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Its characteristic equation is

—|r+1=0, !
1+ 4
with roots L
~ = 14
ry(h) = [1 " %: [lztlh 1+ | (2.3.30)
Note thpr
ra(h) = ()", (23.31)
Ira (B 4B = 1 (23.32)
-
consequently, «'/
S (2.9)
P
h? -
tang(h) = hy/1+ T /’f" (2.3.34)
Since
v = E(ry)* + E*(r})E (2.3.35) '
Jefre E is an arbitrary complex-valued cons t, we conclude that all solutions to : -
this discrete model oscillate with const amplitude for & > 0. /:

The second example has & co;

linear termy; it is

“/ﬁze two “symmetric” forms for y g
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These roots have the following propertie,
=[r-(h)", h>0, (2.3.39)
Ire(B)f =r-(B)| =1, h>0, (2.3.40)

re(h) = [r-(B) = o,
h

tan ¢(h) = aTEy (2.3.41)
We conclude that, for & > 0, all solutions of, 2. (2.3.36) are oscillatory with constant

amplitude.
In summary, we have sgorf that only the use of a diserete representation for

the linear y term that jefentered about the grid point 15 will give a di e model

cel}u‘r difference scheme has the correct osgiltffory behavior if 0 < h < 2, while
3
cillatory behavior with constant amplitude

for all h > 0.

letely symmetric discrete expression for the /

v

=20 Y1 | Yers + Uk + Ve "
b W + 3 =0. _'4./“ (2.3.36)
s A
The correspogfling characteristic equation is e

with the voots

) 1- 4
,zﬁg[ fa]'* <o, (2.3.37)

1+ 35

{(1 - ';—2) * a‘h\/uT‘;} . (2.3.38)

2.4 Logistic Differential Equation
The Logistic differential equation is

Y w1y (24.1)

Its exact solution can be obtained by the method of separation of variables which

gives
Yo
t) = ————————— 2.4.2
ue) Yo+ (1 - yo)e~* (24.2)
where the initial condition is
vo = y(0). (2.4.3)
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Figure 2.4.1 illustrates the general nature of the various solution behaviors. H

ya > 0, then all solutions monotonically approach the stable fixed-point at y(t) = 1.

If yo < 0, then the solution at first decreases to —oo at the singular point

g = Lo |l
t=t —Ln[ - ] (2.4.4)

after whicl, for ¢t > t*, it decreases monotonically to the fixed-point at y(t) = 1.
Note that yit) = U is an unstable fixed-point.
Our first discrete model is constructed by using a central difference scheme for

the denvative:
Yi+1 — Yk-)
2h

Since Eq. {2.4.5) is a sccond-order difference equation, while Eq. (2.4.1) is a first-

= yi(1 — yx)- (2.4.5)

order differential cquation, the value of y, = y(h) must be determined by some

procedure, We do this by use of the Euler result [7, 8, 9]

v1 = Yo + hyo{l — wo)- (2.4.6)

A typical plut of the numerical solution to Eq. (2.4.5) is shown in Figure 2.4.2.
This type of plot is obtained for any value of the step-size. An understanding of
this result follows from a lincar stability analysis of the two fixed points of Eg.
(2.4.5).

First of all. note that Eq. (2.4.5) has two constant solutions or fixed-points.
They are

n=§"=0  w=y"=1 (24.7)

To investigate the stability of yy = g9, we sct
v =9 + e, lesl < 1, (2.4.8)

substitute this result into Eq. (2.4.5) and neglect all but the linear terms. Doing

this gives
€41 = €x—1

S = e (2.4.9)

37

Y

(a)

Figure 2.4.1. Solutions of the logistic differential
equation. (a) Yo >0. () Y < 0.
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Figure 2.4.2. Typical plot for a ceniral difference scheme model of the
logstic differential cquation: ¥o= 0.5, h=0.1.
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The solution to this second-order difference equation is

e = A(re)* + B(r_ )k, (2.4.10)
where A and B are arbitrary, but, small constants; and

ra(h) =h+ 1+ he. (2.4.11)

From Eq. (2.4.11), it can be concluded that the first term on the right-side of
Eq. (2.4.10) is exponentially increasing, while the second term oscillates with an
exponentially decreasing amplitude.

A small perturbation to the fixed-point at (! = 1 can be represented ns

v=yWim, Ikl <l (2.4.12)

The linear perturbation equation for 7 is

oMl -, (2.4.13)
whose solution is
7 = C(S4)* + D(S-)F, (2.4.14)

where C and D are small arbitrary constants, and

Sa(h) = ~h+ 1+ 12 (2.4.15)

Thus, the first term on the right-side of Eq. (2.4.14) exponentially decreases, while
the second term oscillates with an exponentially increasing amplitude.

Putting these results together, it follows that the central difference scheme has
exactly the same two fixed-points as the Logistic differential equation. However,
while y(t) = 0 is (linearly) stable and y(t) = 1 is (linearly) unstable for the dif-
ferential equation, both fixed-points are linearly unstable for the central difference

scheme. The results of the linear stability analysis, as given in Eqs. (2.4.10) and
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{2.4.14), explain what is shown by Figure 2.4.2. For initial value yo, such that
0 < yo < 1, the values of yx increase and exponentially approach the fixed-point
71 = 1; yx then begins to oscillate with an exponentially increasing amplitude
about '!) = 1 until it reaches the neighborhood of the fixed-point 79 = 0. After
an initinl exponential decrease to §® = 0, the yi value then begin their increase
back to the fixed-point at ) = 0.

It has been shown by Yamaguti and Ushiki {10} and by Ushiki (11] that the
central difference scheme allows for the existence of chaotic orbits for all positive
time-steps for the Logistic differential equation. Additional work on this problem
has been done by other researchers including Sanz-Serna [12] and Mickens {13]. The
major canclusion is that the use of the central difference scheme

Yetr —YE-1
h Flys)s (2.4.16)

for the scalar first-order differential equation

dy _
e ) (24.17)

forces all the fixed-points to becoine unstable {13}, Consequently, the central differ-
ence discrete derivative should never be used for this class of ordinary differential
equation

However, before leaving the use of the central difference scheme, let us consider
the following discrete model for the Logistic equation:

g‘ﬂ?,_]!‘:‘l = ye-1{1 — yr1)- (24.18)

Our major reason for studying this model is that an exact analytic solution exists

for Eq. (2.4.18). Observe that the function

fwy=y(1-v) (2.4.19)

et mm s e i 04
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is modeled locally on the lattice in Eq. (2.4.5), while it is modeled nonlocally in Eq.
(2.4.18), i.e., at lattice points k — 1 and k+1
The substitution
1

w= (2.4.20)

transforms Eq. (2.4.18) to the expression

1 2h
Ty — (ﬂ—zi“)xk—l =T7oh (2.4.21)

Note that Eq. (2.4.18) is a nonlinear, second-order difference equation, while Eq.
(2.4.21) is a linear, inhomogeneous equation with constant coefficients. Solving Eq.

(2.4.21) gives the general solution
zp = 14 [A+ B(-1)*)(1 +21)7F/2, (2.4.22)

where A and B are arbitrary constants. Therefore, yi is

1
Ve = TTTA+ B(-DH(1 + 2h)F/2°

(2.4.23)

For yp such that 0 < yo < 1, and y; selected such that y; = yo + hyo(l — Yo ),
the solutions to Eq. (2.4.23) have the structure indicated in Figure 2.4.3. Observe
that the pumerical solution has the general properties of the solution to the Logistic
differential equation, see Figure 2.4.1, except that small oscillations occur about the
smooth solution.

The direct forward Euler discrete model for the Logistic differential equation

Yt Tk _ (1 - i) (2.4.24)

This first-order difference equation has two constant solutions or fixed-points at

7® =0 and §¥) = 1. Perturbations about these fixed-points, i.c.,

n=ta=a, lal<l, (2.4.25)
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= +m=14+m, I« (2.4.26)
give the following solutions for ¢; and n;:

€x = eo(1 + h)*, (2.4.27)

e =no(1 - h)k. (2.4.28)

The expression for ¢, shows that §(® is unstable for all h > 0; thus, this discrete
scheme has the same linear stability property as the differential equation for all
[ h > 0. However, the linear stability properties of the fixed-point 7" depend on the

value of the step-size. For example:
(i) 0 <h < 1:9M is Linearly stable; perturbations decrease exponentially.
(i) 1 <k <2:§0) ig linearly stable; however, the perturbations decrease expo-
nentially with an oscillating amplitude.
(iii) A > 2: §® i linearly unstable; the perturbations oscillate with an exponen-
tially increasing amplitude.

> Our conclusion is that the forward Euler scheme gives the correct linear stability
properties only if 0 < A < 1. For this interval of step-size values, the qualitative

=

properties of the solutions to the differential and difference equations are the same.
Consequently, for 0 < h < 1, there are no numerical instabilities.
Figure 2.4.4 presents three numerical solutions for the forward Euler scheme
Figure 2.4.3. A trajectory for the central difference scheme | given by Eq. (24.24). In all three cases the initial condition is yo = 0.5. The
!M# =Y, (- Ve l)- ) step-sizes are A = 0,01, 1.5 and 2.5.
Finally, it should be stated that the change of variables

k
Zp = (m) Vi, A =1 + h, (2.429)

when substituted into Eq. (2.4.24) gives the famous Logistic difference equation [7,
14, 15]
zeg1 = Azl = z). (2.4.30)
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Depending on the value of the parameter A, this equation has a host of solutions
with various periods, as well as chaotic solutions 16, 17].

Qur next model of the Logistic differential equation is constructed by using
a forward Euler for the first-derivative and a nonlocal expression for the function

f(¥) = y(1 —y). This model is

LT (- wn). (2.4.31)

This first-order. nonlinear difference equation can be solved exactly by using the

variable change

1
v = ot (2.4.32)
to obtain
1 h
k) — | —— = — 243
Fha (1 ¥ h)“ 1+h (2.4.33)
whose general solution is
=1+ A(L+ h)°E, (2.4.34)

where A is an arbitrary constant. Imposing the initial condition

1
zg = —, 2.4.35
0= ( )
EIves
A=W (2.4.36)
Yo
and
Yo

' (2.4.37)

T+ (o)1 + B F
Examination of Eq. {2.4.37) shows that, for h > 0, its qualitative properties are
the same as the corresponding cxact solution to the Logistic differential equation,
namely, Eq. (2.4.2). Hence, the forward Euler, nonlocal discrete model has no

mwnerical instabilities for any step-size. Figure 2.4.5 gives numerical solutions using
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Figure 2.4.5. Numcrical solutrons of
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Figure 2.4.5. Numerical solutions of
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Eq. (2.4.31) for three step-sizes. Note that Eq. (2.4.31) can be writter: in explicit
form
_(L+h)w (2.4.38)

3 = —— S
Yi+1 T+ hye

Our last discrete model for the Logistic differential equation is based on a
second-order Runge-Kutta method (8, 9]. This technique gives for the first order

scalar equation

dy _ .
i ) (2.4.39)

the discrete result

Ykt1 — Ve _ flye) + flys + f(ys)] (2.4.40)
= 5 . 2.4.4(

Applying this to the Logistic equation, where f(y) = y(1 — y), gives

2 h 2+ 3h + h%)h ; I
Ve = [1 + (—i2—"—)——] v - [‘—i————;)—]yi +(1+h)Ryy - (%)yt. (2.4.41)

This first-order, nonlinear difference equation has four fixed-points. They are lo-
cated at

g0 =0, g =1, (2.4.42)
1
§a3 = (‘Z_h) [e+me Vi1 (2.4.43)

The first two fixed-points, 7' and §{!), correspond to the two fixed-points of the
Logistic differential equation. The other two fixed-points, § and §'), are spurious
fixed-points and are introduced by the second-order Runge-Kutta method. Note
that for h < 2, the fixed-points §® and §*®' are complex conjugates of each other;
while for h > 2, all fixed-points are real. Figure 2.4.6 gives a plot of all the fixed-
points as a function of the step-size h.

For 0 < h < 2, there are only two real fixed-points, namely, g® = 0 and
g = 1. The first is linearly unstable and the second is linearly stable. All
numerical solutions of Eq. (2.4.41), with yo > 0, thus approach j'! as k — oo.

However, for h > 2, there exists four real fixed-points. Their order and lincar
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Figurc 2.4.6. Plot of the fixcd-points of the 2nd-order Runge-Kutta
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stability properties are indicated below where U and S, respectively, mean linearly

unstable and linearly stable:

7 < (k) < g < (k)
vos vos

These results and Eq. (2.4.43) predict that at & step-size of h = 2.5, if the initial
value yo is selected so that 0 < yp < 1, then the numerical solution of Eq. (2.4.41)
will converge to the value 0.6. The validity of this prediction is shown in Figure
2.4.7(c). This figure also gives numerical solutions for several other step-sizes.

The application of the second-order Runge-Kutta method illustrates the gen-
eration of numerical instabilities that arise from the creation of additional spurious
fixed-points.

Comparing the five finite-difference schemes that were used to model the Lo-
gistic differential equation, the nonlocal forward Euler method clearly gave the
best results. For all values of the step-size it has solutions that are in qualitative
agreement with the corresponding solutions of the differential equation. The other

discrete models had, for certain values of step-size, numerical instabilities.

(2.5.1)

o
u(z, t) .7/}{: =t).

<

(2.5.2)
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Figure 2.4.7. Numerical integration of the logistic equation

by a 2nd-order Runge-Kutta method.
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