
this course belongs to this collection.

We use curly brackets to denote a set. Suppose the students John, Claire,
Peter, Alice and Bob follow the course “information systems”, then the set
representing this class is denoted by C = {John,Claire,Peter,Alice,Bob}.
If the collection does not contain any elements, we say the set is empty,
which we denote with ∅.

On sets, we want to make statements, like “all students that participate
in course X, are students of our university”. To formalize this statement,
let U be the set of all students of our university. Then the statement can be
reformulated to: “all students that are element of the set of students that
follow course X are an element of the set of all students of our university”.
Thus, all elements of C are an element of U as well. We can write this in
logic:

∀x ∈ C : x ∈ U

Read this as “for all x that are element of C, x is an element of U as well.
In set theory we say that C is a subset of U , denoted by C ⊆ U . Similarly,
we could make a statement that no student that is enrolled in the course
is a university student. We first rephrase this to: “all students that are
enrolled in the course, are not a student of the university. Additionally, we
need another operator, the negation, denoted by ¬. With this additional
operator we can formalize the statement:

∀x ∈ C : ¬(x ∈ U)

9
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The next definition shows all shorthand notations we will use throughout
the course.

Definition 2.1 (Set notation). A set is a collection of elements. We denote
a set by listing its elements between braces. E.g., a set S with elements a, b
and c is denoted as {a, b, c}. The empty set, i.e. the set with no elements, is
denoted by ∅. Let A and B be two sets. we define the following operations.

• |A| denotes the number of elements of A.

• an element a is included in a set A, denoted by a ∈ A. As a shorthand
for ¬(a ∈ A) we write a 6∈ A.

• the intersection of two sets, denoted by A ∩B, is a set containing the
elements which are in both sets: A ∩B = {x | x ∈ A ∧ x ∈ B}.

• the union of two sets, denoted by A ∪ B, is the set containing all
elements of both sets: A ∪B = {x | x ∈ A ∨ x ∈ B}.

• the difference between two sets, denoted by A\B, is the set containing
all elements of A which are not in B: A \B = {x | x ∈ A ∧ x 6∈ B}.

• the set B is a subset of A, denoted by B ⊆ A if all elements of B
are also in A: ∀x ∈ B : x ∈ A. The set B is called a proper subset,
denoted by B ⊂ A, if B ⊆ A, but not A = B. The powerset, denoted
by 2A, is the set of all subsets of A: 2A = {A′ | A′ ⊆ A}. Note that
A ∈ 2A.

The sets A and B are disjoint if A ∩B = ∅. A partition of a set A is a set
P ⊆ 2A such that A =

⋃
A′∈P A

′ and ∀A′, A′′ ∈ P : A′ ∩ A′′ 6= ∅ =⇒ A′ =
A′′.

Sets may be infinite, i.e., it is impossible to list all elements of that set.
Within mathematics many infinite sets exist. For example, the set of natural
numbers, the set of real numbers or the set of prime numbers, to name just
a few.

Some sets have a special symbol. Within this syllabus, we denote the set
of all natural numbers by IN = {0, 1, 2, . . .}. The set of all positive natural
numbers, i.e, the set of all natural numbers that are larger than 0, is denoted
by IN+ = IN \ {0}.

A common way to visualize sets is using a Venn-diagram. An example
is depicted in Fig. 2.1. This figure depicts four sets: A, B, C, and D.

2.2 Relations

Elements can be related to other elements. For example, let S = {a, b, c}
denote a set of students, and let C = s, t, u, v denote a set of courses. To
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A C
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c e

d

Figure 2.1: Four sets depicted as a Venn-diagram

state that a student follows a course, we need a new set, where each elements
states that a student follows a specific course.

For this, we introduce the Cartesian product, that relates each ele-
ment in one set with each element in some other set. In our student ex-
ample, the Cartesian product of S and U is a set of “pairs”: S × C =
{(a, s), (a, t), (a, u), (a, v), (b, s), (b, t), (b, u), (b, v), (c, s), (c, t), (c, u), (c, v)}. The
relation S × C is visually shown in Fig. 2.2. Thus, the Cartesian product
contains all possible combinations!

Definition 2.2 (Cartesian product). The Cartesian product of two sets A
and B is defined as the set A × B = {(a, b) | a ∈ A ∧ b ∈ B}. Set A is
called the source set, and set B is called the target set.

On the Cartesian product, we define the projection functions π1 : A ×
B → A and π2 : A × B → B by π1((a, b)) = a and π2((a, b)) = b for all
(a, b) ∈ A×B.

In the Cartesian product any element of the one set is related to any
element of the other set. However, often, not all elements need to be related:
in our example, some courses might be optional! Therefore, a relation is
“only” a subset of the Cartesian product: it relates some elements of one
set to some elements of some other set.

In our example, it might be that a followed courses s and t, b only
followed course t and c did not yet follow any course. This relation is then
defined by R = {(a, s), (a, t), (b, t)}. This relation R is visualized in Fig. 2.3.
Al elements in the relation are part of the Cartesian product. Hence, relation
R ⊆ S×C. We call S the domain of relation R, and C the range of relation
R. Notice that not all elements need to be in the domain or the range of
the relation. In our example, not all students are present: student c did not
yet follow a course! Similarly, not all courses are followed by some student.
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Figure 2.2: Cartesian product of two sets S and T .
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Figure 2.3: Relation R

By inverting the relation, i.e., by switching all pairs in the relation, we get
the inverse relation. In our case R−1 = {(s, a), (t, a), (t, b)}.

This gives us the following operations on relations:

Definition 2.3 (Relation, domain, range, inverse). Let A and B be two sets.
A set R ⊆ A×B is called a relation from A toB. The domain of the relation,
denoted by dom(R), is the set dom(R) = {a ∈ A | ∃b ∈ B : (a, b) ∈ R}. Its
range, denoted by rng(R), is the set rng(R) = {b ∈ B | ∃a ∈ B : (a, b) ∈ R}.
Its inverse, denoted by R−1, is a relation R−1 ⊆ B × A such that R−1 =
{(b, a) ∈ B ×A | (a, b) ∈ R}.

Given some sets and a relation, we want to test statements. An example
could be that course t is mandatory for all students. A mandatory course
should be followed by all students. Rephrased: all students have followed
course s. In formula this becomes:

∀x ∈ S : (x, t) ∈ R

To check the statement, we need to consider all students, and check whether
the specified relation exists, i.e., R should contain elements (a, t), (b, t) and
(c, t). As the latter element is missing, this statement is not true!
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Similarly, we would like to express that each course has at least one
student that participated. For this, we need another quantifier, the “there
exists” quantifier, that we denote with ∃. With this quantifier, we can
rephrase the statement to “for all courses there exists at least one student
that participated in that course. In formula:

∀y ∈ C : ∃x ∈ S : (x, y) ∈ R

To check the statement, we need to consider all courses, and then check
whether there is a student that enrolled: for course s we have student a, for
course t we have a as well, but no student enrolled for course u. Hence, the
statement is false!

Functions

Another important class of relations is the class of functions. A relation
from A to B is a function if each element of A is related to at most one
element of B. A function is partial if not all elements of A are mapped
onto an element of B. If the inverse of a function is again a function, it is
injective; it is surjective if rng(f) = B.

Definition 2.4 ((Partial) function, identity, injection, surjection, bijection).
Let A and B be two sets. A relation f ⊆ A×B is a function from A to B,
denoted by f : A → B, if (a, b1) ∈ f and (a, b2) ∈ f imply b1 = b2 for all
a ∈ A and b1, b2 ∈ B. We write f(a) = b for (a, b) ∈ f .

A special function is the identity function id : A→ A, which is a func-
tion that maps any element to itself: id(a) = a for all a ∈ A.

A function is called a partial function, denoted by f : A ⇀ B, if
dom(f) ⊂ A. When dom(f) = ∅ the function is called the empty function,
denoted by ∅. If f(a1) = f(a2) implies a1 = a2 for any a1, a2 ∈ dom(f), the
function f is an injection. It is a surjection if for any b ∈ B, there exists
an a ∈ dom(f) such that f(a) = b. An injective and surjective function is
called a bijection.

Properties of Relations

A special class of relations is the class of relations that have the same source
set and target set. On these relations we define the notions of reflexivity,
symmetry, transitivity and antisymmetry.

Let us consider the set of all integers, denoted by Z. A relation we
can define on these numbers is the “equal to” relation, which we denote by
(Z,=), i.e.,

∀x, y ∈ Z : (x, y) ∈= ⇔ x = y

This relation has a special property: each element is mapped on itself. This
is what we call reflexive. Another property this relation has, is symmetry :
if (a, b) is in the relation, then (b, a) is in the relation as well.
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Let us consider another relation on the integers, the “smaller than” re-
lation, denoted by (Z, <). Is this relation reflexive? No, a number cannot
be smaller than itself! Thus, it is never the case that a < a, for any number
a ∈ Z. If a relation has this property, we say it is irreflexive. If we consider
three integers, say a, b and c, such that (a, b) ∈< and (b, c) ∈<, then a < b
and b < c. But also a < c. If this holds for any three elements in the domain
of the relation, we call the relation transitive.

Another well-known relation on the set of integers is the “smaller than,
or equal to” relation, denoted by (Z,≤). In fact ≤=< ∪ =. As = is reflexive,
the relation ≤ is reflexive as well, and similarly, because < is transitive, ≤
is transitive as well.

Is the “smaller than, or equal to” relation symmetric? For this, we need
to check whether a ≤ b implies b ≤ a for all integers. It is quite obvious
to see that this is not the case. For example, choose a = 3 and b = 4.
Then clearly the statement does not hold. However, there is an interesting
observation in this relation: this statement is only true if we compare the
numbers with themselves, i.e., a ≤ b and b ≤ a is only true if a = b. This is
what we call antisymmetry.

Definition 2.5 ((Ir)reflexive, symmetric, transitive, antisymmetric). Let A
be a set and let R ⊆ A × A be a relation. R is reflexive if (a, a) ∈ R for
all a ∈ A, and it is irreflexive if ¬((a, a) ∈ R) for all a ∈ A. If (a, b) ∈ R
implies (b, a) ∈ R for all a, b ∈ A, the relation is symmetric. If (a, b) ∈ R
and (b, c) ∈ R imply (a, c) ∈ R for all a, b, c ∈ A, the relation is transitive.
Relation R is antisymmetric if (a, b) ∈ R and (b, a) ∈ R imply a = b for all
a, b ∈ A.

Using these definitions, we define orderings and equivalences on sets.
Both types of relations are reflexive and transitive. In addition, an ordering
relation is also antisymmetric, whereas an equivalence relation is symmetric.
This leads to the following definitions.

Definition 2.6 (Partial order, total order, least element, top element,
well-ordered). Let A be a set. A relation R ⊆ A × A is a partial order,
denoted by (A,R), if R is reflexive, transitive and antisymmetric. A partial
order is called a total order, if in addition (a, b) ∈ R or (b, a) ∈ R for all
a, b ∈ A. An element a ∈ A is a least element of (A,R) if ¬∃b ∈ A : (b, a) ∈
R. It is a top element of (A,R) if ¬∃b ∈ A : (a, b) ∈ R. If (A,R) is a
total order, and any non-empty subset B ⊆ A has a least element, (A,R) is
well-ordered.

Note that in a total order both the least element and the top element
are unique.

Definition 2.7 (Equivalence relation). Let A be a set. A relation R ⊆ A×A
is an equivalence relation if it is reflexive, symmetric and transitive.
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The reflexive closure of a relation R is the smallest relation that is re-
flexive and contains R. The transitive closure of a relation R is defined as
the smallest transitive relation S such that R is contained in it.

Definition 2.8 (Reflexive closure, transitive closure). Let A be a set and
let R ⊆ A × A be a relation. Its reflexive closure S ⊆ A × A is a relation
such that (a, b) ∈ S if and only if a = b or (a, b) ∈ R for all a, b ∈ A. Its
transitive closure T ⊆ A× A is a relation such that R ⊆ T , T is transitive
and for all relations T ′ ⊆ A×A such that R ⊆ T ′ and T ′ is transitive, then
T ⊆ T ′.

2.3 Bags

A set only indicates whether an element is present or not. As an example,
consider the set of all Euro coins: 1ct, 2ct, 5ct, 10ct, 20ct, 50ct, 1E and 2E.
The set of all coins can be denoted by {1ct, 2ct, 5ct, 10ct, 20ct, 50ct, 1E, 2E}.
However, to denote that your wallet contains 5 euro coints, 2 10ct coins
and 3 50ct coins, the set notation does not suffice. For this, we introduce
the notion of a bag, or multiset, in which also the number of occurrences of
the elements is considered. In a bag, we write the number of elements in
superscript behind the element. In this way, the bag representing my wallet
can then be denoted by W = [10ct2, 50ct3, 1E5]. If an element only occurs
once, we omit the superscript, and if the element does not occur at all, we
leave that element out.

Bags can be added, which means that we add the elements of both bags
(we call this elementwise). Suppose I receive 10 1ct coins, 5 50ct coins, and
4 2 Euro coins, then my wallet now looks like: W + [1ct10, 50ct5, 2E4] =
[1ct10, 10ct2, 50ct8, 1E5, 2E4].

Substraction is similar to addition: we just substract elementwise. Thus,
if I need to pay 1,50 euro with a single euro coin and a 50ct coin, we have
W − [50ct, 1E] = [10ct2, 50ct2, 1E4]. However, subtraction is slightly more
complicated than addition: I cannot substract more than I have. Thus, if
we are short in some element, we cannot substract. In our wallet example,
if I have to pay with 5 euro coins, i.e., W − [1E5], we are 1 euro coin short,
thus this subtraction is not possible, we do not borrow any coins!

Definition 2.9 (Bags). Let S be a set. A bag B over S is a function
B : S → IN . For s ∈ S, B(s) denotes the number of occurrences of s
in the bag B. We write INS for the set of all bags over S. The empty
bag, i.e., the bag for which all elements the multiplicity is 0, is denoted
by ∅. Bags are denoted by listing the occurring elements between square
brackets and we use superscripts for the multiplicity of the occurrences. If
the multiplicity of an element is 0, we omit the element. A bag m consisting
of two occurrences of a, three occurrences of b and a single occurrence of c



16 CHAPTER 2. SETS, RELATIONS AND FUNCTIONS

is denoted by m = [a2, b3, c]. The characteristic function χ : 2S → INS is
defined as χ(S′)(s) = 1 if s ∈ S′ and χ(S′)(s) = 0 otherwise for all s ∈ S
and S′ ⊆ S.

Definition 2.10 (Bag notation). Let X,Y ∈ INS. On bags, we define the
following operations:

• s ∈ X if and only if X(s) > 0 for all s ∈ S;

• (X + Y )(s) = X(s) + Y (s) for all s ∈ S;

• (X − Y )(s) = max(0, X(s)− Y (s)) for all s ∈ S;

• X = Y if and only if ∀s ∈ S : X(s) = Y (s)

• X ≤ Y if and only if ∀s ∈ S : X(s) ≤ Y (s);

• X < Y if and only if X ≤ Y and X 6= Y .

The projection of X on elements of a set U ⊂ S is denoted by X|U , and is
defined by X|U (u) = X(u) for all u ∈ U and X|U (s) = 0 for all s ∈ S \ U .

2.4 Sequences

Last in this chapter, we introduce the notion of sequences. Bags only count
the number of occurrences of elements, a sequence also takes the order of
the elements into account.

Consider our alphabet, which contains 26 characters. Thus, we can rep-
resent it as a set of 26 symbols. However, we cannot represent a single word
with it. Within a language, we create words by putting letters one of the
other. The ordering makes that we understand their meaning. Consider the
words “saint” and “Stain”. Their set representation would be {s, a, i, n, t}.
In fact, we can create many words with these letters. As the number of oc-
currences is abstracted away, the word “saints” is represented by the same
set. With bags we have a similar problem: both words are represented by
the same bag [s, a, i, n, t].

Sequences are used to represent the order in which elements occur. For
example, the word “saint” is represented by the sequence 〈s, a, i, n, t〉, and
“saints” by 〈s, a, i, n, t, s〉. A sequence always has a certain length. In our
example of “saint”, the sequence has length 5. Each position has an element.
Thus, asking the element on position 3 results in the element i.

Definition 2.11 (Sequences). Let S be a set. A sequence σ over S of
length n ∈ IN is a function σ : {1, . . . , n} → S. If n > 0 and σ(i) = ai for
i ∈ {1, . . . , n}, we write σ = 〈a1, . . . , an〉 and σi for σ(i). The length of σ is
denoted by |σ|.
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The sequence of length 0 is called the empty sequence and is denoted by
ε. The set of all finite sequences over S is denoted by S∗; the set S is called
the alphabet of S∗.

An element s ∈ S is included in a sequence σ ∈ S∗, denoted by s ∈ σ, if
∃1 ≤ i ≤ |σ| : σ(i) = s.

Let µ, ν ∈ S∗. Concatenation, denoted by σ = µ; ν, is defined as σ :
{1, . . . |µ| + |ν|} such that for 1 ≤ i ≤ |µ|: σ(i) = ν(i) and for |µ| < i ≤
|µ|+ |ν|: σ(i) = ν(i− |µ|).

The projection of a sequence σ ∈ S∗ on a set U ⊆ S, denoted by σ|U is
inductively defined as ε|U = ε, (〈t〉;σ)|U = 〈t〉;σ|U if t ∈ U , and (〈t〉;σ)|U =
σ|U if t 6∈ U . Let U,R ⊆ S and µ, ν ∈ S∗. Then (µ|U )|R = µ|U∩R and

(µ; ν)|U = µ|U ; ν|U .
We denote a subsequence of σ ∈ S∗ from index i to j by σ[i..j]. If j ≤ i,

then σ[i..j] = ε, otherwise σ[i..j] = 〈σ(i), . . . , σ(k)〉 where k = min(j, |σ|).
Further, we define a partial order ≤ on sequences by µ ≤ ν if and only

if there exists a sequence ρ ∈ S∗ such that ν = µ; ρ.

To denote the number of occurrences of elements in a sequence, we in-
troduce the Parikh vector [10], which is a bag representing the number of
occurrences of each element in the sequence.

Definition 2.12 (Parikh vector). Let S be a set and let σ ∈ S∗ be a se-
quence. The Parikh vector of σ, denoted by −→σ is inductively defined by
−→ε = 0 and

−−−→
〈a〉;σ = [a] +−→σ for all a ∈ S.
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3
Graphs

Graphs play an important role in the design and analysis of information
systems. In this section, we introduce the basic concepts of graph theory.

One way to visualize a relationship between elements is shown in Fig. ??.
The elements are depicted as dots, and the relations between these dots
as directed arrows, to indicate the domain and range of the relationship.
Graphs generalize this visualization. A graph consists of nodes, representing
the elements, and edges, that represent the relationship. An Example is
depicted in Fig. 3.1, which represents a part of the Dutch railway system.
The nodes and edges represent the train stations and the tracks that connect
these stations, respectively.

Figure 3.1: Part of the Dutch railway network

Another graph is depicted in Fig. 3.2. This graph represents a computer
network. The nodes represent the different elements in the network, and the
edges depict how these elements are connected.

19
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Figure 3.2: A computer network

These graphs are very useful to express properties like “Nijmegen is
reachable from Eindhoven” or “to reach the NAS from any external system
passes the Firewall”. By traversing the edges of the graph one can validate
such properties.

In this chapter, we first introduce the mathematical concepts for graphs,
and next show how we can systematically traverse a graph to check proper-
ties, together with an application: the shortest path between two nodes.

3.1 Mathematical Definition

A graph consists of a set of nodes, and arcs between them. Nodes are
sometimes referred to as vertices. Arcs have a direction, i.e., an arc has a
head and a tail. If the set of arcs is symmetric, i.e. if (u, v) is an arc, (v, u)
is also an arc, the graph is called undirected. A special class of graphs is
the class of bipartite graphs, in which the vertices are partitioned into two
sets, and there are no arcs whose tail and head are in the same set.

Definition 3.1 (Directed graph, undirected graph, bipartite graph). A
graph G is a pair (V,A) with V a set of vertices and a relation A ⊆ V × V
called the arcs. An arc (u, v) ∈ A is directed from the tail u to the head
v. If the relation A is symmetric, the graph is undirected. The graph is
a bipartite graph if {V1, V2} is a partitioning of V and ∀(u, v) ∈ A : (u ∈
V1 ⇔ v ∈ V2) ∧ (u ∈ V2 ⇔ v ∈ V1).
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Figure 3.3: An example graph

An example graph is depicted in Fig. 3.3. This graph G = (V,A)
has 7 nodes: V = {S,A,B,C,D,E, T} and 13 directed edges, i.e. arcs:
A = {(S,A), (S,C), (S,E), (A,B), (A,C), (B, T ), (C,D), (D,A), (D,B),
(D,T ), (E,D), (E, T )}.

Vertices are connected via directed arcs. The direct neighbours of a
vertex v are either in the preset, i.e. the set of all vertices for which there is
an arc pointing to v, or in the postset, i.e. the set of all vertices for which
there is an arc to starting from v.

In the example graph, the preset of node A is •
GA = {S,D}. Its postset

is the set A•G = {B,C}.

Definition 3.2 (Preset, postset). Let G = (V,A) be a directed graph. Let
u ∈ V be a vertex. The preset of a u, denoted by •

G u is the set •
G u = {v ∈

S | (v, u) ∈ A}. The postset of u, denoted by u•G is the set u•G = {v ∈ S |
(u, v) ∈ A}. We lift the preset and postset to sets, i.e. •

G U =
⋃
u∈U

•
G u

and U•G =
⋃
u∈U u

•
G for some U ⊆ V . If the context is clear, we omit the

subscript.

Note that in an undirected graph the preset and postset of any vertex are
identical. In a graph, we can choose a vertex and from this vertex traverse
via the arcs to other vertices, thus creating a path. If we can traverse either
way on the path, it is an undirected path. A path is a cycle if the start
and end vertex of the path are the same. If the graph does not contain any
cycles, it is an acyclic graph. A circuit is a cycle in which all vertices occur
only once.

In our example graph, the sequence 〈S,A,C,D,A,C,D, T 〉 is a path
of G: all edges are in the graph, and the corresponding nodes are connected
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Figure 3.4: An example Tree
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Figure 3.5: An acyclic graph

via an arc. Also 〈S,A,B, T,E, S〉 is a path of G: we can traverse arcs (S,A),
(A,B) and (B, T ) forward and arcs (T,E) and (E,S) backward to obtain
the path. Hence, it is an undirected path. Another path of the graph is
〈A,C,D,A〉. As the first and last node are identical, it is a cyclic path.
Except for the first node and last node (it is a cycle), all nodes occur only
once in the path. Hence, 〈A,C,D,A〉 is a circuit.

Definition 3.3 ((Un)directed path, cycle, acyclic graph, circuit). Let G =
(V,A) be a graph. A sequence p ∈ V ∗ of length k > 0 is a directed path
if (pi−1, pi) ∈ A for all 1 < i ≤ k. It is an undirected path if either
(pi−1, pi) ∈ A or (pi, pi−1) ∈ A for all 1 < i ≤ k. It is a cycle if p1 = pk.
If a graph does not contain any cycles, it is called an acyclic graph. A path
p ∈ V ∗ is called a trail if all elements occur only once: ∀v ∈ V : −→p (v) ≤ 1.
A directed or undirected trail p is called a circuit if (pk, p1) ∈ A.

A graph is connected if it is possible to reach any vertex from any other
vertex, without taking the direction of the arcs into account. It is strongly
connected if this property holds while respecting the direction of the arcs.

The example graph depicted in Fig. 3.3 is connected: from any node one
can reach all other nodes by either traversing forward or backward the edges
of the graph. However, it is not strongly-connected: the postset of node T
is empty. Consequently, no node can be reached from this node!

Definition 3.4 ((Strongly) connected graph). Let G = (V,A) be a graph. It
is connected if for any two vertices v1, v2 ∈ V there exists an undirected path
from v1 to v2. It is strongly connected if for any two vertices v1, v2 ∈ V ,
there exists a directed path from v1 to v2.

An important class of graphs are forests. A forest is a graph not con-
taining any circuit. If the forest is also connected, it is a tree.
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Consider the example in Fig. 3.4. It contains no circuits. Hence, it is a
tree. The root of the tree is node I: it is the only node with no incoming
arcs.

Definition 3.5 (Forest, tree). A graph G = (V,A) is a forest if it does not
contain any circuit. It is a tree if it is a connected forest.

To inspect only parts of a graph, we introduce the notion of subgraphs.
A subgraph generated by a subset of vertices of a graph is called an induced
subgraph. If the subgraph is maximal with respect to the connections, it is
a component.

The GraphG′ = ({A,B,C,D}, {(A,B), (A,C), (C,D), (D,B)}) is a sub-
graph of Graph G, as the nodes and edges of G′ are subsets of the nodes
and edges of G, respectively. However, it is not an induced graph, as the
arc (D,A) is not present in G′.

Definition 3.6 (Subgraph, induced subgraph, component). Let G = (V,A)
and G′ = (V ′, A′) be two graphs. The graph G′ is a sub graph of G, denoted
by G′ ⊆ G if V ′ ⊆ V and A′ ⊆ A. The subgraph G′ is induced if A′ =
A∩ (V ′× V ′). A subgraph G′ is a component if it is a maximal, connected,
induced subgraph, i.e. there is no larger subgraph G′′ ⊆ G such that G′ ⊆ G′′
and G′′ is a connected, induced subgraph.

A special class of subgraphs are the spanning trees: a subgraph is a
spanning tree if it is a tree containing all nodes of the graph. In our example
graph of Fig. 3.3, the graph G′′ = (V,A′) with A′ = {(S,A), (S,E), (A,C),
(A,B), (E,D), (E, T )} is a spanning tree: the subgraph is a tree containing
all nodes of G.

Definition 3.7 (Spanning tree). Let G = (V,A) be a graph. A subgraph
G′ = (V,A′) is a spanning tree if G′ is a tree.

In acyclic graphs, it is possible to order the vertices such that for each
vertex occurring in the order, its predecessors are smaller with respect to
this order. We call this ordering a topological sort.

It is important to realize that a topological sort is only possible if the
graph is acyclic.

Consider the acyclic graph depicted in Fig. 3.5. A topological sort of the
nodes of the spanning tree in Fig. 3.4 is I,K,M,O,N,L, F .

Definition 3.8 (Topological sort). Let G = (V,A) be an acyclic graph. A
topological sort is a partial order of the vertices vG ⊆ V × V such that
∀(u, v) ∈ A : u vG v.

Graphs can be drawn in many different ways. If a bijective function
exists that transforms one graph into another graph, the two graphs are
isomorphic.
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Figure 3.6: Graph isomorphic to graph G (Fig. 3.3)

Consider the graph H depicted in Fig. 3.6. Its layout is completely differ-
ent from graph G, depicted in Fig. 3.3. To check whether these two graphs
are isomorphic, we need to construct a bijective function that maps each
node of graph G to a node of graph H. Let us construct such a function. let
f : VG → VH be a function such that f = {(S, I), (A,K), (B,L), (C,M),
(D,N), (E,O), (T, F )}. This is easy to check that f is both injective and
surjective, i.e., it is bijective. Furthermore, if we map all arcs of G, we ob-
tain {(f(S), f(A)), (f(S), f(C)), (f(S), f(E)), (f(A), f(B)), (f(A), f(C)),
(f(B), f(T )), (f(C), f(D)), (f(C), f(E)), (f(D), f(A)), (f(D), f(B)),
(f(D), f(T )), (f(E), f(D)), (f(E), f(T ))}, which are exactly the arcs of H.
Similarly, we can map all arcs of H to the arcs of G. For this mapping, we
should use the inverse of f , as we need to map elements of H to elements of
G, whereas f maps it the other way around. Consequently, graphs G and
H are isomorphic!

Definition 3.9 (Isomorphic graphs). Let G1 = (V1, A1) and G2 = (V2, A2)
be two graphs and let f : V1 → V2 be a bijective function. Graphs G1 and
G2 are isomorphic with respect to f if ∀(u, v) ∈ A1 : (f(u), f(v)) ∈ A2 and
∀(u, v) ∈ A2 : (f−1(u), f−1(v)) ∈ A1.

For many applications of graphs, not only the nodes have some meaning,
the arcs have properties as well. We therefore often label the arcs. To do
so, we introduce labelled graphs. In a labelled graph, each vertex and each
arc has a label. In later chapters we present several applications of labelled
graphs.
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Definition 3.10 (Labelled (directed) graph). Let Σ be some set. A labelled
(directed) graph G is a 3-tuple (V,A, λ) where A ⊆ V ×Σ× V is the set of
labeled arcs, such that (V, {(v, v′) | ∃a ∈ A : (v, a, v′) ∈ A}) is a (directed)
graph, and the partial function λ : V → Σ is a vertex labelling function.

Last in this section, we define the operations to combine graphs: union,
intersection and difference are defined on their substituents.

Definition 3.11 (Union, intersection, difference). Let G1 = (V1, A1) and
G2 = (V2, A2) be two graphs. The union of G1 and G2 is defined as G1 ∪
G2 = (V1 ∪ V2, A1 ∪ A2). The intersection of G1 and G2 is defined as
G1 ∩ G2 = (V1 ∩ V2, A1 ∩ A2). The difference of G1 with G2 is defined as
G1 \G2 = (V1 \ V2, A1 \A2).

3.2 Traversing Graphs

Consider the railway system depicted in Fig. 3.1. One of the questions one
might ask is “what is the shortest path from Nijmegen to Eindhoven?”. To
solve this question, one first needs to ask: “Can I reach Eindhoven from
Nijmegen?”. Traversing a graph is often referred to as searching a graph.
Searching a graph always results in a spanning tree: all nodes are visited in
a certain order.

To search in a graph systematically two basic algorithms exist: breadth-
first and depth first. The different approaches are depicted in Fig. 3.7.

Breadth-First Searching

Within Breadth-First Searching (BFS), we consider for each node all its
children, before we continue. As we do not want to visit nodes multiple

(a) Breadth-First (b) Depth-First

Figure 3.7: Two approaches to search a graph
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times, we introduce the variable COLOR, that initially marks all nodes
as unvisited. We then start traversing from the given node by visiting all
children.

The algorithm is shown in Algorithm 1. First, the algorithm sets the
color of all nodes to none (lines 2-3). Next, we start visiting our nodes,
beginning from node a. We first color this node gray (line 4), indicating
that we start to analyze it. We then add the node to the queue1 Q (line 5).
Now, we can start emptying the queue (line 6): we take the first element,
which we name b, of the queue (line 7), and visit all its children c. If this c
already has a color, we already added it to the queue, so we do not need to
visit it anymore (line 9). If the node has no color, we set the color of c to
gray (line 10), indicating that we add it to the queue Q (line 11). Once we
have inspected all childrens of b, we are done with b, which is why we color
the node black (line 12). We repeat this until the queue is empty: then all
nodes have been visited.

Algorithm 1: Breadth-first Search (BFS)

input : G = (V,E), node a ∈ V
1 Algorithm BFS (G,a)
2 foreach node x ∈ V do
3 COLOR(x) := none;

4 COLOR(a) := gray;
5 AddToQueue (a, Q);

6 while Q not empty do
7 b := GetAndRemoveFirst (Q);
8 foreach c ∈ b•G do
9 if COLOR(c) = none then

10 COLOR(c) := gray;
11 AddToQueue (c, Q);

12 COLOR(b) :=black;

Consider again graph G depicted in Fig. 3.3. Let us start from node S.
The steps are shown in Table 3.1. Initially, the queue is empty (step 0). We
color node S gray, and add it to the queue (step 1). Next, we consider all
children of S, i.e., S•G = {A,C,E}. Each of these nodes have not been seen
yet, so we add them to the queue (step 2). As the first element of the queue
is A, we remove this node from the queue. Its children are A•G = {B,C}.
As C is already colored gray, we only add B to the queue. We are done with

1A queue can be seen as a waiting line in front of a desk: the first element will be served,
whereas new elements have to join at the end of the line. We call this First-in-First-Out
(FIFO) behaviour.
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Table 3.1: BFS execution on graph G (Fig. 3.3)
Step Node Queue

0 S ε

1 〈S〉
2 S 〈A,C,E〉
3 A 〈C,E,B〉
4 C 〈E,B,D〉
5 E 〈B,D, T 〉
6 B 〈D,T 〉
7 D 〈T 〉
8 T ε

A, so we color it black. Now we go back to the queue. The first element of
the queue is C, and we repeat the process until the queue is empty.

Depth-First Searching

Breadth-First Searching traverses through the graph by first considering
all children. Another approach is to first traverse as deep as possible in the
graph: diving as far as possible. We call this approach Depth-First Searching
(DFS). The algorithm is shown in Algorithm 2. Similar to BFS, we color
the nodes, to prevent visiting nodes multiple times. We first initialize the
color for all nodes (line 3), after which we select some node a that is not
yet colored. Initially all nodes are uncolored, thus any node can be picked
(lines 5-6). On this node we apply the algorithm DFS-visit, which does the
actual traversing.

The function DFS-visit is what we call a recursive function: within the
function, it calls itself (line 11). How does the algorithm work? First, we
color the selected node, a, gray (line 8), to indicate that we started with this
node. Next, we select an uncolored child of a, which we call b (line 9-10),
and apply DFS-visit on b (line 11). Once we have executed DFS-visit on all
children of a, we color a black (line 12), indicating that we are finished with
that node.

Why is this algorithm called depth first? Suppose we apply DFS-visit
on some node a. The algorithm states that we pick some unvisited child
node b, on which we need to call DFS-visit again. Thus, the algorithm
first traverses all children of b before it continues with the next child of a.
In this way, the algorithm first “dives” to a node that either has no children
anymore, or to a node whose children all have been visited previously.

Notice the loop in lines 4-6. If DFS-visit ends, it might be that not yet
all nodes have been colored, and thus not yet visited by the algorithm. The
loop of lines 4-6 ensures that those nodes are visited as well!
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Algorithm 2: Depth-first Search (DFS)

input : G = (V,E)

1 Algorithm DFS (G)
2 foreach a ∈ V do
3 COLOR(a) := none

4 foreach a ∈ V do
5 if COLOR(a) = none then
6 DFS-visit (G, a);

7 Procedure DFS-visit (G, a)
8 COLOR(a) := gray;
9 foreach b ∈ a•G do

10 if COLOR(b) = none then
11 DFS-visit (G, b);

12 COLOR(a) := black;

To apply the algorithm, we can use a stack 2 to represent the order in
which we need to apply DFS-visit. The node remains on the stack until we
color it black.

Let us apply the algorithm on the example graph G depicted in Fig. 3.3.
The steps are shown in Table 3.2. We start the algorithm from S, which
we color gray and place on top of the stack (step 0), as we call DFS-visit on
it. Next, we pick some child of S, say A. We call DFS-visit on A, and thus
add it to the stack (step 1). Now A is on top of the stack, thus we need
to consider a child of A, say B. We apply DFS-visit on it, and thus add B
to the stack (step 2). Now, we consider the children of B, which is only T ,
and add T to the stack (step 3). Node T has no children (step 4). Hence,
we can color it black and remove it from the stack (step 5). Now node B is
again on top of the stack (step 6). As it has no further children, we color
it black, and remove it from the stack (step 7). Last element on the stack
is node A. As node A also has node C as its child, and C is uncoloured,
we apply DFS-visit on it, by putting C on top of the stack (step 8). Node
C has unvisited node D as child, thus we add D to the stack (step 9). As
node D has no uncoloured children, we are finished with D (step 10), color
D black, and remove it from the stack (step 11).

Now, node C is on top of the stack, but it has no further unvisited
children (step 12). Hence, we color it black and remove it from the stack
(step 13). Again, node A is on top of the stack. As all children of A are

2Different from a queue, a stack is a sequence from which the last element on top
of the stack is handled. New elements join at the end of the sequence. We call this
Last-in-First-Out (LIFO) behaviour.
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Table 3.2: Applying DFS on graph G (Fig. 3.3)
Step Node Stack Step Node Stack

0 〈S〉 10 D 〈S,A,C,D〉
1 S 〈S,A〉 11 D 〈S,A,C〉
2 A 〈S,A,B〉 12 C 〈S,A,C〉
3 B 〈S,A,B, T 〉 13 C 〈S,A〉
4 T 〈S,A,B, T 〉 14 A 〈S,A〉
5 T 〈S,A,B〉 15 A 〈S〉
6 B 〈S,A,B〉 16 S 〈S,E〉
7 B 〈S,A〉 17 E 〈S,E〉
8 A 〈S,A,C〉 18 E 〈S〉
9 C 〈S,A,C,D〉 19 S 〈S〉

20 S 〈〉

S

A

C

B

D

T

E

Figure 3.8: Spanning trees generated by BFS (red) and DFS (green)

colored (step 14), we color it black and remove it from the stack (step 15).
We are back at S. The only uncolored child of S is node E, hence we add it
to the stack (step 16). Visiting E reveals that we cannot visit any uncolored
child anymore (step 17). Hence we color it black and remove it from the
stack (step 18). We are back at S, which has no uncolored children anymore
(step 19). Hence, we color it black, and remove it from the stack (step 20).
As the stack is empty, we are back at the DFS-routine (line 6).

As all nodes are now colored, we can exit the foreach-loop (line 4-6),
which terminates the DFS algorithm.

Both the BFS and DFS algorithms create a spanning tree of the nodes
of a graph. However, they are complete different, as shown in Fig. 3.8 for
the example graph.
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Figure 3.9: BFS indicates steps
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Figure 3.10: BFS to find the shortest
path

3.3 Shortest Paths

Let us return to the example of the railways, as depicted in Fig. 3.1. We
would like to answer the question “What is the fasted way to go from Ni-
jmegen to Eindhoven?”. To answer this question, we need to find the short-
est path between two nodes.

How do we know the shortest number of steps from one node to some
other node, in a structured way? Consider Fig. 3.9. Within each step of
the BFS algorithm, we advance with each step of the algorithm. Thus, if
we reach node A with R steps, we know that we can reach node B with
R + 1 steps, and thus node C with R + 2 steps. As mathematicians like to
generalize, we first add labels to the arcs that indicate some costs to take that
arc. In other words, we make it a labelled graph, where the labels indicate
the costs, as can be seen in Fig. 3.10. Now walking the path 〈A,B,C〉, the
path has costs R (the costs to get at A) +n (the costs to get from A to B)
+x (the costs to get from B to C). Now suppose there is an additional path
from A to C via D, i.e., the path 〈A,D,C〉, with costs R + m + a. What
are the costs of getting from A to C? We thus need to compare R + n+ x
and R + n + a. If the latter is the smallest, the shortest path is 〈A,B,C〉,
otherwise it is the former, 〈A,D,C〉.

This is exactly how Dijkstra’s shortest path algorithm is working. The
full algorithm is shown in Algorithm 3. It roughly follows the same structure
as the earlier presented BFS algorithm. Initially, we set the distance and
parent of each node to infinity (∞), and nothing (⊥), respectively (lines
2-4). The algorithm starts from node a. Going from a to a has distance
0, which we set in line 5. Instead of coloring the visited nodes, we keep a
list Q that contains all the nodes we remain to visit (line 6). While this
list Q is not empty, we need to visit nodes. We always choose the node
with smallest distance (line 8). The function FindEltWithSmallestDistance
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finds the element with the smallest distance, and returns this element after
removing it from the list. We call this element b. Next, the algorithm checks
each neighbour c of b. As we have a labelled graph, the arc is labelled with
the distance, i.e., (b, d, c) is the arc from b to c with distance d (line 9). If
the distance going to c from b is smaller than the distance we already have
for c, we update the distance and parent of c (lines 11-12).

Algorithm 3: Dijkstra’s shortest path

input : G = (V,E, λ), node a ∈ V
1 Algorithm Dijkstra (G,a)
2 foreach node x ∈ V do
3 DISTANCE(x) := ∞;
4 PARENT(x) := ⊥;

5 DISTANCE(a) := 0;
6 Q := V ;

7 while Q not empty do
8 b = FindEltWithSmallestDistance (Q, DISTANCE);

/* Return element with smallest distance in Q */

/* And removes it */

9 foreach (b, d, c) ∈ E do
/* (b, c) is the arc, with weight d */

10 if DISTANCE(b) + d < DISTANCE(c) then
11 DISTANCE(c) = DISTANCE(b) + d;
12 PARENT(c) = b;

Consider the graph depicted in Fig. 3.11. We want to calculate the
shortest path from S to T . The steps of the algorithm are shown in Table 3.3.
The algorithm initializes all distances to infinity, and sets the distance of S
to 0 (step 0). As node S has the smallest distance, the algorithm picks this
node (indicated by the bold number in the table). From S, traversing to
A has costs 7, traversing to C has costs 1, and traversing to E has costs 3
(step 1). Now, the unvisited node with shortest distance is node C. Hence,
we choose this node as our next step. From C we traverse to D with costs
1+3 = 4, and to E with costs 1+1 = 2. We update the distances accordingly
(step 2). The node with shortest distance is node E (with distance 2). From
this node, traversing to D has costs 3, which is smaller than the original costs
of D, so we update the value of D (step 3). Similarly, we proceed to node
A (step 4), and from node A to node B (step 5). From node B, we reach
node T with distance 9 (step 6), after which all nodes have been visited.
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Figure 3.11: Example Weighted Graph

Table 3.3: Dijkstra’s algorithm on Graph of Fig. 3.11
Step Node Parent S A B C D E T

0 ⊥ 0 ∞ ∞ ∞ ∞ ∞ ∞
1 S ⊥ 7 ∞ 1 ∞ 3 ∞

S S S

2 C S 7 ∞ 4 2 ∞
S C C

3 E C 7 ∞ 3 12
S E E

4 D E 6 9 11
D D D

5 A D 8 11
D D

6 B A 9
B
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3.4 Exercises

Exercise 3.1. Formalize this undirected graph in terms of G = (V,A):

B

E

A

G D

C H

F

Exercise 3.2. Draw the following graph:

V = { A,B,C,D,E, F }
A = { (A,B), (A,F ), (B,F ), (A,C), (B,D), (C,F ), (E,C),

(C,A), (D,B), (C,D), (D,E)}

Exercise 3.3. Formalize this graph in terms of G = (V,A):

B

D

C

A E

H

IF

G
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Exercise 3.4. Given is the following graph:

U

V W

X

Y Z

Is this graph isomorphic to the graph of Exercise 3.2? If so, provide a
bijective function and show that the graphs are isomorphic. If not, provide
a reason why not.

Exercise 3.5. Calculate the BFS for the undirected graph of Exercise 3.1.
Start at node A.

Exercise 3.6. Calculate the DFS for the undirected graph of Exercise 3.1.
Start at node A.

Exercise 3.7. Calculate the BFS for the directed graph of Exercise 3.3.
Start at node A.

Exercise 3.8. Calculate the DFS for the directed graph of Exercise 3.3.
Start at node A.

Exercise 3.9. Explain why a topological sort is only possible on acyclic
graphs.
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Exercise 3.10. Calculate using Dijkstra’s algorithm the shortest path from
A to G for the following graph:

B

E

F

A

G D

C H
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40 50

10

20
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80

Exercise 3.11. Calculate using Dijkstra’s algorithm the shortest path from
A to J for the following graph:

A

B

C

D

E

F
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H

G

J

1

2

3
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8

6

9

19

14

21

18
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1516

11

4

5

12

17

13

10

Exercise 3.12. Calculate using Dijkstra’s algorithm the shortest path from
A to N for the following graph:
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4
Modeling with Transition Systems

Consider the following situation: a pedestrian crossing is located at a busy
street. To ensure that pedestrians can cross safely, the local government
wants to place traffic lights. You are asked to design a safe system with the
following characteristics:

R-1 The traffic light for cars should now and then turn red to ensure cars
will not drive too fast;

R-2 To cross, a pedestrian needs to push a button, after which in some time
the pedestrian light becomes green;

R-3 Both traffic lights should be red before one of the lights becomes green
again.

You are not only asked to design the system, but also to show that the
system indeed satisfies the above properties. How will you proceed?

One way to look at a system is from a behavioural perspective: a system
is in some state, and from time to time it switches state, either due to some
internal action, or an external action. An example is a Dutch traffic light:
it is either in a state with a red light, a yellow light, or a green light. If
the traffic light is red, it can become green, after some time it turns yellow
and back to red. To model this behavior, we can use graphs: the nodes
represent the states, and the arcs represent transitions from one state to the
other. The Dutch traffic light represented as a graph is shown in Fig. 4.1.
This is what we call a transition system. The dangling arrow pointing at
the node “Red”, indicates that this is the initial state of the traffic light:
we always start the system in this initial state. This node “Red” also has a
double-lined border. This indicates that the state is a final state. The final
states of a transition system indicate “happy states”: in these states we may
stop the system.

37
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X Y Z

Figure 4.1: Dutch traffic light modelled as transition system T

Modeling the pedestrian situation starts with identifying the states:
what should the state represent in order to model the required system?
In the case of a simple traffic light, the states represent the different colors.
One way to identify the different states, is to list the objects the system
should model, and the states these can be in. In our pedestrian situation,
we can identify the following objects:

• Traffic light for cars. States: Red, Yellow, Green;

• Traffic light for pedestrians. States: Red, Green;

• Button for pedestrians. States: Pushed, Unpushed;

Every state in our system should state something about these objects. The
set of all possible states is thus the Cartesian product of the states of these
objects. Naming the set of possible states of the traffic light for cars C,
we get C = {R, Y,G}. Similarly, we obtain P = {R,G} for the pedestrian
light, and B = {U,P} for the button. The possible states of our system
thus becomes: S = C × P × B. In other words, each state is a tuple of 3
elements: the traffic light for cars, the pedestrian light, and the button. As
an example, the state (R,G,U) means that the cars have a red light, the
pedestrians green, and the button is unpushed.

To model the system, we first need to identify the initial state. A state
that satisfies the above conditions is the state in which both traffic lights are
red: no car nor pedestrian may pass. For the button, let us assume there
are no pedestrians, and hence the button is unpushed. The initial state thus
becomes (R,R,U). Now what are the possible actions in this state? The
cars can get green, or some pedestrian may “push” the button. Let us first
consider the latter. What will happen if the pedestrian pushes the button?
The pedestrian needs to cross, and as the traffic light for cars is initially red,
pedestrians can directly get green, and there is no need to maintain that the
button is pushed, thus leading to the state (R,G,U). In the former case,
we go to the state (G,R,U), from which we can go to (Y,R,U) and back to
(R,R,U). This is the default loop for the cars. What happens if we push
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Figure 4.2: The Pedestrian System PS0

the button in state (G,R,U)? The traffic light should become red, but it
first needs to become yellow. Thus, we add a “push” arc from (G,R,U) to
the new state (Y,R, P ), indicating that the traffic light is yellow, and the
button is pushed. From this state, we need to go to the state in which both
traffic lights are red, and the button is pushed. This latter is important, as
we cannot simply return to the (R,R,U) state: in this state, the cars can
get green, whereas we want the pedestrian light to become green! Hence,
we add a new state (R,R, P ), and an arrow from (Y,R, P ) to (R,R, P ). In
this state, the pedestrian light may turn green: (R,G,U). From this state,
we return to the state (R,R,U). Lastly, we need to consider what happens
if we push the button when we are in state (Y,R,U). The light needs to
become red, so that pedestrians can get green. That is the already existing
state (R,R, P ). In this way, we obtain the pedestrian system as depicted in
Fig. 4.2.

Is this solution correct? For this, we need to check the above conditions.
The first condition states that the traffic light for cars should always be able
to loop. Is it always possible in any state in which both traffic lights are
red that the cars obtain green? This is a reachability problem, that we can
solve using the BFS algorithm explained in Sect. 3.2. We execute for each
node where both traffic lights are red the algorithm and check whether there
is a state reachable in which the traffic light for cars is green. Similarly, we
can check the second condition: execute the BFS algorithm for each state
in which the button is pushed whether the pedestrians will receive a green
light. The third condition is harder to check. It is a path property, stating
that from any path in which one of the lights is green to a state in which
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Figure 4.4: Alternative PS2

the other light is green, a state is passed in which both lights are red. In
other words, we cannot have a transition directly leading from (G,R, ·) to
(R,G, ·) 1. Any path between these states should contain a state (R,R, ·).
In our system, all conditions are satisfied, so it is a correct solution!

Is this the only possible solution? For this, we need to check whether
there are alternatives. For example, we chose that if some pedestrian pushes
the button in the state (R,R,U) the system directly can move to the state
(R,G,U), i.e., the pedestrian directly gets green. An alternative is in the
state where cars have green: (G,R,U). In the first presented solution, the
system moves to state (G,R, P ), indicating the cars still have green, and
the button is pushed. An alternative would be that the system moves to
(Y,R, P ): the cars directly get yellow. This is modelled in Fig. 4.3. Another
alternative would be that the system first goes to a state (R,R, P ), and only
then moves to (R,G,U). This alternative models that it may take some time
for the pedestrian light to turn green. This gives the alternative depicted in
Fig. 4.4.

Many models possible! Each of these models explain the same situa-
tion, but made different choices. Therefore, we always need to write down
our design decisions: what were the reasons to model state transitions? A
possible explanation for the first presented situation and the first alterna-
tive is that we do not want pedestrians to wait too long, as they will cross
anyhow, as they are pedestrians... A possible explanation of the second al-
ternative is that we do not know how much time the system needs to give
the pedestrian green, and that the model is completely symmetric.

Important to realize is that all alternatives are correct solutions. There
is no single solution. That is the beauty of modelling. The down side is

1With the symbol “·”, we indicate that this element in the tuple may have an arbitrary
value
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that this also makes it difficult to analyze whether you have constructed
a correct model. That is the challenge of modelling. It takes time and
practice to learn to evaluate alternatives, and choose a best solution for the
circumstances.

To model a complete system, we should for each state ask ourselves the
question “what can happen in this state?”. This leads either to the creation
of new states, or to already existing states.

In the remainder of this chapter, we will provide means to learn to better
understand your model, to analyze whether it is a correct solution, and a
way to compare different models. In the last section, we return to modelling
approaches.

4.1 Mathematical Definition

A labelled transition system (LTS) consists of a set of states and transitions
between states labelled by actions from a set of action labels. The set of
states are the vertices of its graph, and the transitions are the arcs of the
graph. From the outside, only the action labels A are visible. A special
action is the silent action, denoted by τ . The silent action, also called a τ -
step, is not an element of the set of action labels. Different from the action
labels in A, the silent action is not visible from the outside.

An example transition system is depicted in Fig. 4.5. This transition
system L contains 7 states, 5 visible actions, and 2 silent actions. The
transition system has one initial state d and two final states a, f . Formalized,
we obtain the transition system L = (S,A,→, si,Ω) with:

a

b

c

d

e

s

t v

u

w
g

w
s f

Figure 4.5: Example transition system L
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S = { a, b, c, d, e, f, g }
A = { s, t, u, v, w }
→ = { (b, s, a), (b, t, d), (d, τ, a), (d, v, e), (d, τ, g), (e, u, b),

(e, w, c), (c, τ, a), (c, w, f), (g, τ, f), (f, s, g) }
si = d

Ω = { a, f }

Definition 4.1 (Labelled Transition System). A labelled transition system
(LTS) is a 5-tuple (S,A,→, s0,Ω) where

• S is a set of states;

• A is a set of actions;

• →⊆ (S × (A ∪ {τ}) × S) is a transition relation, where τ 6∈ A is the
silent action.

• (S,→, ∅) is a labelled graph, called the reachability graph;

• s0 ∈ S is the initial state;

• Ω ⊆ S is the set of final states.

A final state is often referred to as an accepting state.
Its induced graph is the labeled graph (S,→, ∅).

4.2 Behavior of a Transition System

Now that we have defined the syntax of transition systems, we can define
the behavior of a system. We do this in two steps: we first discuss single
steps in a system, and then continue with sequences of actions.

Actions

If a transition is in some state, we can execute one of its outgoing transitions.
If the transition is labeled with some visible action, we say that the system
executes that action, leading to a new state. In case the transition is labeled
with a silent action, i.e., τ , the system moves invisibly to that new state. If a
state has no outgoing transitions, we call the state a deadlock. We formalize
this as follows:

Definition 4.2. Let L = (S,A,→, si,Ω) be an LTS, and let s, s′ ∈ S be two
states of it, and a ∈ A ∪ {τ} some action. We use the following notions:
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• we write (L : s
a−→ s′) if and only if (s, a, s′) ∈→

• An action a ∈ A ∪ {τ} is called enabled in a state s ∈ S, denoted by
(L : s

a−→), if there exists a state s′ such that (L : s
a−→ s′).

• If (L : s
a−→ s′), we say that state s′ is reachable from s by an action

labelled a.

• A state s ∈ S is called a deadlock if no action a ∈ A∪{τ} exists such
that (L : s

a−→).

• A set of states U ⊆ S is called a livelock if from U only states within
U itself can be reached, i.e., for all s ∈ U , a ∈ A and s′ ∈ S such that
(L : s

a−→ s′), then s′ ∈ U .

In our example transition system L, we have one deadlock: state A, as
it does not have any outgoing transitions. In state d we have three enabled
transitions, of which one is visible, labeled with action v, and the other two
are invisible. Thus, we have (L : d

v−→ e),(L : d −→ a), and (L : d −→ g).
There is one livelock in L: {f, g}. All transitions from these states remain
in this set of states!

In our example, there are several silent steps. For example, from state d,
we can follow two silent transitions, followed by the visible action s. As the
first two transitions are silent, we cannot observe them. We do not know
whether we are in state d, a, g or f , as long as we do not observe any visible
action. Only after observing the visible action s or v, we know the origin of
that action. Thus, the transition system could move internally, without any
observation. For this, we introduce the =⇒ relation.

Definition 4.3. Let L = (S,A,→, si,Ω) be an LTS, and let s, s′ ∈ S be two
states of it. We use the following notions:

• We define =⇒ as the smallest relation such that (L : s =⇒ s′) if s = s′

or ∃s′′ ∈ S : (L : s =⇒ s′′
τ−→ s′). As a notational convention, we may

write
τ

=⇒ for =⇒.

• For a ∈ A, we define
a

=⇒ as the smallest relation such that (L : s
a

=⇒
s′) if ∃s1, s2 ∈ S : (L : s =⇒ s1

a−→ s2 =⇒ s′).

In our example transition system L, we have (L : d
v

=⇒ e), (L : d =⇒ d),
(L : d =⇒ a), and (L : d =⇒ f). In addition, we have (L : d

s
=⇒ g).
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Sequences

We are not only interested in which actions can be taken from a certain
state, but also how we can reach that state from some other state. For that,
we might need to take several steps. For this, we use a sequence of steps. In
our example transition system L, we might want to execute actions v, u, t,
v, and finally action w. This is a sequence of actions! We therefore lift the
notation of actions to sequences:

Definition 4.4. Let L = (S,A,→, si,Ω) be an LTS, and let s0, sn ∈ S be
two states of it. We use the following notions:

• For the empty sequence ε, we have (L : s
ε−→ s′) if and only if (L :

s =⇒ s′).

• Let σ ∈ A∗ be a sequence of length n > 0, and let s0, sn ∈ S. Sequence
σ is a firing sequence, denoted by (L : s0

σ−→ sn), if there exist states

si−1, si ∈ S such that (L : si−1
σ(i)
=⇒ si) for all 1 ≤ i ≤ n.

• We write (L : s0
∗−→ sn) if there exists a sequence σ ∈ A∗ such that

(L : s0
σ−→ sn)

• If (L : s0
∗−→ sn), we say sn is reachable from s0

• A firing sequence σ ∈ A∗ from state s ∈ S is an accepting sequence
for s if there exists a final state sf ∈ Ω such that (L : s

σ−→ sf ).

In our example transition system, we have (L : d
〈v,u,t,v,w〉−−−−−−→ c). Notice

that this firing sequence is accepting as well. Since (L : c =⇒ a), we have

(L : d
〈v,u,t,v,w〉−−−−−−→ a) as well, and a is a final state!

Definition 4.5 (Reachable states, language of an LTS). Let L = (S,A,→
, si,Ω) be an LTS. The reachable states from a state s ∈ S is the set

R(L, s) = {s′ | (L : s
∗−→ s′)}. The set of all firing sequences from state

si is denoted by T (L) = {σ | ∃s ∈ S : (L : si
σ−→ s)}. The language of

the LTS L, denoted by L(L) ⊆ A∗, is the set of accepting sequences, i.e.
L(L) = {σ ∈ A∗ | ∃sf ∈ Ω : (L : si

σ−→ sf )}.

In our example transition system L, we have 〈v, u, t, v, w〉 ∈ L(L). Notice
that L has an infinite language, as its induced graph is cyclic. We have for
example R(L, d) = {a, b, c, e, f, g}, R(L, a) = ∅ and R(L, g) = {f, g}.

4.3 Comparing Systems

As we have seen in the introduction, a single problem may have many differ-
ent solutions. However, we would like to compare these solutions to analyze
whether they behave equivalent, or where they deviate.
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Consider the pedestrian system introduced in this chapter. Condition R-
1 states that the system for cars should behave the same as the traffic light
depicted in Fig. 4.1. However, the pedestrian system has an action push,
whereas the traffic light of Fig. 4.1 does not have such action. Or it might
be that this action is called push in one system, and press in some other
system. For this purpose, we introduce two operators: renaming and hiding.

Definition 4.6 (Renaming, Hiding). Let A and A′ be two sets. Let L =
(S,A,→, si,Ω) be an LTS. Let r : A → (A′ ∪ {τ}) be a function. We define
the operation ρr on an LTS by ρr(L) = (S,A′,→′, si,Ω), where for s, s′ ∈ S
and a ∈ A we have (s,R(a), s′) ∈→′ if and only if (s, a, s′) ∈→. A special
case of renaming is hiding, in which actions are either renamed to τ , or
remain identical. We define the hide operation on a subset H ⊆ A, denoted
by τH(L), by τH(L) = ρh(L), where h(a) = τ for all a ∈ H and h(a) = a
otherwise.

Thus, to be able to compare the first alternative with the second, we need
to rename action push into action press. For this, we create the function
r = {(push,press)}. To compare each of the solutions with the traffic light,
we need to hide the actions push and press, thus, we compare the traffic
light with τ{push,press}(PS), where PS stands for the pedestrian system
under investigation.

Language Equivalence

A first notion of equivalent behaviour is language equivalence. Two LTSs
are language equivalent if the languages are identical.

Definition 4.7 (Language equivalence). Let L and L′ be two LTSs. They
are language equivalent if L(L) = L(L′).

In our example, the three alternative pedestrian systems all have the
same language: L(PS0) = L(PS1) = {push}∗ and L(PS2) = {press}∗.
Using the above renaming function r, we obtain:

L(PS0) = L(PS1) = L(ρr(PS2))

Simulation equivalence

Language equivalence only states that two LTSs should accept the same
traces, it has no requirements on the intermediate states. For this we intro-
duce several notions of equivalence.

Strong Bisimulation

The strongest notion of equivalence of two LTSs is to check for isomor-
phism on their reachability graphs. However, this notion is often too strong.
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Figure 4.6: Transition system L′ strongly bisimilar to Fig. 4.5

Therefore, we introduce the notion of strong simulation. An LTS L′ strongly
simulates an LTS L if in any two related states, any action L can do, LTS
L′ can perform as well. If both L′ strongly simulates L and L strongly
simulates L′, we say L and L′ are strongly bisimilar.

Definition 4.8 (Strong (bi)simulation). Let L = (S,A,→, si,Ω) and L′ =
(S′,A′,→′, s′i,Ω′) be two LTSs. The relation Q ⊆ S × S′ is a strong simu-
lation, denoted by L s�Q L′, if:

1. the initial states are related:
(si, s

′
i) ∈ Q;

2. the final states are related:
∀s̄ ∈ S′, sf ∈ Ω : (sf , s̄) ∈ Q =⇒ s̄ ∈ Ω′; and

3. related states reach related states:
∀s, s′ ∈ S, a ∈ A ∪ {τ}, s̄ ∈ S′ : ((L : s

a−→ s′) ∧ (s, s̄) ∈ Q) =⇒ (∃s̄′ ∈
S′ : (L′ : s̄

a−→ s̄′) ∧ (s′, s̄′) ∈ Q).

If both Q and Q−1 are strong simulations, Q is a strong bisimulation, de-
noted by L s'Q L′.

Clearly, the different pedestrian systems are not strongly similar. For
example, state D in the first alternative, PS1, reaches state G, whereas in
PS0, state D reaches state A.

Consider the example transition system L′ depicted in Fig. 4.6. Sim-
ulates this transition system our example transition system L? To check
this, we first need to construct a relation between the different states. Let
us consider the following relation: Q = {(a, k), (b,m), (c, p), (d, l), (e, n),
(e, o), (f, r), (g, q)}. To check for simulation, we need to check all conditions
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for strong simulation. First, are the inital states related? We have for the
initial state d that (d, l) ∈ Q, and l is the initial state of L′. Check!

Now, the second criterion, is each final state related? We have k and r
as the only states of L′ that are related to the final states of L, and these
are the final states of L′, so check!

Lastly, consider the third criterion. For each state, we need to check for
each state of L that the related states in L′ have (a) the same actions and
(b) these actions lead to a related state. Thus, for state d, we have two silent
actions leading to a and g, and one visible action v leading to state e. State
a relates to state k, and (L′ : l −→ k). Similarly, (L′ : l −→ q) and (g, q) ∈ Q,
and for the visible action we have (L′ : l

v−→ o) and (e, o) ∈ Q. We repeat this
for all states, leading to the conclusion that L′ simulates L. Similarly, we
can check that L simulates L′, and thus that the two are strongly bisimilar.

Important to see is that we can typically construct a simulation relation
by starting at the initial state, and then work out the relation for each
next reachable state. This requires creativity from the analysist, and thus
practice!

For a more elaborate overview of simulation relations, we refer the reader
to [5].

4.4 Combining Systems

We return to our example of the pedestrian system. We started by observing
that each state in the system consists of the state of three separate objects:
the traffic light for cars with states C, the traffic light for the pedestrians
with states P , and the button with states B. We then considered for each
possible state the possible actions, which resulted in the three alternatives
depicted in Fig. 4.2, Fig. 4.3 and Fig. 4.4.

As part of the specification, we could have drawn separate transition
systems for each of the elements, as shown in Fig. 4.7. We label all actions
uniquely.

For each of the different objects, we can ask ourselves, “what are the
possible actions we allow of the other objects?”. Let us do so. In state X,
the pedestrian light can turn green, and the button can be pushed. We thus
add a self-loop to that state for d, e, f and g. In state Y and Z, we do
not want the traffic light to turn, only the button can be pressed. We thus
add a self-loop transition labeled with f . For the pedestrian light, if the
light is red, the traffic light may loop, and the button may be pushed. Once
the traffic light is green, only the button can be “unpushed”, i.e., we add a
self-loop with label g. For the button, if the button is unpushed, the traffic
light for cars may loop. Only if the button is pushed (state U), we allow the
pedestrian light to turn green. Additionally, if the button is pushed, we do
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Figure 4.7: The separate objects of the Pedestrian System: (from top to
bottom) car Light, Pedestrian light and Button object

not want that the traffic light could loop, so we do not add a to the set of
possible actions in U . An important observation is that if the light is green,
we do not want the button to be pushed, only once the pedestrian light
becomes red again. Thus, the transitions e and g are actually the same. So,
we label them the same (e). This results in the systems depicted in Fig. 4.8.
Notice that the self-loops in fact represent multiple arcs (one arc for each
action).

In the remainder of this section, we show how we can combine these
indivual systems into a large system that results in a correct solution.

For this, we introduce the synchronous product. The synchronous prod-
uct is again a transition system. Its set of states is the cartesian product
of the constituent transition systems. Similarly, the initial state and final
states are created by taking the cartesian product of the respective states
of the consistuents. An action in the synchronous product is only allowed
if that action can be executed by all its consituents. This results in the
following definition:

Definition 4.9 (Synchronous product). Consider a set of N LTSs, say L1 =
(S1,A1,→1, s

i
1,Ω1), . . . , LN = (SN ,AN ,→N , s

i
N ,ΩN ). Their synchronous
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Figure 4.8: The separate objects of the Pedestrian System: (from top to
bottom) car Light, Pedestrian light and Button object

product, denoted by L1 × . . .× LN , is the LTS (S,A, ,→ si,Ω) with:

S = S1 × . . .× Sn
A = A1 ∪ . . . ∪ An
→ = {(s, a, s′) | (Li : πi(s)

a−→ πi(s
′)) for all 1 ≤ i ≤ N}

si = {si1} × . . .× {siN}
Ω = Ω1 × . . .× ΩN

Let us apply this on our pedestrian example depicted in Fig. 4.8. We
start in the initial state, (X,W, T ). In each of the constituents (being X,
W and T ), actions a and f are in common. Hence, these are the only two
actions that leave state X. Firing action a results in the state (Y,W, T );
firing f results in (X,W,U). Similarly, we go through each of the states,
resulting in the transition system depicted in Fig. 4.8. We leave it to the
reader to show that this system is delay bisimilar to system PS2.
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Figure 4.9: The synchronous product of the separate objects of the Pedes-
trian system: PS3
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4.5 Exercises

Exercise 4.1. Explain why the =⇒ relation is reflexive.

Exercise 4.2. Given is some transition system L = (S,A,→, si,Ω). Ex-
plain why →⊆=⇒.

Exercise 4.3. Given is the following transition system:

a

b c

d

g

f

x

w

u z

yt e
v

a. Formalize this transition system in L = (S,A,→, si,Ω).

b. What is the language of this transition system?

c. Does this transition system have deadlocks? If so, which?

d. Does this transition system contain a livelock? If so, give the livelock,
and show that it is a livelock. If not, explain why it does not contain any
livelock.
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Exercise 4.4. Create the synchronous product of the following two transi-
tion systems:

b

a

c

e

s t

s,u

u,v

t s

v

f

u

u

sd

g

su

Exercise 4.5. Given is the following transition system T :

S = { K,L,M,N,O, P,Q }
A = { t, u, v, w, x, y, z }
→ = { (K, τ,N), (N, τ,O), (O, x, P ), (L, t,K), (L, u, P ),

(Q, v, P ), (P, z,M), (L, τ,M), (M,y,O), (P,w,Q) }
si = L

Ω = {K}

Transition System L is the transition system of Exercise 4.3.

a Draw transition system T as a labeled graph.

b Does transition system T strongly simulate transition system L? If so,
give the relation, and show that it is a strong simulation. If not, explain
why.

c Does transition system L strongly simulate transition system T? If so,
give the relation, and show that it is a strong simulation. If not, explain
why.

d Are transition system T and L strongly bisimilar? If so, give the relation,
and show that it is a strong bisimulation. If not, explain why.

Exercise 4.6. In Excercise 1.17 of [1], you created two transition systems:
one for the waiter, and one for the customer. Create their synchronous
product that represents the system of these two objects.
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(b) Transition system L2

Figure 4.10: Two transition systems

Exercise 4.7. Given are the two transition systems shown in Fig. 4.10:

a Does transition system L1 strongly simulate transition system L2? If so,
give the relation, and show that it is a strong simulation. If not, explain
why.

b Does transition system L2 strongly simulate transition system L1? If so,
give the relation, and show that it is a strong simulation. If not, explain
why.

Exercise 4.8. Explain the following statement: “two transition systems that
are isomorphic, are strongly bisimilar as well”.
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A
List of Symbols

A.1 Logic, Sets and Relations

Let A and B be logical statements, and let P (·) be a predicate. Let S and
T be possibly infinite sets.

A ∧B A and B should both hold
A ∨B A or B should hold, or both
¬A A does not hold

A =⇒ B If A holds, then B holds as well
∅ The empty set, containing no elements

{a, b, c} A set containing the elements a, b and c
a ∈ S A is an element in set A
S ∪ T The union of the sets A and B

Elements in this set occur either in A or in B
S ∩ T The intersection of sets A and B

Elements in this set occur in both A and B
S \ T The difference of S with T

All elements that are in S but not in T
∀a ∈ S : P (a) For all elements a in the set A predicate P (a) should hold

Remember, if A = ∅, then the statement is always true!
∃a ∈ S : P (a) There exists an element a in the set A such that predicate P (a) holds

S × T Cartesian product. S × T = {(a, b) | a ∈ S, b ∈ T}
πi((a, b)) Projection to the i-th element of the pair (a, b)
R ⊆ S × T Relation R from S to T

dom(R) Domain of R. If R ⊆ S × T , dom(R) ⊆ S
rng(R) Range of R. If R ⊆ S × T , rng(R) ⊆ T
R−1 Inverse of R.

If R ⊆ S × T , then R−1 ⊆ T × S such that R−1 = {(b, a) | (a, b) ∈ R}.

55
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A.2 Bags

Let A,B ∈ INS be two bags over some posssibly infinite set S.

∅ The empty bag containing no elements
INS The set of all possible bags over S

A bag A is a function A : S → IN , assigning a natural number
to each element in S

[a2, b, c3] The bag or multiset containing two times elements a
one b, and three times element c

A+B The sum of bags A and B
∀s ∈ S : (A+B)(s) = A(s) +B(s)

A−B The difference of bags A and B. Exists only if B ≤ A
∀s ∈ S : (A−B)(s) = A(s)−B(s)

A|T Projection of bag A on set T

∀s ∈ S : (A|T )(s) =

{
A(s) if s ∈ T
0 otherwise

A.3 Sequences

Let σ, τ ∈ S∗ be two sequences over a possibly infinite set S.

S∗ The set of all possible finite sequences over S
A sequence σ of length N assigns to each number an element, i.e.,
σ : {1, . . . , N} → S

ε The empty sequence, containing no elements
〈a, b, c〉 The sequence of a followed by b followed by c
|σ| How many elements the sequence contains
σ; τ Concatenation of two sequences
σ|T Projection of T on σ, defined inductively:

ε|T = ε, (〈a〉;σ)|T = 〈a〉;σ|T if a ∈ T and (〈a〉;σ)|T = σ|T if ¬(a ∈ S)

A(σ) Alphabet of σ, i.e., the set of all elements that occur in σ
−→σ Parikh vector of σ, i.e., how often each element occurs in σ

Defined inductively: −→ε = ∅,
−−−−→
(〈a〉;σ) = [a] +−→σ
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A.4 Graphs

Let G = (V,A) be a directed graph.

•
G s All nodes in the graph that point to node s

•
G s = {t | (t, s) ∈ A}

s•G All nodes in the graph to which node s points
s•G = {t | (s, t) ∈ A}

A.5 Transition Systems

Let L1 = (S1, A1,→1, s1,Ω1) and L2 = (S2, A2,→2, s2,Ω2) be two transition
systems. Let a ∈ A1 and σ ∈ A∗. Let Q ⊆ S1 × S2 be some relation.

τ The silent step, τ 6∈ A1, τ 6∈ A2

(L : s
a−→ s′) In L1, action a leads from state s to state s′

(L : s0
σ−→ sn) Firing sequence in L1 from s0 to sn, defined inductively:

(L1 : s
ε−→ s′) if s = s′, and

(L1 : s
〈a〉;σ−−−→ s′) if ∃s′′ ∈ S1 : (L1 : s

a−→ s′′) and (L1 : s′′
σ−→ s′)

(L1 : s =⇒ s′) Silent step in L from s to s′

(L1 : s =⇒ s′) iff s = s′ ∨ ∃s′′ ∈ S1 : ((L : s =⇒ s′′) ∧ (L : s′′ −→ s′))

(L1 : s
a

=⇒ s′) Action a can occur in L1 from s to s′ with the help of τ -steps

(L1 : s
a

=⇒ s′) iff ∃s′′, s′′′ ∈ S1 : (L1 : s =⇒ s′′
a−→ s′′′ =⇒ s′)

L(L1) Language of L1: all firing sequences from the initial state

to some final state: L(L1) = {σ | ∃sf ∈ S1 : (L : s1
σ

=⇒ sf )}
L1 s�Q L2 L1 is strongly simulated by L2, or L2 strongly simulates L1.

See Def. 4.8
L1 s'Q L2 L1 is strongly bisimilar to L2

L1 s'Q L2 iff L1 s�Q L2 and L2 s�Q−1 L1. See Def. 4.8
L �Q L′ L1 is delay simulated by L2, or L2 delay simulates L1.

See Def. ??
L 'Q L′ L1 is delay bisimilar to L2

L1 'Q L2 iff L1 �Q L2 and L2 �Q−1 L1. See Def. ??
L1 × L2 The synchronous product of L1 and L2. See Def. 4.9
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B
Solutions to Exercises

B.1 Solutions of Chapter 3

Exercise 3.1.

V = { A,B,C,D,E, F,G,H }
A = { (A,B), (B,A), (A,D), (D,A), (A,G), (G,A), (B,E), (E,B),

(G,E), (E,G), (D,G), (G,D), (B,F ), (F,B), (D,C), (C,D),

(F,C), (C,F ), (C,H), (H,C) }

Tip: Count the number of elements in sets V and A. These should be equal to the
number of vertices and arcs in the figure (i.e., |V | = 8, |A| = 20).

Exercise 3.2. Graphically representing the graph results in the following
figure:

Tip: There are various notations for bidirectional arcs (↔, �, −). If you have
directed arcs in the graph, we suggest using an arrow notation (↔, �) for bidirec-
tional arcs to avoid ambiguity.
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Exercise 3.3.

V = { A,B,C,D,E, F,G,H, I }
A = { (B,D), (B,C), (D,C), (D,H), (C,A), (H,A), (H,G), (A,E),

(E,F ), (F,C), (G, I), (I, E), (I, F ) }

Observe that the order of the elements in sets V and A does not matter.

Exercise 3.4. This graph H is isomorphic to the graph of Exercise 3.2. As
a first indicator, we observe that |VG| = |VH | = 6 and |AG| = |AH | = 11. In
other words, the number of nodes and arcs in both graphs are equal. If this
was not the case, it would be impossible for the graphs to be isomorphic.

We map the vertices in G to the vertices in H in a function f : VG → VH
such that

f = {(A, V ), (B,W ), (C, Y ), (D,Z), (E,X), (F,U)}

Subsequently, we can map all arcs of G to H using f:

{ (f(A), f(B)), (f(A), f(F )), (f(B), f(F )), (f(A), f(C)), (f(B), f(D)),

(f(C), f(F )), (f(E), f(C)), (f(C), f(A)), (f(D), f(B)), (f(C), f(D)),

(f(D), f(E)) } =

{ (V,W ), (V,U), (W,U), (V, Y ), (W,Z), (Y,U), (X,Y ), (Y, V ), (Z,W ),

(Y, Z), (Z,X) }

Conversely, we could map H to G in a function f ′ : VH → VG.
We observe that graphs G and H are isomorphic. All vertices in G can

be mapped to a vertex in H, and applying this function to all arcs in G
(AG) results in a formalization of AH .
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Exercise 3.5. Method 1: Alphabetic

Step Node Queue

0 A ε

1 〈A〉
2 A 〈B,D,G〉
3 B 〈D,G,E, F 〉
4 D 〈G,E, F,C〉
5 G 〈E,F,C〉
6 E 〈F,C〉
7 F 〈C〉
8 C 〈H〉
9 H ε

Method 2: Visual left-to-right top-to-bottom 〈F,B,A,C,H,E,G,D〉

Step Node Queue

0 A ε

1 〈A〉
2 A 〈B,G,D〉
3 B 〈G,D,F,E〉
4 G 〈D,F,E〉
5 D 〈F,E,C〉
6 F 〈E,C〉
7 E 〈C〉
8 C 〈H〉
9 H ε

Other methods: If you are certain you found an alternative correct solution, you
can check your solution with your teaching assistant.

Both methods result in the same spanning tree
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Exercise 3.6. Method: Alphabetical

Step Node Stack

0 〈A〉
1 A 〈A,B〉
2 B 〈A,B,E〉
3 E 〈A,B,E,G〉
4 G 〈A,B,E,G,D〉
5 D 〈A,B,E,G,D,C〉
6 C 〈A,B,E,G,D,C, F 〉
7 F 〈A,B,E,G,D,C, F 〉
8 F 〈A,B,E,G,D,C〉
9 C 〈A,B,E,G,D,C,H〉
10 H 〈A,B,E,G,D,C,H〉
11 H 〈A,B,E,G,D,C〉
12 C 〈A,B,E,G,D,C〉
13 C 〈A,B,E,G,D〉
14 D 〈A,B,E,G,D〉
15 D 〈A,B,E,G〉
16 G 〈A,B,E,G〉
17 G 〈A,B,E〉
18 E 〈A,B,E〉
19 E 〈A,B〉
20 B 〈A,B〉
21 B 〈A〉
22 A 〈A〉
23 A ε

For other methods, the same applies as in Exercise 3.5.
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Spanning tree corresponding to Exercise 3.6 (the red numbers indicate the order
in which the arcs were traversed):

Exercise 3.7. The BFS for Exercise 3.3:

Step Node Queue

0 A ε

1 〈A〉
2 A 〈E〉
3 E 〈F 〉
4 F 〈C〉
5 F ε

Tree from Node A

Observe that we do not denote this tree as a spanning tree, because it does not
contain all vertices.
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Exercise 3.8. The DFS for Exercise 3.3:

Step Node Stack

0 〈A〉
1 A 〈A,E〉
2 E 〈A,E, F 〉
3 F 〈A,E, F,C〉
4 C 〈A,E, F,C〉
5 C 〈A,E, F 〉
6 F 〈A,E, F 〉
7 F 〈A,E〉
8 E 〈A,E〉
9 E 〈A〉
10 A 〈A〉
11 A ε

The tree from A is equal to the one presented in Ex 3.7.

Exercise 3.9. A topological sort on a graph with V = {v1, v2, . . . , vn} re-
quires that for every arc (vi, vj) vi must precede vj (i ¡ j). Consider a cyclic
graphG′ = {V ′, A′} where V ′ = v1, v2, v3 andA′ = {(v1, v2), (v2, v3), (v3, v1)}
as depicted in the Figure below.

Here, a topological sort would result in an impossible scenario. For
vertex v1 you need v3 and v2 as a prerequisite, for v3 the prerequisites are
v2 and v1. This implies that v1 precedes v3, which in turn precedes v2 and
v1. Using a transitive relation we see that v1 precedes itself, i.e. 1 < 1. This
scenario is impossible, as a number cannot be smaller than itself!
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Exercise 3.10. The shortest path resulting from Dijkstra’s is 〈A,B, F,D,G〉
with weight 80:

Step Node Parent A B C D E F G H

0 ⊥ 000 ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 A ⊥ 20A20A20A ∞ 80A ∞ ∞ ∞ ∞
2 B A ∞ 80A ∞ 30B30B30B ∞ ∞
3 F B 80F 70F70F70F ∞ ∞ ∞
4 D F 80F80F80F ∞ 80D ∞
5 C F ∞ 80D80D80D 100C
6 C F ∞ 100C

Note that we choose C over G in step 4. There are only three arcs on the shortest
path from A to C 〈A,B, F,C〉, but there are four on the shortest path from A to
G 〈A,B, F,D,G〉. Moreover, we do not replace 80F with 80D for C in step 4 as
these two are equal (Dijkstra’s looks at new value smaller than the old value and
therefore disregards equal values).

Exercise 3.11. The shortest path according to Dijkstra’s is 〈A,B,G, J〉
with a total weight of 20.

Step Node Parent A B C D E F G H I J

0 ⊥ 000 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 A ⊥ 1A1A1A 2A 3A ∞ ∞ ∞ ∞ ∞ ∞
2 B A 2A2A2A 3A 6B ∞ 5B ∞ ∞ ∞
3 C A 3A3A3A 6B 8C 5B ∞ ∞ ∞
4 D A 6B 8C 5B5B5B ∞ ∞ ∞
5 G B 6B6B6B 8C 21G ∞ 20G
6 E B 8C8C8C 21G ∞ 20G
7 F C 21G 22F 20G20G20G
8 J G 21G 22F
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Exercise 3.12. The shortest path according to Dijkstra’s is 〈A,B,C,D,G,M,N〉,
with a total weight of 14.

Step Node Parent A B C D E F G H I J K L M N

0 ⊥ 000 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 A ⊥ 2A2A2A ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
2 B A 5B ∞ 4B4B4B ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
3 E B 5B5B5B ∞ ∞ ∞ ∞ 8E ∞ ∞ ∞ ∞ ∞
4 C B 6C6C6C 7C ∞ 10C 8E ∞ ∞ ∞ ∞ ∞
5 D C 7C7C7C 7D 8D 8E ∞ ∞ ∞ ∞ ∞
6 F C 7D7D7D 8D 8E ∞ ∞ ∞ ∞ ∞
7 G D 8D8D8D 8E ∞ ∞ ∞ 9G ∞
8 H D 8E8E8E 10H 13H ∞ 9G ∞
9 I E 10H 13H ∞ 9G9G9G ∞
10 M G 10H10H10H 13H ∞ 14M
11 J H 13H 11J11J11J 14M
12 L J 13H13H13H 14M
13 K H 14M14M14M

Note that there is another shortest path of length 14: 〈A,B,C,D,H, J, L,K,N〉.
However, as the first time the algorithm hits node N , the parent M is stored. As
the value never gets smaller, as required by Dijkstra’s algorithm (see line 10), the
parent is never updated!

B.2 Solutions of Chapter 4

Exercise 4.1. Let L = (S,A,→, s0,Ω) be an LTS. The definition of the
silent step is (L : s =⇒ s′) iff s = s′ or ∃s′′ ∈ S : (L : s =⇒ s′′)∧(L : s′′ −→ s′).
Thus, for any state s, we have (L : s =⇒ s), since s = s. Hence =⇒ is
reflexive.

Exercise 4.2. Let L = (S,A,→, s0,Ω) be an LTS. The definition of firing
a ∈ A ∪ {τ} is (L : s

a
=⇒ s′) iff ∃s′′ ∈ S : (L : s =⇒ s′′) ∧ (L : s′′

a−→ s′).
Suppose LTS L can fire a possibly silent action a ∈ A ∪ {τ} from s to s′,
i.e., (L : s

a−→ s′′). Since =⇒ is reflexive, (L : s =⇒ s). Hence, choose s′′ = s.
Then (L : s −→ s′′) and (L : s′′

s−→ a), which exactly matches the definition
of firing. Hence smallarrow ⊆=⇒.
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Exercise 4.3.

a. The LTS L = (S,A,→, s0,Ω) is defined by:

S = { a, b, c, d, e, f, g }
A = { t, u, v, w, x, y, z }
→ = { (b, t, a), (b, τ, c), (b, u, e), (a, τ, d), (c, τ, f), (c, y, d),

(d, x, e), (f, v, e), (e, τ, g), (e, z, c)(g, w, f) }
s0 = b

Ω = { a }

b. The language of this transition system L(L) = {〈t〉}, as this is the only
sequence from the initial state to a final state.

c. As all states have at least one outgoing arc, there is no deadlock in L.

d. The system has one minimal livelock: {e, c, d, f, g}. Any arc leaving from
these states returns in this set. Hence, it is a livelock. Notice that the
set of all nodes is a livelock as well, but this one is trivial.



68 APPENDIX B. SOLUTIONS TO EXERCISES

Exercise 4.4.

b,g

s

a,c

b,d b,f

a,f

a,ea,da,d b,c

s

u

utv

uu s

ss u

s

Exercise 4.5.

a. Transition system T is graphically depicted as:

K

L M

O

Q

x

w

u z

yt P
v

N

b. Does T strongly simulate L? Thus, we need to show that L s�Q T . Such
a relation Q does not exist, since relating state d in L is not possible: if we
relate it to N in T , then T cannot simulate action x in L. Additionally,
because of the τ -steps, we cannot relate state a of L to state O in T .
Hence, there is no strong simulation.

c. To answer whether L strongly simulate T , we need to show that T s�R T .
Such a relation R does not exist: the only candidates to relate state N
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to are states a or d. It cannot be related to a. Because a and K are the
only final states, we have (K, a) ∈ R. If (N, a) ∈ R, then (T : K −→ N)
cannot be simulated. Similarly, if (N, d) ∈ R, then (N : N −→ O) cannot
be simulated, as the τ -step should be explicit in a strong simulation.

d. Transition systems T and L are not strongly bisimilar, since for both
direction no strong simulation relation can be found, as shown in (b) and
(c).

Exercise 4.7.

a. To verify whether L1 simulates L2, we need to find a relation Q such that
L2 s�Q L1. Let Q = (A,W ), (B,W ), (C, Y ), (D,X), (E,X). Then, (1)
the inital states are related, and (2) each final state of L2 is related to a
final state of L1. Next, we need to validate all steps:

• (L2 : A
s−→ B), and (A,W ) ∈ Q. Then (L1 : W

s−→ W ), and
(B,W ) ∈ Q.

• (L2 : A
u−→ D), and (A,W ) ∈ Q. Then (L1 : A

u−→ X), and (D,X) ∈
Q.

• (L2 : B
t−→ C), and (B,W ) ∈ Q. Then (L1 : W

t−→ Y ), and (C, Y ) ∈
Q.

• (L2 : C
u−→ A), and (C, Y ) ∈ Q. Then (L1 : Y

u−→ W ), and (A,W ) ∈
Q.

• (L2 : C
s−→ D), and (C, Y ) ∈ Q. Then (L1 : Y

s−→ X), and (D,X) ∈
Q.

• (L2 : D
u−→ E), and (D,X) ∈ Q. Then (L1 : X

u−→ X), and (E,X) ∈
Q.

• (L2 : E
v−→ C), and (E,X) ∈ Q. Then (L1 : X

v−→ Y ), and (C, Y ) ∈
Q.

Hence, all steps fulfill the step-criterion of simulation. Hence L2 s�Q L1.

b. To verify whether L2 simulates L1, we need to find a relation R such
that L1 s�Q L2. Suppose (W,A) ∈ R. Since, (L1 : W

s−→ W ) and

(L2 : A
s−→ B), also (W,B) ∈ R, since otherwise R would not be a

simulation relation. But then, (L1 : W
u−→ X), but there is no state

Z ∈ S2 such that (L2 : B
u−→ Z). Hence, such relation R with L1 s�Q L2

does not exist.

Exercise 4.8. Under the assumption that the isomorphism relation relates
the initial state and final states, we only need to consider the third option.
Let L1 and L2 be two transition systems that are isomorphic with relation
f (i.e., f : S1 → S2). By definition of isomorphism, we have (A, t,B) ∈→1
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if and only if (f(A), t, f(B)) ∈→2. Hence, if (L1 : A
t−→ B), then also

(L2 : f(A)
t−→ f(B)), which directly satisfies the third criterion of strong

simulation.
Notice that the reverse is not true: if two transition systems are bisimilar,

then they need not be isomorphic. As an example, consider the transition
systems L1 = (s, a, (s, a, s), a, a) and L2 = (t, u, a, (u, a, t), (t, a, t), u, t, u), as
depicted below. Let Q = (s, t), (s, u). Then it is easy to see that L1 s�Q L2

and L2 s�Q−1 L1, i.e., L1 and L2 are strongly bisimilar. However, their
graphs are not isomorphic.

s

a

(a) L1

t

a

u a

(b) L2
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